Ⅰ 推薦演算法工程師有前途嗎
電子工程師指從事各類電子設備和信息系統研究、教學、產品設計、科技開發、生產和管理等工作的高級工程技術人才。一般分為硬體工程師和軟體工程師。硬體工程師主要負責電路分析、設計;並以電腦軟體為工具進行PCB設計
Ⅱ 想要成為演算法工程師都要學哪些技能
需要以下技能:
1、熟練掌握C/C++和python語言編程,熟悉linux開發環境,有扎實的數據結構和演算法設計功底;
2、熟悉推薦業務常用理論和演算法,在多個領域(如排序模型,召回模型,用戶畫像,深度學習等)有三年以上實際工作經驗;
3、有優秀的邏輯思維能力和數據分析能力,善於分析和解決問題;良好的溝通能力與團隊協作能力;
4、有推薦系統,廣告系統,搜索引擎等開發經驗;熟練掌握機器學習、深度學習的基礎理論和方法,並在自然語言處理任務中有實際應用經驗者優先;
5、熟練使用一種或幾種深度學習框架(如tensorflow、caffe、mxnet、pytorch等),或者熟悉spark、hadoop分布式計算編程者優先。
硬技能:
1. 數學:包括概率論與數理統計、矩陣論、隨機過程。
2. 計算機基礎:包括操作系統、組成原理、數據結構。
3. 演算法能力:包括對領域內主流模型進行優缺點對比、在設定的場景中選擇合適的方案等。
想要了解更多關於演算法工程師的問題可以咨詢一下CDA認證機構,CDA是大數據和人工智慧時代面向國際范圍全行業的數據分析專業人才職業簡稱。全球CDA持證者秉承著先進商業數據分析的新理念,遵循著《CDA職業道德和行為准則》新規范,發揮著自身數據專業能力,推動科技創新進步,助力經濟持續發展。
Ⅲ 演算法工程師是青春飯嗎以後的發展路線是怎樣的
演算法工程師不是青春飯。
在入職的年齡中,演算法工程師的入職年份越多,就有越多的公司要你。由於演算法工程師對於知識結構的要求比較豐富,同時演算法工程師崗位主要以研發為主,需要從業者具備一定的創新能力,所以要想從事演算法工程師崗位往往需要讀一下研究生,目前不少大型科技企業對於演算法工程師的相關崗位也有一定的學歷要求。
提到人工智慧,就不得不提人工智慧領域最炙手可熱的演算法工程師。演算法即一系列解決問題的清晰指令,演算法工程師就是利用演算法處理事物的人。演算法工程師主要根據業務進行細分,常見的有廣告演算法工程師、推薦演算法工程師、圖像演算法工程師等等。
但作為熱門領域和人才供不應求的人工智慧,開出的薪資依舊讓人羨慕眼紅。獵頭Jony表示「人工智慧科班出身的博士,50萬年薪僅僅是起步價,優秀的開到80萬、100萬都不一定能搶到。」
Ⅳ 演算法工程師工作期間需要掌握什麼知識學到哪些核心技術
演算法工程師的主要核心技術基於數學,並輔以語言。要全面掌握的知識包括高級數學,復變函數,線性代數的離散數學,數據結構以及數據挖掘所需的概率論和數學統計知識。不要太受約束去平時閱讀教科書並多練習,並培養良好的思維能力。只有那些有想法的人才能擁有技術的未來。嘗試實現您遇到的任何演算法,無論演算法的優劣總是有其自身的特徵。此外,您必須具有一定的英語水平(至少6級),因為該領域的大多數官方材料都是外語。
計算機及相關專業本科以上學歷,在互聯網搜索,推薦,流量或相關領域有2年以上工作經驗。熟悉機器學習/自然語言處理/數據挖掘/深度學習中至少一項的原理和演算法,並且能夠熟練地建模和解決業務問題。精通Linux平台下的C / C ++ / java語言開發,精通使用gcc / gdb等開發工具,並精通Python / Linux Shell / SQL等腳本開發。熟悉hadoop / hbase / storm等分布式計算技術,並熟悉其運行機制和體系結構。具有出色的分析和解決問題的能力,思路清晰,並對工作挑戰充滿熱情。具有強烈的工作責任感和團隊合作精神,並能夠交流和更好地學習。
