導航:首頁 > 源碼編譯 > 數學中排幾排余多少的簡便演算法

數學中排幾排余多少的簡便演算法

發布時間:2022-04-20 14:38:04

① 數學中所有簡便運算方法是什麼

利用等差數列求和公式就可以解決(教師重點強調了「項數」的求法)(3)可以把3進行拆分,再分別和9998、998、99和9組合湊整。而對於第二種和第四種類型,絕大部分學生感到有些困難,此時我還是引導學生從算式的特點入手,引導學生分析算式的特點,如(2)這些加數不同但很接近,學生說出了他們思考得出的策略:也可以用湊整法把54中的「4」分出來和47湊整……,藉助學生的思維火花,我又適當的用語言點撥,學生馬上得出了把這些加數都可以看作50,然後比50多的差加上,比50少的差減去。學生又發現了一種簡便演算法,都比較興奮。在(4)的解決過程中,學生立即總結出了算式的特點。也發現了如果把這些數重新排列就得到了這樣的算式:12÷12×(45÷45)×(72÷72)這道題就迎刃而解了。
根據這樣的幾個類型題,讓學生感覺到了觀察、發現算式特點的重要性,要這一基礎上,我送給學生兩個字,那就是「靈活」,我告訴學生,這才是簡便運算的法寶,只有根據題的特點靈活地選擇簡便演算法,你才能解決更多的簡算題。

對於教師來說,教給學生解決多少道題並不是最重要的,重要的是讓學生找到開啟鎖頭的鑰匙,這鑰匙就是一種意識,一種數學思想和方法。

② 數學排列組合計算方法

最大差距還是在於熟練度.他們在計算方面所花的時間比你長,熟能生巧自然可以在腦海心算出來,其次是他們有更加簡便的計算方法,這可以讓他們相比其他人減少更多的時間在計算上面.最後,不要太過依賴公式,依賴他是你還不夠熟練的原因,如果能夠做到一看公式就知道解題過程的話,那麼恭喜你,你已經完全掌握了排列組合.

③ 數學的排列組合演算法加公式

不能重復的c(6,4) c(6,5) 1,2,3......,n n個數中 任取m個組合 c(n,m) 能重復的 6^4 6^5 1,2,3,。。。。n,n個數中,取m個組合(可重復) n^m 追問: c(n,m),讀作什麼?把1-6取4位帶進去怎麼算,可以教我嗎?50分感激不盡 回答: 這個是組合數 從n個元素裡面取m個元素的組合數 比如c(6,4)=(6*5*4*3)/(1*2*3*4) c(n,m)=[n*(n-1)*.........*(n-m+1)]/(1*2*......*m) 分子從n開始往下取 一直取m個連續的自然數相乘 分母從1取到m m個連續自然數相乘 追問: c(n,m)=[n*(n-1)*.........*(n-m+1)]/(1*2*......*m) 後面的/(1*2*......*m)是要除的么? 這個怎麼求的? 回答: 你題目說的不是很清楚 如果說要是組成數字 就不需要除以下面的(排列) 若只是取出來 不要求構成數字 則要除(組合) 補充: 只算組合 不要求構成數字 你的做法是對的 補充: 不可重復 15組 可重復 6^4=1296組 補充: 估計你的題目是要求構成數字的 不可重復的就是 6*5*4*3=360種 可重復的還是1296種 補充: 你一直都沒說 是否要求構成數字 取4個數字出來 是要構成一個4位數嗎? 如果是 則是360種 不是 則是15種 補充: 這是你自己想的題目吧 原題絕對不會說這樣的話 補充: 排列組合你沒學 這些一下你也搞不懂的 打個比方,從1,2,3中取2個數字 則有3種取法 {1,2},{1,3),{2,3} 如果你要是說取2個數字構成2位數 則有6種12,21,13,31,23,32 你對照公式看下 追問: 就是6位取4位構成4位數就有360種,那麼15種又是哪裡來的? 回答: 暈了 我已經說的很清楚了啊 例子都列出來了 15種是取出來不進行排列 360是還要進去排列組成4位數 補充: 你要是自學排列組合 還是先把定義搞清楚吧 再說 你出的這個題目本身說的就模稜兩可得 我一直在問你是否要求構成四位數 360和15得區別就在於這點 追問: 我終於懂了,在你們精心輔導下,我終於懂了,其實我對這些一竅不通,根本都沒學!謝謝你們懸賞最高!

④ 數學排列組合計算方法是什麼

A開頭的叫排列,C開頭的叫組合。

排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n為下標,m為上標,以下同)

組合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)。

P是排列,右下腳碼n,右上腳碼m,n(n-1)(n-2)……(n-k+1);

C是組合,右下腳碼n,右上腳碼m,n(n-1)(n-2)……(n-k+1)/m!

