導航:首頁 > 源碼編譯 > 圖像處理演算法工程師

圖像處理演算法工程師

發布時間:2022-01-17 10:16:36

演算法工程師 就業前景

一、演算法工程師簡介
(通常是月薪15k以上,年薪18萬以上,只是一個概數,具體薪資可以到招聘網站如拉鉤,獵聘網上看看)
演算法工程師目前是一個高端也是相對緊缺的職位;
演算法工程師包括
音/視頻演算法工程師(通常統稱為語音/視頻/圖形開發工程師)、圖像處理演算法工程師、計算機視覺演算法工程師、通信基帶演算法工程師、信號演算法工程師、射頻/通信演算法工程師、自然語言演算法工程師、數據挖掘演算法工程師、搜索演算法工程師、控制演算法工程師(雲台演算法工程師,飛控演算法工程師,機器人控制演算法)、導航演算法工程師(
@之介
感謝補充)、其他【其他一切需要復雜演算法的行業】
專業要求:計算機、電子、通信、數學等相關專業;
學歷要求:本科及其以上的學歷,大多數是碩士學歷及其以上;
語言要求:英語要求是熟練,基本上能閱讀國外專業書刊,做這一行經常要讀論文;
必須掌握計算機相關知識,熟練使用模擬工具MATLAB等,必須會一門編程語言。
演算法工程師的技能樹(不同方向差異較大,此處僅供參考)
1 機器學習
2 大數據處理:熟悉至少一個分布式計算框架Hadoop/Spark/Storm/ map-rece/MPI
3 數據挖掘
4 扎實的數學功底
5 至少熟悉C/C++或者java,熟悉至少一門編程語言例如java/python/R
加分項:具有較為豐富的項目實踐經驗(不是水論文的哪種)
二、演算法工程師大致分類與技術要求
(一)圖像演算法/計算機視覺工程師類
包括
圖像演算法工程師,圖像處理工程師,音/視頻處理演算法工程師,計算機視覺工程師
要求
l
專業:計算機、數學、統計學相關專業;
l
技術領域:機器學習,模式識別
l
技術要求:
(1) 精通DirectX HLSL和OpenGL GLSL等shader語言,熟悉常見圖像處理演算法GPU實現及優化;
(2) 語言:精通C/C++;
(3) 工具:Matlab數學軟體,CUDA運算平台,VTK圖像圖形開源軟體【醫學領域:ITK,醫學圖像處理軟體包】
(4) 熟悉OpenCV/OpenGL/Caffe等常用開源庫;
(5) 有人臉識別,行人檢測,視頻分析,三維建模,動態跟蹤,車識別,目標檢測跟蹤識別經歷的人優先考慮;
(6) 熟悉基於GPU的演算法設計與優化和並行優化經驗者優先;
(7) 【音/視頻領域】熟悉H.264等視頻編解碼標准和FFMPEG,熟悉rtmp等流媒體傳輸協議,熟悉視頻和音頻解碼演算法,研究各種多媒體文件格式,GPU加速;
應用領域:
(1) 互聯網:如美顏app
(2) 醫學領域:如臨床醫學圖像
(3) 汽車領域
(4) 人工智慧
相關術語:
(1) OCR:OCR (Optical Character Recognition,光學字元識別)是指電子設備(例如掃描儀或數碼相機)檢查紙上列印的字元,通過檢測暗、亮的模式確定其形狀,然後用字元識別方法將形狀翻譯成計算機文字的過程
(2) Matlab:商業數學軟體;
(3) CUDA: (Compute Unified Device Architecture),是顯卡廠商NVIDIA推出的運算平台(由ISA和GPU構成)。 CUDA™是一種由NVIDIA推出的通用並行計算架構,該架構使GPU能夠解決復雜的計算問題
(4) OpenCL: OpenCL是一個為異構平台編寫程序的框架,此異構平台可由CPU,GPU或其他類型的處理器組成。
(5) OpenCV:開源計算機視覺庫;OpenGL:開源圖形庫;Caffe:是一個清晰,可讀性高,快速的深度學習框架。
(6) CNN:(深度學習)卷積神經網路(Convolutional Neural Network)CNN主要用來識別位移、縮放及其他形式扭曲不變性的二維圖形。
(7) 開源庫:指的是計算機行業中對所有人開發的代碼庫,所有人均可以使用並改進代碼演算法。
(二)機器學習工程師
包括
機器學習工程師
要求
l
專業:計算機、數學、統計學相關專業;
l
技術領域:人工智慧,機器學習
l
技術要求:
(1) 熟悉Hadoop/Hive以及Map-Rece計算模式,熟悉Spark、Shark等尤佳;
(2) 大數據挖掘;
(3) 高性能、高並發的機器學習、數據挖掘方法及架構的研發;
應用領域:
(1)人工智慧,比如各類模擬、擬人應用,如機器人
(2)醫療用於各類擬合預測
(3)金融高頻交易
(4)互聯網數據挖掘、關聯推薦
(5)無人汽車,無人機

