導航:首頁 > 源碼編譯 > 遺傳演算法工作流程

遺傳演算法工作流程

發布時間:2022-04-19 00:31:28

『壹』 什麼是遺傳演算法

遺傳演算法(Genetic Algorithm)是一類借鑒生物界的進化規律(適者生存,優勝劣汰遺傳機制)演化而來的隨機化搜索方法。它是由美國的J.Holland教授1975年首先提出,其主要特點是直接對結構對象進行操作,不存在求導和函數連續性的限定;具有內在的隱並行性和更好的全局尋優能力;採用概率化的尋優方法,能自動獲取和指導優化的搜索空間,自適應地調整搜索方向,不需要確定的規則。遺傳演算法的這些性質,已被人們廣泛地應用於組合優化、機器學習、信號處理、自適應控制和人工生命等領域。它是現代有關智能計算中的關鍵技術。
對於一個求函數最大值的優化問題(求函數最小值也類同),一般可以描述為下列數學規劃模型:
遺傳演算法式中x為決策
變數,式2-1為目標函數式,式2-2、2-3為約束條件,U是基本空間,R是U的子集。滿足約束條件的解X稱為可行解,集合R表示所有滿足約束條件的解所組成的集合,稱為可行解集合。
遺傳演算法的基本運算過程如下:
a)初始化:設置進化代數計數器t=0,設置最大進化代數T,隨機生成M個個體作為初始群體P(0)。
b)個體評價:計算群體P(t)中各個個體的適應度。
c)選擇運算:將選擇運算元作用於群體。選擇的目的是把優化的個體直接遺傳到下一代或通過配對交叉產生新的個體再遺傳到下一代。選擇操作是建立在群體中個體的適應度評估基礎上的。
d)交叉運算:將交叉運算元作用於群體。所謂交叉是指把兩個父代個體的部分結構加以替換重組而生成新個體的操作。遺傳演算法中起核心作用的就是交叉運算元。
e)變異運算:將變異運算元作用於群體。即是對群體中的個體串的某些基因座上的基因值作變動。
群體P(t)經過選擇、交叉、變異運算之後得到下一代群體P(t 1)。
f)終止條件判斷:若t=T,則以進化過程中所得到的具有最大適應度個體作為最優解輸出,終止計算。
遺傳演算法是從代表問題可能潛在的解集的一個種群(population)開始的,而一個種群則由經過基因(gene)編碼的一定數目的個體(indivial)組成。每個個體實際上是染色體(chromosome)帶有特徵的實體。染色體作為遺傳物質的主要載體,即多個基因的集合,其內部表現(即基因型)是某種基因組合,它決定了個體的形狀的外部表現,如黑頭發的特徵是由染色體中控制這一特徵的某種基因組合決定的。因此,在一開始需要實現從表現型到基因型的映射即編碼工作。由於仿照基因編碼的工作很復雜,我們往往進行簡化,如二進制編碼,初代種群產生之後,按照適者生存和優勝劣汰的原理,逐代(generation)演化產生出越來越好的近似解,在每一代,根據問題域中個體的適應度(fitness)大小選擇(selection)個體,並藉助於自然遺傳學的遺傳運算元(genetic operators)進行組合交叉(crossover)和變異(mutation),產生出代表新的解集的種群。這個過程將導致種群像自然進化一樣的後生代種群比前代更加適應於環境,末代種群中的最優個體經過解碼(decoding),可以作為問題近似最優解。

『貳』 遺傳演算法是什麼

遺傳演算法(Genetic Algorithm)是一類借鑒生物界的進化規律(適者生存,優勝劣汰遺傳機制)演化而來的隨機化搜索方法。
遺傳演算法(Genetic Algorithms簡稱GA)是由美國Michigan大學的John Holland教授於20世紀60年代末創建的。它來源於達爾文的進化論和孟德爾、摩根的遺傳學理論,通過模擬生物進化的機制來構造人工系統。遺傳演算法作為一種全局優化方法,提供了一種求解復雜系統優化問題的通用框架,它不依賴於問題的具體領域,對優化函數的要求很低並且對不同種類的問題具有很強的魯棒性,所以廣泛應用於計算機科學、工程技術和社會科學等領域。John Holland教授通過模擬生物進化過程設計了最初的遺傳演算法,我們稱之為標准遺傳演算法。
標准遺傳演算法流程如下:
1)初始化遺傳演算法的群體,包括初始種群的產生以及對個體的編碼。
2)計算種群中每個個體的適應度,個體的適應度反映了其優劣程度。
3)通過選擇操作選出一些個體,這些個體就是母代個體,用來繁殖子代。
4)選出的母代個體兩兩配對,按照一定的交叉概率來進行交叉,產生子代個體。
5)按照一定的變異概率,對產生的子代個體進行變異操作。
6)將完成交叉、變異操作的子代個體,替代種群中某些個體,達到更新種群的目的。
7)再次計算種群的適應度,找出當前的最優個體。
8)判斷是否滿足終止條件,不滿足則返回第3)步繼續迭代,滿足則退出迭代過程,第7)步中得到的當前最優個體,通過解碼,就作為本次演算法的近似最優解。