(4)數學中排幾排余多少的簡便演算法擴展閱讀:

假設C(n-1,k)和C(n-1,k-1)為奇數:

則有:(n-1)&k == k;

(n-1)&(k-1) == k-1;

由於k和k-1的最後一位(在這里的位指的是二進制的位,下同)必然是不同的,所以n-1的最後一位必然是1。

現假設n&k == k。

則同樣因為n-1和n的最後一位不同推出k的最後一位是1。

因為n-1的最後一位是1,則n的最後一位是0,所以n&k != k,與假設矛盾。

所以得n&k != k。

⑤ 數學簡便計算,有哪幾種方法

數學簡便計算方法:

一、運用乘法分配律簡便計算

簡便計算中最常用的方法是乘法分配律。乘法分配律指的是:

ax(b+c)=axb+axc

cx(a-b)=axc-bxc

例1:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。

38X101

=38X(100+1)

=38X100+38X1

=3800+38

=3838

例2:47X98,這樣該怎麼拆呢?要拆98,使它更接近100。

47X98

=47X(100-2)

=47X100-47X2

=4700-94

=4606

二、基準數法

在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。

例:

2072+2052+2062+2042+2083

=(2062x5)+10-10-20+21

=10310+1

=10311

三、加法結合律法

對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。

例:

5.76+13.67+4.24+6.33

=(5.76+4.24)+(13.67+6.33)

=30

四、拆分法

顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!

例:

3.2×12.5×25

=8×0.4×12.5×25

=8×12.5×0.4×25

=1000

五、提取公因式法

這個方法實際上是運用了乘法分配律,將相同因數提取出來。

例:

0.92×1.41+0.92×8.59

=0.92×(1.41+8.59)

=9.2

⑥ 數學簡便計算,有哪幾種方法

簡便計算主要有三大方法,分別是加減湊整、分組湊整、提公因數法。

它採用數學計算中的拆分湊整思想,通過四則運算規律,從而簡化計算。

就像68+77=?

大多數人不一定立刻能算出結果,

如果換成70+75=?

相信每一個人都可以一口算出和是145。

這里其實就是把77拆分成2+75,

68+77

=68+2+75

=70+75

=145

遇見復雜的計算式時,

先觀察有沒有可能湊整,

湊成整十整百之後再進行計算,

不僅簡便,而且避免計算出錯。

①加減湊整

【例題1】999+99+29+9+4=?

題中999,99,29,9這四個數字與整數1000,100,30,10都是相差1,4就可以拆分成1+1+1+1,把這4個1補到999,99,29,9上,原式就可以簡化成:

999+99+29+9+4

=999+99+29+9+1+1+1+1

=999+1+99+1+29+1+9+1

=1000+100+30+10

=1140

【例題2】5999+499+299+19=?

看完例1,再來看看例2,還是末位都是9,自然要用我們的湊整法了,不過稍有不同,因為例2中沒有4來拆分成1+1+1+1。

沒有槍沒有炮,自己去創造!

先把它加上1+1+1+1,然後再減去4,不就相當於式子加了一個0嗎?

5999+499+299+19

=5999+1+499+1+299+1+19+1-4

=6000+500+300+20-4

=6816

②分組湊整

在只有加減法的計算題中,將算式中的各項重新分下組湊整,也可以使計算非常方便。

【例題3】100-95+92-89+86-83+80-77=?

題目中的兩位數加減混合運算,硬算是非常費勁的,但是似乎又不能拆分湊整,再觀察題目可以發現從第2個數95起,後面的數都比前一個小3。

根據加法減法運算性質,我們給相鄰的項加上括弧。

100-95+92-89+86-83+80-77

=(100-95)+(92-89)+(86-83)+(80-77)

=5+3+3+3

=14

湊整法不僅可以用在加減計算中,乘除加減混合運算也常常會考到。

③提取公因數法

這就需要用到乘法分配律提取公因數,

又稱為提取公因數法。

如果沒有公因數,我們可以採取乘法結合律變化出公因數。

a×b=(a×10)×(b÷10),

a×b÷c=a÷c×b,

a×b×c=a×(b×c)。

【例題4】47.9x6.6+529x0.34=?

很明顯題目中的6.6+3.4=10,我們想辦法湊出一個3.4,這就用到了a×b=(a×10)×(b÷10)。但是即使10湊出來,仍然不能提取公因數來簡便計算,這就得用到乘法分配律,52.9x3.4=(47.9+5)x3.4,創造出一個47.9,方便我們提取公因數。

47.9x6.6+529x0.34

=47.9x6.6+529÷10x10x0.34

=47.9x6.6+(47.9+5)x3.4

=47.9x(6.6+3.4)+17

=496

簡便計算的考察重點在於四則運算規律的靈活運用,方法掌握的基礎上,對於四則運算規律必須牢記在心,才能更好地理解運用。

⑦ 請歸納小學數學簡便計算的幾種方法

對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?

由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.

閱讀全文

與數學中排幾排余多少的簡便演算法相關的資料

熱點內容
如何開一家少兒編程公司 瀏覽:949
光伏計算日照時用什麼app 瀏覽:231
計算階乘的python程序 瀏覽:45
傳奇如何選擇伺服器 瀏覽:572
英雄聯盟光輝和程序員哪個厲害 瀏覽:253
什麼是pojo編程 瀏覽:924
外掛編程視頻 瀏覽:133
學javaapp 瀏覽:12
客戶端無盤如何與伺服器連接 瀏覽:792
狙擊手命令 瀏覽:505
財務防雷指標公式源碼 瀏覽:877
mysql源碼解讀 瀏覽:247
安卓手機如何玩光遇ios版 瀏覽:918
單片機匯編語言C語言 瀏覽:109
雲伺服器4g多少錢一個 瀏覽:440
json雙引號java 瀏覽:402
javades加密演算法 瀏覽:76
程序員母親禮物 瀏覽:602
找裝修設計用什麼app 瀏覽:853
燈塔app是什麼意思 瀏覽:701