相關術語:
(1) Map-Rece:MapRece是一種編程模型,用於大規模數據集(大於1TB)的並行運算。概念"Map(映射)"和"Rece(歸約)",是它們的主要思想,都是從函數式編程語言里借來的,還有從矢量編程語言里借來的特性。
(三)自然語言處理工程師
包括
自然語言處理工程師
要求
l
專業:計算機相關專業;
l
技術領域:文本資料庫
l
技術要求:
(1) 熟悉中文分詞標注、文本分類、語言模型、實體識別、知識圖譜抽取和推理、問答系統設計、深度問答等NLP 相關演算法;
(2) 應用NLP、機器學習等技術解決海量UGC的文本相關性;
(3) 分詞、詞性分析、實體識別、新詞發現、語義關聯等NLP基礎性研究與開發;
(4) 人工智慧,分布式處理Hadoop;
(5) 數據結構和演算法;
應用領域:
口語輸入、書面語輸入
、語言分析和理解、語言生成、口語輸出技術、話語分析與對話、文獻自動處理、多語問題的計算機處理、多模態的計算機處理、信息傳輸與信息存儲 、自然語言處理中的數學方法、語言資源、自然語言處理系統的評測。

相關術語:
(2) NLP:人工智慧的自然語言處理,NLP (Natural Language Processing) 是人工智慧(AI)的一個子領域。NLP涉及領域很多,最令我感興趣的是「中文自動分詞」(Chinese word segmentation):結婚的和尚未結婚的【計算機中卻有可能理解為結婚的「和尚「】

