導航:首頁 > 源碼編譯 > 圓演算法

圓演算法

發布時間:2022-01-16 05:24:12

⑴ 請問中點bresenham演算法畫圓與bresenham演算法畫圓有區別嗎

Bresenham演算法畫圓:

Bresenham演算法用來畫直線非常方便,但上次也說了,Bresenham演算法也可以用來顯示圓和其他曲線,只需要把直線方程改成圓方程或者其他曲線的方程就行,具體的推理過程就不演示了,大體跟直線的差不多!但由推算的結果可以看出,用Bresenham演算法來畫圓的確是不大明智的做法,要計算的步驟太多,計算速度比專門的畫圓方法慢很多!並且在斜率越大的地方像素的間距就越大,當然我們可以在畫某個像素之前先判斷一下這一點跟前面一點的連線的斜率,然後在適當的時候交換x、y的坐標,但這樣計算量必將增加!

直接給出Bresenham畫圓的代碼:

#include<gl/glut.h>

#include<math.h>

#include<stdio.h>

voiddraw_pixel(intix,intiy)

{

glBegin(GL_POINTS);

glVertex2i(ix,iy);

glEnd();

}

//intinlineround(constfloata){returnint(a+0.5);}

voidBresenham(intx1,inty1,intr,doublea,doubleb,doublec)/*圓心在(x1,y1),半徑為r的圓*/

{

glColor3f(a,b,c);

intdx=r;//intdy=abs(yEnd-y1);

//intp=2*dy-dx;

//inttwoDy=2*dy,twoDyMinusDx=2*dy-2*dx;

intx,y,d1,d2;

/*if(x1>xEnd)

{

x=xEnd;y=yEnd;

xEnd=x1;

}

else

{

x=x1;

y=y1;

}

*/

x=x1;

y=y1+r;

draw_pixel(x1,y1);

draw_pixel(x,y);//起始點裝入幀緩存,起始點是圓的最上面一點,然後按順時針來畫

while(x<=x1+dx)

{

d1=y1+sqrt(pow(r,2)-pow(x-x1,2));/*lower*/

x++;

d2=2*(y1+sqrt(pow(r,2)-pow(x-x1,2)))-2*d1-1;/*lower-upper*/

if(1)

{

y=d1;

draw_pixel(x,y);

draw_pixel(x,2*y1-y);

draw_pixel(2*x1-x,y);

draw_pixel(2*x1-x,2*y1-y);

}

else

{

y++;

//p+=twoDyMinusDx;

draw_pixel(x,y);

}

}

}

voiddisplay()

{

glClear(GL_COLOR_BUFFER_BIT);

Bresenham(250,250,200,0.0,0.0,1.0);

Bresenham(300,250,150,1.0,0.0,0.0);

Bresenham(200,250,150,0.0,1.0,0.0);

//Bresenham(250,300,150,0.8,0.4,0.3);

//Bresenham(250,200,150);

glFlush();

}

voidmyinit()

{

glClearColor(0.8,1.0,1.0,1.0);

//glColor3f(0.0,0.0,1.0);

glPointSize(1.0);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(0.0,500.0,0.0,500.0);

}

voidmain(intargc,char**argv)

{

glutInit(&argc,argv);

glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB);

glutInitWindowSize(500,500);

glutInitWindowPosition(200.0,200.0);

glutCreateWindow("CG_test_Bresenham_Circleexample");

glutDisplayFunc(display);

myinit();

glutMainLoop();

}

以下為程序運行效果:

中點畫圓:

用光柵畫圓的不足在上次已經用實例表示的很明白了,上次畫的那個圓怎麼都不能算滿意,雖然可以通過修改演算法來得到改善,但本來計算步驟就已經很多了,交換坐標重新計算將會大大增加計算機的就是負擔,為此我們採用另一種更加常用的畫圓演算法——中點畫圓演算法,之所以叫做「中點」畫圓演算法是由於它不是像Bresenham演算法那樣所繪像素不是(xk+1,yk)就是(xk+1,yk+1),而是根據這兩個點的中點來判斷是(xk+1,yk)還是(xk+1,yk-1)更接近於圓!