具體你可以到網路文庫去搜索遺傳演算法相關的論文,很多的。
你也可以參考網路里對遺傳演算法的介紹。

『叄』 遺傳演算法流程圖

首先你的這個問題沒有什麼意義,明顯x=31的時候y最大嘛。。。

%定義遺傳演算法參數
NIND=40; %個體數目(Number of indivials)
MAXGEN=25; %最大遺傳代數(Maximum number of generations)
PRECI=20; %變數的二進制位數(Precision of variables)
GGAP=0.9; %代溝(Generation gap)
trace=zeros(2, MAXGEN); %尋優結果的初始值
FieldD=[20;0;31;1;0;1;1]; %區域描述器(Build field descriptor)
Chrom=crtbp(NIND, PRECI); %初始種群
gen=0; %代計數器
variable=bs2rv(Chrom, FieldD); %計算初始種群的十進制轉換
ObjV=variable.*variable; %計算目標函數值
while gen<MAXGEN
FitnV=ranking(-ObjV); %分配適應度值(Assign fitness values)
SelCh=select('sus', Chrom, FitnV, GGAP); %選擇
SelCh=recombin('xovsp', SelCh, 0.7); %重組
SelCh=mut(SelCh); %變異
variable=bs2rv(SelCh, FieldD); %子代個體的十進制轉換
ObjVSel=variable.*variable; %計運算元代的目標函數值
[Chrom ObjV]=reins(Chrom, SelCh, 1, 1, ObjV, ObjVSel); %重插入子代的新種群
variable=bs2rv(Chrom, FieldD);
gen=gen+1; %代計數器增加
%輸出最優解及其序號,並在目標函數圖像中標出,Y為最優解,I為種群的序號
[Y, I]=max(ObjV);hold on;
plot(variable(I), Y, 'bo');
trace(1, gen)=max(ObjV); %遺傳演算法性能跟蹤
trace(2, gen)=sum(ObjV)/length(ObjV);
end
variable=bs2rv(Chrom, FieldD); %最優個體的十進制轉換
hold on, grid;
plot(variable,ObjV,'b*');
figure(2);
plot(trace(1,:));
hold on;
plot(trace(2,:),'-.');grid
legend('解的變化','種群均值的變化')