(四)射頻/通信/信號演算法工程師類
包括
3G/4G無線通信演算法工程師, 通信基帶演算法工程師,DSP開發工程師(數字信號處理),射頻通信工程師,信號演算法工程師
要求
l
專業:計算機、通信相關專業;
l
技術領域:2G、3G、4G,BlueTooth(藍牙),WLAN,無線移動通信, 網路通信基帶信號處理
l
技術要求:
(1) 了解2G,3G,4G,BlueTooth,WLAN等無線通信相關知識,熟悉現有的通信系統和標准協議,熟悉常用的無線測試設備;
(2) 信號處理技術,通信演算法;
(3) 熟悉同步、均衡、信道解碼等演算法的基本原理;
(4) 【射頻部分】熟悉射頻前端晶元,扎實的射頻微波理論和測試經驗,熟練使用射頻電路模擬工具(如ADS或MW或Ansoft);熟練使用cadence、altium designer PCB電路設計軟體;
(5) 有扎實的數學基礎,如復變函數、隨機過程、數值計算、矩陣論、離散數學
應用領域:
通信
VR【用於快速傳輸視頻圖像,例如樂客靈境VR公司招募的通信工程師(數據編碼、流數據)】
物聯網,車聯網
導航,軍事,衛星,雷達
相關術語:
(1) 基帶信號:指的是沒有經過調制(進行頻譜搬移和變換)的原始電信號。
(2) 基帶通信(又稱基帶傳輸):指傳輸基帶信號。進行基帶傳輸的系統稱為基帶傳輸系統。傳輸介質的整個信道被一個基帶信號佔用.基帶傳輸不需要數據機,設備化費小,具有速率高和誤碼率低等優點,.適合短距離的數據傳輸,傳輸距離在100米內,在音頻市話、計算機網路通信中被廣泛採用。如從計算機到監視器、列印機等外設的信號就是基帶傳輸的。大多數的區域網使用基帶傳輸,如乙太網、令牌環網。
(3) 射頻:射頻(RF)是Radio Frequency的縮寫,表示可以輻射到空間的電磁頻率(電磁波),頻率范圍從300KHz~300GHz之間(因為其較高的頻率使其具有遠距離傳輸能力)。射頻簡稱RF射頻就是射頻電流,它是一種高頻交流變化電磁波的簡稱。每秒變化小於1000次的交流電稱為低頻電流,大於10000次的稱為高頻電流,而射頻就是這樣一種高頻電流。高頻(大於10K);射頻(300K-300G)是高頻的較高頻段;微波頻段(300M-300G)又是射頻的較高頻段。【有線電視就是用射頻傳輸方式】
(4) DSP:數字信號處理,也指數字信號處理晶元
(五)數據挖掘演算法工程師類
包括
推薦演算法工程師,數據挖掘演算法工程師
要求
l
專業:計算機、通信、應用數學、金融數學、模式識別、人工智慧;
l
技術領域:機器學習,數據挖掘
l
技術要求:
(1) 熟悉常用機器學習和數據挖掘演算法,包括但不限於決策樹、Kmeans、SVM、線性回歸、邏輯回歸以及神經網路等演算法;
(2) 熟練使用SQL、Matlab、Python等工具優先;
(3) 對Hadoop、Spark、Storm等大規模數據存儲與運算平台有實踐經驗【均為分布式計算框架】
(4) 數學基礎要好,如高數,統計學,數據結構
l
加分項:數據挖掘建模大賽;
應用領域
(1) 個性化推薦
(2) 廣告投放
(3) 大數據分析
相關術語
Map-Rece:MapRece是一種編程模型,用於大規模數據集(大於1TB)的並行運算。概念"Map(映射)"和"Rece(歸約)",是它們的主要思想,都是從函數式編程語言里借來的,還有從矢量編程語言里借來的特性。
(六)搜索演算法工程師
要求
l
技術領域:自然語言
l
技術要求:
(1) 數據結構,海量數據處理、高性能計算、大規模分布式系統開發
(2) hadoop、lucene
(3) 精通Lucene/Solr/Elastic Search等技術,並有二次開發經驗
(4) 精通Lucene/Solr/Elastic Search等技術,並有二次開發經驗;
(5) 精通倒排索引、全文檢索、分詞、排序等相關技術;
(6) 熟悉Java,熟悉Spring、MyBatis、Netty等主流框架;
(7) 優秀的資料庫設計和優化能力,精通MySQL資料庫應用 ;
(8) 了解推薦引擎和數據挖掘和機器學習的理論知識,有大型搜索應用的開發經驗者優先。
(七)控制演算法工程師類
包括了雲台控制演算法,飛控控制演算法,機器人控制演算法
要求
l
專業:計算機,電子信息工程,航天航空,自動化
l
技術要求:
(1) 精通自動控制原理(如PID)、現代控制理論,精通組合導航原理,姿態融合演算法,電機驅動,電機驅動
(2) 卡爾曼濾波,熟悉狀態空間分析法對控制系統進行數學模型建模、分析調試;
l
加分項:有電子設計大賽,機器人比賽,robocon等比賽經驗,有硬體設計的基礎;
應用領域
(1)醫療/工業機械設備
(2)工業機器人
(3)機器人
(4)無人機飛控、雲台控制等

(八)導航演算法工程師
要求
l 專業:計算機,電子信息工程,航天航空,自動化
l 技術要求(以公司職位JD為例)
公司一(1)精通慣性導航、激光導航、雷達導航等工作原理;
(2)精通組合導航演算法設計、精通卡爾曼濾波演算法、精通路徑規劃演算法;
(3)具備導航方案設計和實現的工程經驗;
(4)熟悉C/C++語言、熟悉至少一種嵌入式系統開發、熟悉Matlab工具;
公司二(1)熟悉基於視覺信息的SLAM、定位、導航演算法,有1年以上相關的科研或項目經歷;
(2)熟悉慣性導航演算法,熟悉IMU與視覺信息的融合;
應用領域
無人機、機器人等。