對於給定的半徑r和圓心(x0,y0),我們先計算圓心在原點(0,0)的點,然後將其平移到圓心(x0,y0)處即可,跟Bresenham演算法一樣,我們也可以藉助圓的高度對稱性來減少計算機的計算步驟,在這里我們可以先計算出八分之一圓的像素點,然後根據對稱性繪出其他點。這樣可以大大加快畫圓的速度!

跟光柵化方法一樣,我們還是採用步進的方法來逐點描繪,但這里的決策參數計算方式跟Bresenham不大一樣,設決策參數為p,則:

P=x2+y2-r2

對於任一個點(x,y),可以根據p的符號來判斷點是在圓內還是圓外還是在圓上,這里不多說,假設我們在(xk,yk)處繪制了一個像素,下一步需要確定的是(xk+1,yk)還是(xk+1,yk-1)更接近於圓,在此代入這兩個點的中點來求出決策參數:

Pk=(xk+1)2+(yk-1/2)2-r2

如果Pk<0,則yk上的像素更接近於圓,否則就是yk-1更接近於圓

同理可以推出Pk+1=Pk+2(xk+1)+(yk+12-yk2)-(yk+1-yk)+1

給出一個示例,這個圓比用Bresenham畫出來的好看多了:

#include<glglut.h>

classscreenPt

{

private:

intx,y;

public:

screenPt(){x=y=0;}

voidsetCoords(GLintxCoordValue,GLintyCoordValue)

{

x=xCoordValue;

y=yCoordValue;

}

GLintgetx()const

{

returnx;

}

GLintgety()const

{

returny;

}

voidincrementx(){x++;}

voiddecrementy(){y--;}

};

voiddraw_pixel(intxCoord,intyCoord)

{

glBegin(GL_POINTS);

glVertex2i(xCoord,yCoord);

glEnd();

}

voidcircleMidpoint(GLintxc,GLintyc,GLintradius)

{

screenPtcircPt;

GLintp=1-radius;

circPt.setCoords(0,radius);

voidcirclePlotPoints(GLint,GLint,screenPt);

circlePlotPoints(xc,yc,circPt);

while(circPt.getx()<circPt.gety())

{

circPt.incrementx();

if(p<0)

p+=2*circPt.getx()+1;

else

{

circPt.decrementy();

p+=2*(circPt.getx()-circPt.gety())+1;

}

circlePlotPoints(xc,yc,circPt);

}

}

voidcirclePlotPoints(GLintxc,GLintyc,screenPtcircPt)//描繪八分圓各點

{

draw_pixel(xc+circPt.getx(),yc+circPt.gety());

draw_pixel(xc-circPt.getx(),yc+circPt.gety());

draw_pixel(xc+circPt.getx(),yc-circPt.gety());

draw_pixel(xc-circPt.getx(),yc-circPt.gety());

draw_pixel(xc+circPt.gety(),yc+circPt.getx());

draw_pixel(xc-circPt.gety(),yc+circPt.getx());

draw_pixel(xc+circPt.gety(),yc-circPt.getx());

draw_pixel(xc-circPt.gety(),yc-circPt.getx());

}

voiddisplay()

{

//screenPtPt;

glClear(GL_COLOR_BUFFER_BIT);

circleMidpoint(250,250,200);

glFlush();

}

voidmyinit()

{

glClearColor(0.8,1.0,1.0,1.0);

glColor3f(0.0,0.0,1.0);

glPointSize(1.0);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(0.0,500.0,0.0,500.0);

}

voidmain(intargc,char**argv)

{

glutInit(&argc,argv);

glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB);

glutInitWindowSize(500,500);

glutInitWindowPosition(200.0,200.0);

glutCreateWindow("CG_test_中點畫圓example");

glutDisplayFunc(display);

myinit();

glutMainLoop();

}

運行效果:

⑵ 方中圓計算公式

正方形內接圓就是以正方形邊長為直徑 所以用邊長的一半作為半徑 再套公式即可算出面積

⑶ 圓柱演算法

⑷ 1.應用中點畫圓演算法,仿照AutoCAD做法,編寫用三點畫圓的程序(用vc編寫)。 2.應用中點畫圓演算法,編寫畫弧

發貨部分與推進會讓他

⑸ C語言用Bresenham演算法畫圓,哪位高手教教,主要是演算法里的內容,謝謝!