上面是這個問題的MATLAB程序,你自己研究一下吧
運行的時候需要MATLAB遺傳演算法工具箱

『肆』 進化演算法的基本步驟

進化計算是基於自然選擇和自然遺傳等生物進化機制的一種搜索演算法。與普通的搜索方法一樣,進化計算也是一種迭代演算法,不同的是進化計算在最優解的搜索過程中,一般是從原問題的一組解出發改進到另一組較好的解,再從這組改進的解出發進一步改進。而且在進化問題中,要求當原問題的優化模型建立後,還必須對原問題的解進行編碼。進化計算在搜索過程中利用結構化和隨機性的信息,使最滿足目標的決策獲得最大的生存可能,是一種概率型的演算法。
一般來說,進化計算的求解包括以下幾個步驟:給定一組初始解;評價當前這組解的性能;從當前這組解中選擇一定數量的解作為迭代後的解的基礎;再對其進行操作,得到迭代後的解;若這些解滿足要求則停止,否則將這些迭代得到的解作為當前解重新操作。
以遺傳演算法為例,其工作步驟可概括為:
(1) 對工作對象——字元串用二進制的0/1或其它進制字元編碼 。
(2) 根據字元串的長度L,隨即產生L個字元組成初始個體。
(3) 計算適應度。適應度是衡量個體優劣的標志,通常是所研究問題的目標函數。
(4) 通過復制,將優良個體插入下一代新群體中,體現「優勝劣汰」的原則。
(5) 交換字元,產生新個體。交換點的位置是隨機決定的
(6) 對某個字元進行補運算,將字元1變為0,或將0變為1,這是產生新個體的另一種方法,突變字元的位置也是隨機決定的。
(7) 遺傳演算法是一個反復迭代的過程,每次迭代期間,要執行適應度計算、復制、交換、突變等操作,直至滿足終止條件。
將其用形式化語言表達,則為:假設α∈I記為個體,I記為個體空間。適應度函數記為Φ:I→R。在第t代,群體P(t)={a1(t),a2(t),…,an(t)}經過復制r(reproction)、交換c(crossover)及突變m(mutation)轉換成下一代群體。這里r、c、m均指宏運算元,把舊群體變換為新群體。L:I→{True, Flase}記為終止准則。利用上述符號,遺傳演算法可描述為:
t=0
initialize P(0):={ a1(0),a2(0),…,an(0)};
while(l(P(t))≠True) do
evaluate P(t):{ Φ(a1(t)), Φ(a2(t)),…,Φ(an(t))};
reproction: P′(t):=r(P(t));
crossover: P″(t):=c(P′(t));
mutation: P(t+1):= m(P″(t));
t=t+1;
end

『伍』 基於遺傳演算法的入侵檢測系統工作的主要步驟是哪些

別的要求呢?說全了

『陸』 如何用演算法模擬一個生物圈的進化過程

如何用演算法模擬一個生物圈的進化過程
進化計算是基於自然選擇和自然遺傳等生物進化機制的一種搜索演算法。與普通的搜索方法一樣,進化計算也是一種迭代演算法,不同的是進化計算在最優解的搜索過程中,一般是從原問題的一組解出發改進到另一組較好的解,再從這組改進的解出發進一步改進。而且在進化問題中,要求當原問題的優化模型建立後,還必須對原問題的解進行編碼。進化計算在搜索過程中利用結構化和隨機性的信息,使最滿足目標的決策獲得最大的生存可能,是一種概率型的演算法。
一般來說,進化計算的求解包括以下幾個步驟:給定一組初始解;評價當前這組解的性能;從當前這組解中選擇一定數量的解作為迭代後的解的基礎;再對其進行操作,得到迭代後的解;若這些解滿足要求則停止,否則將這些迭代得到的解作為當前解重新操作。
以遺傳演算法為例,其工作步驟可概括為:
(1) 對工作對象——字元串用二進制的0/1或其它進制字元編碼 。
(2) 根據字元串的長度L,隨即產生L個字元組成初始個體。
(3) 計算適應度。適應度是衡量個體優劣的標志,通常是所研究問題的目標函數。
(4) 通過復制,將優良個體插入下一代新群體中,體現「優勝劣汰」的原則。
(5) 交換字元,產生新個體。交換點的位置是隨機決定的
(6) 對某個字元進行補運算,將字元1變為0,或將0變為1,這是產生新個體的另一種方法,突變字元的位置也是隨機決定的。
(7) 遺傳演算法是一個反復迭代的過程,每次迭代期間,要執行適應度計算、復制、交換、突變等操作,直至滿足終止條件。