⑵ 零基礎入行圖像演算法工程師需要學習哪些課程

我們實驗室就是做FPGA圖像處理的。建議你學習一下《信號與系統》,《數字信號處理》。然後學習一下岡薩雷斯寫的《數字圖像處理》那本書。有了基礎之後,選定一個方向進行具體研究。圖像處理的方向比較多,圖像增強,圖像復原,圖像壓縮,圖像分割等等。個人感覺FPGA做圖像預處理(譬如圖像去噪)比較好,如果涉及較為復雜的演算法,用FPGA就需要深厚的功底。畢竟FPGA的計算能力不強。總之,你先把基礎打好,然後選定一個喜歡的方向深入研究。FPGA只是實現的工具。

⑶ 圖像演算法工程師待遇高嗎

的確算得上是一個入演算法坑的黃金時間,曾經的條條大路通 CS 變成了條條大路通 AI,不管你曾經讀的是物理還是生物,化學還是數學,只要你會 Python,會統計學基礎,那時的我都會推薦你們來試一試加入演算法這個坑,我也抱著體驗的心態開了幾次知乎 Live 都講了一些關於演算法入門相關的課,按那時候來講,只要你「思路正常,邏輯清晰,吃苦耐勞,肯學習」,在演算法這個坑裡摸滾帶爬四五年到現在,你要是在大廠,基本上都能拿到這個數,放一張最近的圖可供參考。

圖片引用至 @曾加 ,可以參考這位大佬的最新文章:

曾加:最新!互聯網大廠各職級薪資對應關系圖(2020年初)

zhuanlan.hu.com
圖標
以我熟悉的阿里為例,文中所說的二三十人團隊,那基本上就一個P8主管,下面再拆成2-3個小組,每個小組有一個P7/8帶隊,帶著一群P5-P7幹活。這就基本構成了阿里的一個最小組織單元,每年的績效和獎金大體上都是由這位P8主管決定的,所以我們一般尊稱為老闆……

扯遠了,其實我想表達一點,如果現在再有人來問我,學了 Python 之後怎麼樣加入演算法坑比較好,我的建議是不加入。

我們常說的演算法,本質上是統計,而統計是基於大數據的。目前能真正擁有大數據基建的企業其實並不多,能通過演算法產出新價值的就更少,所以看起來搞 AI 的風風火火,其實大部分都是投資人含淚投的錢,背後能賺錢的少之又少,即便是在大廠也不例外。

所以一個目前仍不賺錢的行業,沖著心中偉大的理想和抱負,會像招開發那樣花重金吸納大批人才嗎?答案明顯為否,其實只需要花重金留住頂尖的演算法人才即可,調包調參的 AI 選手無論何時都可以招得到,而目前大部分通過自學、培訓機構出來的 AI 人才,就是這樣的 tool boy。

巧的是,曾經我也是這樣的 AI 選手,但誰叫我運氣好,混得好不如混得早,現在轉去數據分析那可就是降維打擊了(手動狗頭

最後再概括一下,今年是 2020 年,如果想從事演算法和數據行業,建議先讀一個相關專業的碩士,比如數據挖掘、圖像識別等,且學校不能太非主流,不然可能簡歷面都過不了。

⑷ 應屆圖像處理演算法工程師需要掌握哪些

圖像處理中演算法很重要,所以數學根底是必須的。當然也不是說開發圖像處理應用的公司只做演算法,也會有用戶交互,產品升級,特徵控制,軟體授權,等等諸多方面的內容,看你怎麼發展了,對於感興趣的事就不要說什麼復雜困難,否則還不如趁早放棄。C語言是移植性強的語言,而且更接近底層,如果寫演算法應該學習。C++從 功能上來說是C的擴展集合,對C的關鍵字是兼容的,不過兩者的設計理念差距很大。如果真想做,就學吧。