Ⅳ 演算法和開發崗相比,哪個前景更好呢
這兩個崗位的工作內容我都接觸過,目前我帶的大數據團隊中既有演算法工程師也有開發工程師,所以我說一說這兩個崗位的區別,以及未來的發展方向。
演算法設計與演算法實現
通常涉及到演算法的崗位有兩個,分別是演算法設計和演算法實現,現在有不少團隊把這兩個崗位進行合並,做演算法設計的同時也要負責實現。但是也有一些團隊是分開的,做演算法設計的不管實現過程。
演算法崗位門檻是很高的,人才也是稀缺的,總體發展空間很好。還有一點演算法崗位的不可替代性強,如果有機會去演算法崗建議是去的,一般學歷要求在碩士,Java本科大專都是可以的哈。從工作的復雜性上來說,演算法工程師的工作強度還是比較大的,但是演算法工程師的職業周期也比較長。
演算法崗主要是在於如何量化我們的產出,寫代碼做開發非常簡單。你完成了一個任務或者是項目,有了經驗之後,這是在簡歷上實打實的東西。很多演算法工程師最終成長為企業的首席科學家,或者是首席技術官等崗位,可以說演算法工程師的發展前景還是非常不錯的。
開發崗位
軟體團隊的大部分崗位都是開發崗位,有前端開發、後端開發、移動端開發等,可以說大部分程序員做的都是開發崗的工作。
與演算法崗位不同的是,開發崗位人數多,佔比大,而且大部分開發崗位的職業周期都比較短,一般開發崗位在做到一定年齡(比如35歲)之後都會轉型。一部分會轉向項目經理等管理崗位,一部分會轉型做架構師,還有一部分轉型為行業咨詢專家等,當然,也有一部分開發人員轉型為演算法工程師。
一個優秀的開發者不是網上說的那樣吃青春煩的,每一個崗位都會有自己的未來職業發展。開始確實是青春飯,因為大多數人不懂如何提升自己在公司當中的潛在價值,或者不知道如何更加聰明的完成任務。
其實兩個崗位沒有什麼可比性。聊聊這兩個崗位的突出項,開發門檻不很高的,演算法就相對高一些,因為涉及大數據人工智慧等等。現在做演算法的話,5年左右基本會成為專家,給別人講,因為大多數的人是不太懂演算法的,所以會覺得你很牛。收入上來說,演算法的收入是高於開發的。創業的話,大白話就是演算法其實是更容易給別人講故事的,而且相對產品來說,演算法是更容易形成產品的。
Ⅵ 成為演算法工程師需要學習哪些課程
演算法工程師要求很高的數學水平和邏輯思維。需要學習高數,線性代數,離散數學,數據結構和計算機等課程。
專業要求:計算機、電子、通信、數學等相關專業;
學歷要求:本科及其以上的學歷,大多數是碩士學歷及其以上;
語言要求:英語要求是熟練,基本上能閱讀國外專業書刊;
必須掌握計算機相關知識,熟練使用模擬工具MATLAB等,必須會一門編程語言。
國內外狀況
國內從事演算法研究的工程師不少,但是高級演算法工程師卻很少,是一個非常緊缺的專業工程師。
演算法工程師根據研究領域來分主要有音頻/視頻演算法處理、圖像技術方面的二維信息演算法處理和通信物理層、雷達信號處理、生物醫學信號處理等領域的一維信息演算法處理。
Ⅶ 想做一名演算法工程師需要學什麼
1、業務認知&問題定位
首先要清楚你所要解決的問題是什麼,是否需要復雜的演算法求解。問題的定義來源於你對業務的認知和理解。我們經常陷入一種誤區,覺得自己是一名演算法工程師,遇到任務問題都想要用復雜的演算法去求解。正所謂一頓操作猛如虎,得來的效果卻很一般。因此,做事之前一定要在理解業務的基礎上,把問題定位清楚,用合適的方法求解。