『柒』 遺傳演算法的運算過程

遺傳操作是模擬生物基因遺傳的做法。在遺傳演算法中,通過編碼組成初始群體後,遺傳操作的任務就是對群體的個體按照它們對環境適應度(適應度評估)施加一定的操作,從而實現優勝劣汰的進化過程。從優化搜索的角度而言,遺傳操作可使問題的解,一代又一代地優化,並逼近最優解。
遺傳操作包括以下三個基本遺傳運算元(genetic operator):選擇(selection);交叉(crossover);變異(mutation)。這三個遺傳運算元有如下特點:
個體遺傳運算元的操作都是在隨機擾動情況下進行的。因此,群體中個體向最優解遷移的規則是隨機的。需要強調的是,這種隨機化操作和傳統的隨機搜索方法是有區別的。遺傳操作進行的高效有向的搜索而不是如一般隨機搜索方法所進行的無向搜索。
遺傳操作的效果和上述三個遺傳運算元所取的操作概率,編碼方法,群體大小,初始群體以及適應度函數的設定密切相關。 從群體中選擇優勝的個體,淘汰劣質個體的操作叫選擇。選擇運算元有時又稱為再生運算元(reproction operator)。選擇的目的是把優化的個體(或解)直接遺傳到下一代或通過配對交叉產生新的個體再遺傳到下一代。選擇操作是建立在群體中個體的適應度評估基礎上的,目前常用的選擇運算元有以下幾種:適應度比例方法、隨機遍歷抽樣法、局部選擇法。
其中輪盤賭選擇法 (roulette wheel selection)是最簡單也是最常用的選擇方法。在該方法中,各個個體的選擇概率和其適應度值成比例。設群體大小為n,其中個體i的適應度為,則i 被選擇的概率,為遺傳演算法
顯然,概率反映了個體i的適應度在整個群體的個體適應度總和中所佔的比例。個體適應度越大。其被選擇的概率就越高、反之亦然。計算出群體中各個個體的選擇概率後,為了選擇交配個體,需要進行多輪選擇。每一輪產生一個[0,1]之間均勻隨機數,將該隨機數作為選擇指針來確定被選個體。個體被選後,可隨機地組成交配對,以供後面的交叉操作。 在自然界生物進化過程中起核心作用的是生物遺傳基因的重組(加上變異)。同樣,遺傳演算法中起核心作用的是遺傳操作的交叉運算元。所謂交叉是指把兩個父代個體的部分結構加以替換重組而生成新個體的操作。通過交叉,遺傳演算法的搜索能力得以飛躍提高。
交叉運算元根據交叉率將種群中的兩個個體隨機地交換某些基因,能夠產生新的基因組合,期望將有益基因組合在一起。根據編碼表示方法的不同,可以有以下的演算法:
a)實值重組(real valued recombination)
1)離散重組(discrete recombination)
2)中間重組(intermediate recombination)
3)線性重組(linear recombination)
4)擴展線性重組(extended linear recombination)。
b)二進制交叉(binary valued crossover)
1)單點交叉(single-point crossover)
2)多點交叉(multiple-point crossover)
3)均勻交叉(uniform crossover)
4)洗牌交叉(shuffle crossover)
5)縮小代理交叉(crossover with reced surrogate)。
最常用的交叉運算元為單點交叉(one-point crossover)。具體操作是:在個體串中隨機設定一個交叉點,實行交叉時,該點前或後的兩個個體的部分結構進行互換,並生成兩個新個體。下面給出了單點交叉的一個例子:
個體A:1 0 0 1 ↑1 1 1 → 1 0 0 1 0 0 0 新個體
個體B:0 0 1 1 ↑0 0 0 → 0 0 1 1 1 1 1 新個體 變異運算元的基本內容是對群體中的個體串的某些基因座上的基因值作變動。依據個體編碼表示方法的不同,可以有以下的演算法:
a)實值變異
b)二進制變異。
一般來說,變異運算元操作的基本步驟如下:
a)對群中所有個體以事先設定的變異概率判斷是否進行變異
b)對進行變異的個體隨機選擇變異位進行變異。
遺傳演算法引入變異的目的有兩個:一是使遺傳演算法具有局部的隨機搜索能力。當遺傳演算法通過交叉運算元已接近最優解鄰域時,利用變異運算元的這種局部隨機搜索能力可以加速向最優解收斂。顯然,此種情況下的變異概率應取較小值,否則接近最優解的積木塊會因變異而遭到破壞。二是使遺傳演算法可維持群體多樣性,以防止出現未成熟收斂現象。此時收斂概率應取較大值。
遺傳演算法中,交叉運算元因其全局搜索能力而作為主要運算元,變異運算元因其局部搜索能力而作為輔助運算元。遺傳演算法通過交叉和變異這對相互配合又相互競爭的操作而使其具備兼顧全局和局部的均衡搜索能力。所謂相互配合.是指當群體在進化中陷於搜索空間中某個超平面而僅靠交叉不能擺脫時,通過變異操作可有助於這種擺脫。所謂相互競爭,是指當通過交叉已形成所期望的積木塊時,變異操作有可能破壞這些積木塊。如何有效地配合使用交叉和變異操作,是目前遺傳演算法的一個重要研究內容。
基本變異運算元是指對群體中的個體碼串隨機挑選一個或多個基因座並對這些基因座的基因值做變動(以變異概率P.做變動),(0,1)二值碼串中的基本變異操作如下:
基因位下方標有*號的基因發生變異。
變異率的選取一般受種群大小、染色體長度等因素的影響,通常選取很小的值,一般取0.001-0.1。 當最優個體的適應度達到給定的閾值,或者最優個體的適應度和群體適應度不再上升時,或者迭代次數達到預設的代數時,演算法終止。預設的代數一般設置為100-500代。