⑸ 如何自學圖像演算法工程師

因為我學的就是計算機軟體專業,所以我可以告訴你:你會 C 語言編程固然很好,但是如果僅僅依靠會 C 語言編程,想成為某一個具體領域的工程師(例如:計算機圖像處理、或者是語音識別、漢字手寫體識別等),那是絕對不可能的。

你還必須要學習其他的很多理論課程。例如:各種數學(高等數學、高等代數、概率統計、離散數學等)的學習就是必不可少的,因為在進行計算機圖像演算法程序設計時,就百分之百需要依靠建立數學模型。如果沒有扎實的數學基礎,就無法建立數學模型,那麼即使會熟練使用 C 語言編程,那麼也是無法成為一個合格的圖像演算法工程師。
另外,還有計算機軟體的其它專業課:數據結構及其各種演算法、計算機圖形學等都是必須要熟練掌握的。

⑹ 演算法工程師是做什麼的

演算法工程師是一個非常高端的職位;是非常緊缺的專業工程師,兼具前途和錢途!

專業要求:計算機、電子、通信、數學等相關專業;
學歷要求:本科及其以上的學歷,大多數是碩士學歷及其以上;
語言要求:英語要求是熟練,基本上能閱讀國外專業書刊;
必須掌握計算機相關知識,熟練使用模擬工具MATLAB等,必須會一門編程語言。

目前國內從事演算法研究的工程師不少,但是高級演算法工程師卻很少,是一個非常緊缺的專業工程師。演算法工程師根據研究領域來分主要有音頻/視頻演算法處理、圖像技術方面的二維信息演算法處理和通信物理層、雷達信號處理、生物醫學信號處理等領域的一維信息演算法處理。
在計算機音視頻和圖形圖形圖像技術等二維信息演算法處理方面目前比較先進的視頻處理演算法:機器視覺成為此類演算法研究的核心;另外還有2D轉3D演算法(2D-to-3D conversion),去隔行演算法(de-interlacing),運動估計運動補償演算法(Motion estimation/Motion Compensation),去噪演算法(Noise Rection),縮放演算法(scaling),銳化處理演算法(Sharpness),超解析度演算法(Super Resolution),手勢識別(gesture recognition),人臉識別(face recognition)。
在通信物理層等一維信息領域目前常用的演算法:無線領域的RRM、RTT,傳送領域的調制解調、信道均衡、信號檢測、網路優化、信號分解等。
另外數據挖掘、互聯網搜索演算法也成為當今的熱門方向。
演算法工程師逐漸往人工智慧方向發展。

⑺ 演算法工程師大致是做什麼的

各個行業都有演算法部分,統計有統計的演算法,控制有控制的演算法,圖像處理有圖像處理的演算法。在很多傳統行業,演算法不是一個獨立的崗位,而是由研發工程師負責。今天小編就帶大家來了解下演算法工程師大致是做什麼的?我們接著往下看。

1. 圖像處理,尤其是基於OpenCV的圖像處理演算法,一般產品里有做美顏,濾鏡什麼的特別喜歡招這塊的小朋友,近一兩年有被做深度學習的取代的趨勢。最近google出了arcore,所以讓不少小公司也能出一些效果很好的換頭類應用。
2. 計算機圖形學,這也算是一個大類,主要涉及到圖形渲染演算法,光追演算法,三維圖像重構等圖像繪制方面的內容。這個方向,不光是做3d引擎和游戲開發方面,對於很多行業需要與cad相關的,都會涉及到這一個領域的模型和優化演算法設計。
3. VR,AR領域,涉及到的包括視頻跟蹤,SLAM,raytracing,幾何投影等等,實際上是一個綜合的領域,目前主要是做計算機視覺的轉行做這塊。
4. 醫學影像處理,三維圖像重構,用在B超,CT成像上,這個是醫療方向的。
5. 通信基帶信號處理,網路優化演算法,這一塊其實很式微了,畢竟高大上的演算法小公司沒成本去實施。
6. 音頻濾波,用在HiFi產品,比如車載音響,手機廠商,圈子其實蠻小的。
7. 控制演算法,自適應濾波演算法,用在機械領域上,比如機械臂行程式控制制,穩定性。
8. 有限元演算法,這塊從雷達,機械,電磁學,到服裝設計,都有很有價值的應用。
9. 信號處理,比如插值,頻譜分析,盲信號分離,壓縮感知,物聯網大部分應用會涉及這一塊。
互聯網和軟體行業把演算法分離成一個獨立的崗位大體有兩個原因。第一,低級的軟體工程師不懂演算法,或者更乾脆一點說不懂數學,所有涉及到模型和計算公式的工作都必須要找專業人員來搞定。第二,從生產效率考慮,初級演算法工程師很多沒有很好的軟體工程背景,簡單點說就是不會寫代碼只會寫matlab,這種工程師的工作交付沒有辦法直接投入生產,所以需要將他們的工作和生產環節隔離開。綜上所述,就是小編今天給大家分享的內容,希望可以幫助到大家。