2、數據挖掘&分析
深度學習的應用能夠突飛猛進的一個重要原因就是大數據的支撐。當前獲取數據的成本很低,而數據清理和挖掘的成本很高,但非常重要。數據是模型的輸入,是模型能夠擬合的上限。在入模之前,你需要花一定的精力用於數據工作,這是必要也是值得的。因此,掌握數據能力也是一名演算法工程師的必經之路。
3、演算法策略
這是每位演算法工程師的硬實力,有了清晰的問題和可用的數據後,我們需要選擇合適的演算法策略求解問題。就銷量預估而言,由於特徵大部分都是表格型,樹模型及其變體成為首選的方案。通過樹模型,你能夠快速拿到一個不錯的baseline。但千萬不要停滯不前,你需要調研更多的先進的方案進行優化,即使此時能夠拿到的受益不多,但請堅持專研的精神(近期時序模型中,熱度很高的informer值得嘗試)。此外,「人工智慧,有多少人工就有多少智能」這句話在實際應用領域體現得淋漓盡致。策略也屬於演算法的一部分,人工策略有時候能夠帶來很大的受益,也能夠找到更適合的演算法優化方向。例如,我們在優化首猜的貨品池時,考慮到首猜目前的推薦演算法已經非常優秀了,但消費者的成交來源主要是搜索,我們通過人工分析選擇了做增量貨品供給的方式,拿到了不錯的業務效果。基於此,我們也找到了更合適的選品演算法優化方向。
4、離線實驗和線上AB實驗
實驗是驗證理論的最佳手段,也是最具有說服力的。我們需要找到幾個合適的指標進行優化,並且要保證離線效。
Ⅷ 演算法工程師 就業前景
一、演算法工程師簡介
(通常是月薪15k以上,年薪18萬以上,只是一個概數,具體薪資可以到招聘網站如拉鉤,獵聘網上看看)
演算法工程師目前是一個高端也是相對緊缺的職位;
演算法工程師包括
音/視頻演算法工程師(通常統稱為語音/視頻/圖形開發工程師)、圖像處理演算法工程師、計算機視覺演算法工程師、通信基帶演算法工程師、信號演算法工程師、射頻/通信演算法工程師、自然語言演算法工程師、數據挖掘演算法工程師、搜索演算法工程師、控制演算法工程師(雲台演算法工程師,飛控演算法工程師,機器人控制演算法)、導航演算法工程師(
@之介
感謝補充)、其他【其他一切需要復雜演算法的行業】
專業要求:計算機、電子、通信、數學等相關專業;
學歷要求:本科及其以上的學歷,大多數是碩士學歷及其以上;
語言要求:英語要求是熟練,基本上能閱讀國外專業書刊,做這一行經常要讀論文;
必須掌握計算機相關知識,熟練使用模擬工具MATLAB等,必須會一門編程語言。
演算法工程師的技能樹(不同方向差異較大,此處僅供參考)
1 機器學習
2 大數據處理:熟悉至少一個分布式計算框架Hadoop/Spark/Storm/ map-rece/MPI
3 數據挖掘
4 扎實的數學功底
5 至少熟悉C/C++或者Java,熟悉至少一門編程語言例如java/python/R
加分項:具有較為豐富的項目實踐經驗(不是水論文的哪種)
二、演算法工程師大致分類與技術要求
(一)圖像演算法/計算機視覺工程師類
包括
圖像演算法工程師,圖像處理工程師,音/視頻處理演算法工程師,計算機視覺工程師
要求
l
專業:計算機、數學、統計學相關專業;
l
技術領域:機器學習,模式識別
l
技術要求:
(1) 精通DirectX HLSL和OpenGL GLSL等shader語言,熟悉常見圖像處理演算法GPU實現及優化;
(2) 語言:精通C/C++;
(3) 工具:Matlab數學軟體,CUDA運算平台,VTK圖像圖形開源軟體【醫學領域:ITK,醫學圖像處理軟體包】