『捌』 遺傳演算法:這個題運行的詳細過程是怎樣的,兩個M文件存儲之後怎樣運行

%遺傳演算法的matlab代碼
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
運行這個 然後運行時候他調用的前面fitness函數 而這個函數又調用了第一個函數

『玖』 遺傳演算法的優缺點

優點:

1、遺傳演算法是以決策變數的編碼作為運算對象,可以直接對集合、序列、矩陣、樹、圖等結構對象進行操作。這樣的方式一方面有助於模擬生物的基因、染色體和遺傳進化的過程,方便遺傳操作運算元的運用。

另一方面也使得遺傳演算法具有廣泛的應用領域,如函數優化、生產調度、自動控制、圖像處理、機器學習、數據挖掘等領域。

2、遺傳演算法直接以目標函數值作為搜索信息。它僅僅使用適應度函數值來度量個體的優良程度,不涉及目標函數值求導求微分的過程。因為在現實中很多目標函數是很難求導的,甚至是不存在導數的,所以這一點也使得遺傳演算法顯示出高度的優越性。

3、遺傳演算法具有群體搜索的特性。它的搜索過程是從一個具有多個個體的初始群體P(0)開始的,一方面可以有效地避免搜索一些不必搜索的點。

另一方面由於傳統的單點搜索方法在對多峰分布的搜索空間進行搜索時很容易陷入局部某個單峰的極值點,而遺傳演算法的群體搜索特性卻可以避免這樣的問題,因而可以體現出遺傳演算法的並行化和較好的全局搜索性。

4、遺傳演算法基於概率規則,而不是確定性規則。這使得搜索更為靈活,參數對其搜索效果的影響也盡可能的小。

5、遺傳演算法具有可擴展性,易於與其他技術混合使用。以上幾點便是遺傳演算法作為優化演算法所具備的優點。

缺點:

1、遺傳演算法在進行編碼時容易出現不規范不準確的問題。

2、由於單一的遺傳演算法編碼不能全面將優化問題的約束表示出來,因此需要考慮對不可行解採用閾值,進而增加了工作量和求解時間。

3、遺傳演算法效率通常低於其他傳統的優化方法。

4、遺傳演算法容易出現過早收斂的問題。

(9)遺傳演算法工作流程擴展閱讀

遺傳演算法的機理相對復雜,在Matlab中已經由封裝好的工具箱命令,通過調用就能夠十分方便的使用遺傳演算法。

函數ga:[x, fval,reason]= ga(@fitnessfun, nvars, options)x是最優解,fval是最優值,@fitnessness是目標函數,nvars是自變數個數,options是其他屬性設置。系統默認求最小值,所以在求最大值時應在寫函數文檔時加負號。

為了設置options,需要用到下面這個函數:options=gaoptimset('PropertyName1', 'PropertyValue1', 'PropertyName2', 'PropertyValue2','PropertyName3', 'PropertyValue3', ...)通過這個函數就能夠實現對部分遺傳演算法的參數的設置。

閱讀全文

與遺傳演算法工作流程相關的資料

熱點內容
企業微信中設置伺服器是什麼 瀏覽:380
閃電俠解壓視頻 瀏覽:291
rgb燈條51單片機 瀏覽:766
問道4月5日為什麼伺服器超時 瀏覽:989
伺服器的url地址是什麼 瀏覽:973
上台唱歌前如何緩解壓力 瀏覽:169
有什麼約飯app 瀏覽:648
於小冬速寫pdf 瀏覽:156
android服務例子 瀏覽:395
androidstring轉json 瀏覽:74
y85手機為什麼不能用安卓線 瀏覽:579
傲夢少兒編程線下教育 瀏覽:471
哪個音樂app有txt的版權 瀏覽:639
dynamo文件夾能刪除嗎 瀏覽:277
程序員用的點擊選顏色的軟體 瀏覽:204
衢州java程序員接私活app 瀏覽:280
java定義變數類型 瀏覽:905
vivo加密門禁卡怎麼使用 瀏覽:638
單片機拆裝 瀏覽:688
js獲取嵌入網站的源碼 瀏覽:820