⑻ 什麼是演算法工程師

演算法工程師就是利用演算法處理事物的人。 演算法工程師有計算機、電子、通信、數學等相關專業要求,研究方向有視頻演算法工程師、圖像處理演算法工程師、音頻演算法工程師等。

演算法工程師是一個比較高端的職位;

專業要求:計算機、電子、通信、數學等相關專業;

學歷要求:本科及其以上的學歷,大多數是碩士學歷及其以上;

語言要求:英語要求是熟練,基本上能閱讀國外專業書刊;

必須掌握計算機相關知識,熟練使用模擬工具MATLAB等,必須會一門編程語言。

研究方向
視頻演算法工程師、圖像處理演算法工程師、音頻演算法工程師 通信基帶演算法工程師信號演算法工程師

國內外狀況
國內從事演算法研究的工程師不少,但是高級演算法工程師卻很少,是一個非常緊缺的專業工程師。演算法工程師根據研究領域來分主要有音頻/視頻演算法處理、圖像技術方面的二維信息演算法處理和通信物理層、雷達信號處理、生物醫學信號處理等領域的一維信息演算法處理。

在計算機音視頻和圖形圖像技術等二維信息演算法處理方面比較先進的視頻處理演算法:機器視覺成為此類演算法研究的核心;另外還有2D轉3D演算法(2D-to-3D conversion),去隔行演算法(de-interlacing),運動估計運動補償演算法(Motion estimation/Motion Compensation),去噪演算法(Noise Rection),縮放演算法(scaling),銳化處理演算法(Sharpness),超解析度演算法(Super Resolution),手勢識別(gesturerecognition),人臉識別(face recognition)。

在通信物理層等一維信息領域目用的演算法:無線領域的RRM、RTT,傳送領域的調制解調、信道均衡、信號檢測、網路優化、信號分解等。

另外數據挖掘、互聯網搜索演算法也成為當今的熱門方向。

演算法工程師逐漸往人工智慧方向發展。

閱讀全文

與圖像處理演算法工程師相關的資料

熱點內容
工作三年的大專程序員 瀏覽:728
java畢業設計文獻 瀏覽:143
籌碼集中度指標源碼 瀏覽:482
listsortjava 瀏覽:186
plc閃光電路編程實例 瀏覽:299
socket編程試題 瀏覽:206
華為的伺服器怎麼設置從光碟機啟動 瀏覽:871
程序員真的累嗎 瀏覽:328
學信網app為什麼刷臉不了 瀏覽:874
天蠍vs程序員 瀏覽:996
單片機下載口叫什麼 瀏覽:190
程序員的道 瀏覽:926
雲伺服器不實名違法嗎 瀏覽:558
怎樣查看文件夾圖片是否重復 瀏覽:995
文件怎麼導成pdf文件 瀏覽:808
打開sql表的命令 瀏覽:103
安卓手機如何面部支付 瀏覽:38
天元數學app為什麼登錄不上去 瀏覽:825
明日之後為什麼有些伺服器是四個字 瀏覽:104
安卓系統l1是什麼意思 瀏覽:26