(4) 熟悉OpenCV/OpenGL/Caffe等常用開源庫;
(5) 有人臉識別,行人檢測,視頻分析,三維建模,動態跟蹤,車識別,目標檢測跟蹤識別經歷的人優先考慮;
(6) 熟悉基於GPU的演算法設計與優化和並行優化經驗者優先;
(7) 【音/視頻領域】熟悉H.264等視頻編解碼標准和FFMPEG,熟悉rtmp等流媒體傳輸協議,熟悉視頻和音頻解碼演算法,研究各種多媒體文件格式,GPU加速;
應用領域:
(1) 互聯網:如美顏app
(2) 醫學領域:如臨床醫學圖像
(3) 汽車領域
(4) 人工智慧
相關術語:
(1) OCR:OCR (Optical Character Recognition,光學字元識別)是指電子設備(例如掃描儀或數碼相機)檢查紙上列印的字元,通過檢測暗、亮的模式確定其形狀,然後用字元識別方法將形狀翻譯成計算機文字的過程
(2) Matlab:商業數學軟體;
(3) CUDA: (Compute Unified Device Architecture),是顯卡廠商NVIDIA推出的運算平台(由ISA和GPU構成)。 CUDA™是一種由NVIDIA推出的通用並行計算架構,該架構使GPU能夠解決復雜的計算問題
(4) OpenCL: OpenCL是一個為異構平台編寫程序的框架,此異構平台可由CPU,GPU或其他類型的處理器組成。
(5) OpenCV:開源計算機視覺庫;OpenGL:開源圖形庫;Caffe:是一個清晰,可讀性高,快速的深度學習框架。
(6) CNN:(深度學習)卷積神經網路(Convolutional Neural Network)CNN主要用來識別位移、縮放及其他形式扭曲不變性的二維圖形。
(7) 開源庫:指的是計算機行業中對所有人開發的代碼庫,所有人均可以使用並改進代碼演算法。
(二)機器學習工程師
包括
機器學習工程師
要求
l
專業:計算機、數學、統計學相關專業;
l
技術領域:人工智慧,機器學習
l
技術要求:
(1) 熟悉Hadoop/Hive以及Map-Rece計算模式,熟悉Spark、Shark等尤佳;
(2) 大數據挖掘;
(3) 高性能、高並發的機器學習、數據挖掘方法及架構的研發;
應用領域:
(1)人工智慧,比如各類模擬、擬人應用,如機器人
(2)醫療用於各類擬合預測
(3)金融高頻交易
(4)互聯網數據挖掘、關聯推薦
(5)無人汽車,無人機
相關術語:
(1) Map-Rece:MapRece是一種編程模型,用於大規模數據集(大於1TB)的並行運算。概念"Map(映射)"和"Rece(歸約)",是它們的主要思想,都是從函數式編程語言里借來的,還有從矢量編程語言里借來的特性。
(三)自然語言處理工程師
包括
自然語言處理工程師
要求
l
專業:計算機相關專業;
l
技術領域:文本資料庫
l
技術要求:
(1) 熟悉中文分詞標注、文本分類、語言模型、實體識別、知識圖譜抽取和推理、問答系統設計、深度問答等NLP 相關演算法;
(2) 應用NLP、機器學習等技術解決海量UGC的文本相關性;
(3) 分詞、詞性分析、實體識別、新詞發現、語義關聯等NLP基礎性研究與開發;
(4) 人工智慧,分布式處理Hadoop;
(5) 數據結構和演算法;
應用領域:
口語輸入、書面語輸入
、語言分析和理解、語言生成、口語輸出技術、話語分析與對話、文獻自動處理、多語問題的計算機處理、多模態的計算機處理、信息傳輸與信息存儲 、自然語言處理中的數學方法、語言資源、自然語言處理系統的評測。
相關術語:
(2) NLP:人工智慧的自然語言處理,NLP (Natural Language Processing) 是人工智慧(AI)的一個子領域。NLP涉及領域很多,最令我感興趣的是「中文自動分詞」(Chinese word segmentation):結婚的和尚未結婚的【計算機中卻有可能理解為結婚的「和尚「】
(四)射頻/通信/信號演算法工程師類
包括
3G/4G無線通信演算法工程師, 通信基帶演算法工程師,DSP開發工程師(數字信號處理),射頻通信工程師,信號演算法工程師
要求
l
專業:計算機、通信相關專業;
l
技術領域:2G、3G、4G,BlueTooth(藍牙),WLAN,無線移動通信, 網路通信基帶信號處理
l
技術要求:
(1) 了解2G,3G,4G,BlueTooth,WLAN等無線通信相關知識,熟悉現有的通信系統和標准協議,熟悉常用的無線測試設備;
(2) 信號處理技術,通信演算法;
(3) 熟悉同步、均衡、信道解碼等演算法的基本原理;
(4) 【射頻部分】熟悉射頻前端晶元,扎實的射頻微波理論和測試經驗,熟練使用射頻電路模擬工具(如ADS或MW或Ansoft);熟練使用cadence、altium designer PCB電路設計軟體;
(5) 有扎實的數學基礎,如復變函數、隨機過程、數值計算、矩陣論、離散數學
應用領域:
通信
VR【用於快速傳輸視頻圖像,例如樂客靈境VR公司招募的通信工程師(數據編碼、流數據)】
物聯網,車聯網
導航,軍事,衛星,雷達
相關術語:
(1) 基帶信號:指的是沒有經過調制(進行頻譜搬移和變換)的原始電信號。
(2) 基帶通信(又稱基帶傳輸):指傳輸基帶信號。進行基帶傳輸的系統稱為基帶傳輸系統。傳輸介質的整個信道被一個基帶信號佔用.基帶傳輸不需要數據機,設備化費小,具有速率高和誤碼率低等優點,.適合短距離的數據傳輸,傳輸距離在100米內,在音頻市話、計算機網路通信中被廣泛採用。如從計算機到監視器、列印機等外設的信號就是基帶傳輸的。大多數的區域網使用基帶傳輸,如乙太網、令牌環網。
(3) 射頻:射頻(RF)是Radio Frequency的縮寫,表示可以輻射到空間的電磁頻率(電磁波),頻率范圍從300KHz~300GHz之間(因為其較高的頻率使其具有遠距離傳輸能力)。射頻簡稱RF射頻就是射頻電流,它是一種高頻交流變化電磁波的簡稱。每秒變化小於1000次的交流電稱為低頻電流,大於10000次的稱為高頻電流,而射頻就是這樣一種高頻電流。高頻(大於10K);射頻(300K-300G)是高頻的較高頻段;微波頻段(300M-300G)又是射頻的較高頻段。【有線電視就是用射頻傳輸方式】
(4) DSP:數字信號處理,也指數字信號處理晶元
(五)數據挖掘演算法工程師類
包括
推薦演算法工程師,數據挖掘演算法工程師
要求
l
專業:計算機、通信、應用數學、金融數學、模式識別、人工智慧;
l
技術領域:機器學習,數據挖掘
l
技術要求:
(1) 熟悉常用機器學習和數據挖掘演算法,包括但不限於決策樹、Kmeans、SVM、線性回歸、邏輯回歸以及神經網路等演算法;
(2) 熟練使用SQL、Matlab、Python等工具優先;
(3) 對Hadoop、Spark、Storm等大規模數據存儲與運算平台有實踐經驗【均為分布式計算框架】
(4) 數學基礎要好,如高數,統計學,數據結構
l
加分項:數據挖掘建模大賽;
應用領域
(1) 個性化推薦
(2) 廣告投放
(3) 大數據分析
相關術語