的確哈,關鍵在於對delta的理解
可以看到,都是delta=2*(1-radius)這樣的,起作用應該是判斷要畫的點x、y坐標的變化趨勢,先把我注釋了的代碼貼下,加了getch();可以看到畫的過程
-----------------------------------------------------------------
#include<graphics.h>
#include<stdio.h>

void BresenhemCircle(int centerx, int centery, int radius, int color, int type);

void main()
{
int drive=DETECT,mode;
int i,j;
initgraph(&drive,&mode,"");
BresenhemCircle(300,200,100,15,0);
getch();
}

void BresenhemCircle(int centerx, int centery, int radius, int color, int type)
{
int x =type = 0;/*初始橫坐標為原點*/
int y = radius; /*初始縱坐標遠離原點*/
int delta = 2*(1-radius);
int direction;
while (y >= 0)
{
getch();
if (!type)/*執行*/
{
/*在上半圓畫兩點*/
putpixel(centerx+x, centery+y, color);
putpixel(centerx-x, centery+y, color);
/*在下半圓畫兩點*/
putpixel(centerx-x, centery-y, color);
putpixel(centerx+x, centery-y, color);
getch();
}
else/*不執行*/
{
line(centerx+x, centery+y, centerx+x, centery-y);
line(centerx-x, centery+y, centerx-x, centery-y);
getch();
}
/*以下代碼設置下次四點的位置,圓是對稱的,且此方法相當於同時畫四個圓弧
觀察右上方圓弧可知,前一半是x增的要快些,後一半是y減的快些*/
if (delta < 0)
{
if ((2*(delta+y)-1) < 0)
direction = 1; /*選擇橫向加*/
else
direction = 2;
}
else if(delta > 0)
{
if ((2*(delta-x)-1) > 0)
direction = 3; /*選擇縱向減*/
else
direction = 2;
}
else
direction=2;

switch(direction)
{
case 1:
x++;/*只橫坐標遠離原點*/
delta += (2*x+1); /*小執行到這,所以加*/
break;
case 2:
x++;
y--;/*橫向遠離,同時縱向靠近*/
delta += 2*(x-y+1); /*即(2*x+1)+(-2*y+1)*/
break;
case 3:
y--;/*只縱坐標靠近原點*/
delta += (-2*y+1); /*大執行到這,所以減*/
break;
}
}
}

⑹ 三點圓計算公式

這個不難,不過公式忘了,講原理吧,這個三個點確定一個三角形.然後用三角形的兩條邊做他們的垂直中心線.這樣就OK了.

⑺ 圓台計算公式

圓台體積公式:

(7)圓演算法擴展閱讀:

圓台的性質:

1、平行於底面的截面是圓。

2、過軸的截面是等腰梯形。

3、同別的稜台一樣,若它是一個圓錐體在½處截斷,則上底半徑也應為下底的1/2,截下面積是整個圓錐面積的1/7.過圓台側面一點有且只有一條母線。

4、如果沿一個直角梯形垂直於底邊的腰旋轉一周,將得到一個圓台。

5、圓台任意兩條母線延長後交於一點。

閱讀全文

與圓演算法相關的資料

熱點內容
香腸派對腳本源碼 瀏覽:88
jsp伺服器怎麼轉發 瀏覽:855
伺服器和網站開發有什麼區別 瀏覽:764
如何下載測試伺服器 瀏覽:179
怎麼教育孩子的app 瀏覽:172
交叉編譯的輸出文件 瀏覽:330
手機app怎麼變更辦稅員 瀏覽:936
sql服務停用命令 瀏覽:912
為什麼系統要用兩個雲伺服器 瀏覽:680
兩個pdf怎麼合並 瀏覽:293
php查詢為空 瀏覽:589
香港伺服器丟包了怎麼辦 瀏覽:46
linux系統管理教程 瀏覽:643
共享文件夾怎麼設置只讀文件 瀏覽:295
小米添加雲伺服器地址 瀏覽:581
qt入門pdf 瀏覽:670
視頻監控取消默認加密 瀏覽:294
雲伺服器怎麼設置輸入鍵盤 瀏覽:817
單片機支持多大mhz 瀏覽:42
linux啟動mysql命令 瀏覽:792