Map-Rece:MapRece是一種編程模型,用於大規模數據集(大於1TB)的並行運算。概念"Map(映射)"和"Rece(歸約)",是它們的主要思想,都是從函數式編程語言里借來的,還有從矢量編程語言里借來的特性。
(六)搜索演算法工程師
要求
l
技術領域:自然語言
l
技術要求:
(1) 數據結構,海量數據處理、高性能計算、大規模分布式系統開發
(2) hadoop、lucene
(3) 精通Lucene/Solr/Elastic Search等技術,並有二次開發經驗
(4) 精通Lucene/Solr/Elastic Search等技術,並有二次開發經驗;
(5) 精通倒排索引、全文檢索、分詞、排序等相關技術;
(6) 熟悉Java,熟悉Spring、MyBatis、Netty等主流框架;
(7) 優秀的資料庫設計和優化能力,精通MySQL資料庫應用 ;
(8) 了解推薦引擎和數據挖掘和機器學習的理論知識,有大型搜索應用的開發經驗者優先。
(七)控制演算法工程師類
包括了雲台控制演算法,飛控控制演算法,機器人控制演算法
要求
l
專業:計算機,電子信息工程,航天航空,自動化
l
技術要求:
(1) 精通自動控制原理(如PID)、現代控制理論,精通組合導航原理,姿態融合演算法,電機驅動,電機驅動
(2) 卡爾曼濾波,熟悉狀態空間分析法對控制系統進行數學模型建模、分析調試;
l
加分項:有電子設計大賽,機器人比賽,robocon等比賽經驗,有硬體設計的基礎;
應用領域
(1)醫療/工業機械設備
(2)工業機器人
(3)機器人
(4)無人機飛控、雲台控制等
(八)導航演算法工程師
要求
l 專業:計算機,電子信息工程,航天航空,自動化
l 技術要求(以公司職位JD為例)
公司一(1)精通慣性導航、激光導航、雷達導航等工作原理;
(2)精通組合導航演算法設計、精通卡爾曼濾波演算法、精通路徑規劃演算法;
(3)具備導航方案設計和實現的工程經驗;
(4)熟悉C/C++語言、熟悉至少一種嵌入式系統開發、熟悉Matlab工具;
公司二(1)熟悉基於視覺信息的SLAM、定位、導航演算法,有1年以上相關的科研或項目經歷;
(2)熟悉慣性導航演算法,熟悉IMU與視覺信息的融合;
應用領域
無人機、機器人等。
Ⅸ 演算法工程師的就業前景如何
人工智慧工作最受歡迎。演算法工程師平均招聘工資建議達到25978元。由於人才匱乏,企業競爭激烈,平均加薪超過7%。該市90%以上的人工智慧高薪工作都在天河區.近日,由廣州天河人才港和BOSS直接就業研究院聯合發布的《廣州市天河區2018年1-4月人才趨勢報告》,展示了該地區的主流發展趨勢:IAB已經成為天河區,和天河區創新型企業和大型企業布局或發展的核心主方向,企業以高薪吸引更多的行業優秀人才。「天河區企業渴望以高薪攫取IAB人才,這意味著企業要在這些行業中發揮實力。
Ⅹ 如何成為演算法工程師 推薦幾本演算法入門書籍
是哪方面的演算法工程師?
信號處理演算法:書比較多,可以看看《數字信號處理》
體征(醫療)信號演算法:先要讀懂醫療的電信號,先看看醫療電信號的書
自動化控制演算法:
軌跡、速度規劃相關,資料很多,直接讀論文更快
控制演算法相關的,可以看看《自動控制原理》
機器人運動學、動力學相關的,可以看看李澤湘的《機器人數學導論》
無人機相關的,也可以看《機器人數學導論》,搜李澤湘學生的論文,看看《李群和李代數》,了解旋量理論,看一下PX4的開源代碼
機器學習/深度學習演算法:李航的《統計學習方法》、搜一下ufldl文檔看一下、還有周志華的西瓜書
通用的可以看看《高等代數》、《最優化原理》和《常微分》