㈠ 數學中都有什麼演算法啊
定義法、配方法、待定系數法、換元法、反證法、數學歸納法、導數法、賦值法、消去法、定比分離法、比較法、分析法、綜合法 ,還有很多桑
介里有幾個比較詳細的哈.
一、換元法
「換元」的思想和方法,在數學中有著廣泛的應用,靈活運用換元法解題,有助於數量關系明朗化,變繁為簡,化難為易,給出簡便、巧妙的解答.
在解題過程中,把題中某一式子如f(x),作為新的變數y或者把題中某一變數如x,用新變數t的式子如g(t)替換,即通過令f(x)=y或x=g(t)進行變數代換,得到結構簡單便於求解的新解題方法,通常稱為換元法或變數代換法.
用換元法解題,關鍵在於根據問題的結構特徵,選擇能以簡馭繁,化難為易的代換f(x)=y或x=g(t).就換元的具體形式而論,是多種多樣的,常用的有有理式代換,根式代換,指數式代換,對數式代換,三角式代換,反三角式代換,復變數代換等,宜在解題實踐中不斷總結經驗,掌握有關的技巧.
例如,用於求解代數問題的三角代換,在具體設計時,宜遵循以下原則:(1)全面考慮三角函數的定義域、值域和有關的公式、性質;(2)力求減少變數的個數,使問題結構簡單化;(3)便於藉助已知三角公式,建立變數間的內在聯系.只有全面考慮以上原則,才能謀取恰當的三角代換.
換元法是一種重要的數學方法,在多項式的因式分解,代數式的化簡計算,恆等式、條件等式或不等式的證明,方程、方程組、不等式、不等式組或混合組的求解,函數表達式、定義域、值域或最值的推求,以及解析幾何中的坐標替換,普通方程與參數方程、極坐標方程的互化等問題中,都有著廣泛的應用.
二、消元法
對於含有多個變數的問題,有時可以利用題設條件和某些已知恆等式(代數恆等式或三角恆等式),通過適當的變形,消去一部分變數,使問題得以解決,這種解題方法,通常稱為消元法,又稱消去法.
消元法是解方程組的基本方法,在推證條件等式和把參數方程化成普通方程等問題中,也有著重要的應用.
用消元法解題,具有較強的技巧性,常常需要根據題目的特點,靈活選擇合適的消元方法
三、待定系數法
按照一定規律,先寫出問題的解的形式(一般是指一個算式、表達式或方程),其中含有若干尚待確定的未知系數的值,從而得到問題的解.這種解題方法,通常稱為待定系數法;其中尚待確定的未知系數,稱為待定系數.
確定待定系數的值,有兩種常用方法:比較系數法和特殊值法.
四、判別式法
實系數一元二次方程
ax2+bx+c=0 (a≠0) ①
的判別式△=b2-4ac具有以下性質:
>0,當且僅當方程①有兩個不相等的實數根
△ =0,當且僅當方程①有兩個相等的實數根;
<0,當且僅當方程②沒有實數根.
對於二次函數
y=ax2+bx+c (a≠0)②
它的判別式△=b2-4ac具有以下性質:
>0,當且僅當拋物線②與x軸有兩個公共點;
△ =0,當且僅當拋物線②與x軸有一個公共點;
<0,當且僅當拋物線②與x軸沒有公共點.
五、 分析法與綜合法
分析法和綜合法源於分析和綜合,是思維方向相反的兩種思考方法,在解題過程中具有十分重要的作用.
在數學中,又把分析看作從結果追溯到產生這一結果的原因的一種思維方法,而綜合被看成是從原因推導到由原因產生的結果的另一種思維方法.通常把前者稱為分析法,後者稱為綜合法.
六、 數學模型法
例(哥尼斯堡七橋問題)18世紀東普魯士哥尼斯堡有條普萊格河,這條河有兩個支流,在城中心匯合後流入波羅的海.市內辦有七座各具特色的大橋,連接島區和兩岸.每到傍晚或節假日,許多居民來這里散步,觀賞美麗的風光.年長日久,有人提出這樣的問題:能否從某地出發,經過每一座橋一次且僅一次,然後返回出發地?
數學模型法,是指把所考察的實際問題,進行數學抽象,構造相應的數學模型,通過對數學模型的研究,使實際問題得以解決的一種數學方法.
七、配方法
所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式.通過配方解決數學問題的方法叫配方法.其中,用的最多的是配成完全平方式.配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它.
八、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式.因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用.因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等.
九、換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法.我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決.
介里LL沒有說很詳細桑,內啥簡便演算法我也一起說了桑丶
乘法交換律,乘法分配律,加法交換律,加法結合律,乘法分配律,
㈡ 數學的各種演算法
演算法(Algorithm)是指解題方案的准確而完整的描述,是一系列解決問題的清晰指令,演算法代表著用系統的方法描述解決問題的策略機制。也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。
演算法中的指令描述的是一個計算,當其運行時能從一個初始狀態和(可能為空的)初始輸入開始,經過一系列有限而清晰定義的狀態,最終產生輸出並停止於一個終態。一個狀態到另一個狀態的轉移不一定是確定的。隨機化演算法在內的一些演算法,包含了一些隨機輸入。
形式化演算法的概念部分源自嘗試解決希爾伯特提出的判定問題,並在其後嘗試定義有效計算性或者有效方法中成形。這些嘗試包括庫爾特·哥德爾、Jacques Herbrand和斯蒂芬·科爾·克萊尼分別於1930年、1934年和1935年提出的遞歸函數,阿隆佐·邱奇於1936年提出的λ演算,1936年Emil Leon Post的Formulation 1和艾倫·圖靈1937年提出的圖靈機。即使在當前,依然常有直覺想法難以定義為形式化演算法的情況。
一個演算法應該具有以下五個重要的特徵:
有窮性
(Finiteness)
演算法的有窮性是指演算法必須能在執行有限個步驟之後終止;
確切性
(Definiteness)
演算法的每一步驟必須有確切的定義;
輸入項
(Input)
一個演算法有0個或多個輸入,以刻畫運算對象的初始情況,所謂0個輸入是指演算法本身定出了初始條件;
輸出項
(Output)
一個演算法有一個或多個輸出,以反映對輸入數據加工後的結果。沒有輸出的演算法是毫無意義的;
可行性
(Effectiveness)
演算法中執行的任何計算步驟都是可以被分解為基本的可執行的操作步,即每個計算步都可以在有限時間內完成(也稱之為有效性)。
一、數據對象的運算和操作:計算機可以執行的基本操作是以指令的形式描述的。一個計算機系統能執行的所有指令的集合,成為該計算機系統的指令系統。一個計算機的基本運算和操作有如下四類:[1]
1.算術運算:加減乘除等運算
2.邏輯運算:或、且、非等運算
3.關系運算:大於、小於、等於、不等於等運算
4.數據傳輸:輸入、輸出、賦值等運算[1]
二、演算法的控制結構:一個演算法的功能結構不僅取決於所選用的操作,而且還與各操作之間的執行順序有關。
演算法可大致分為基本演算法、數據結構的演算法、數論與代數演算法、計算幾何的演算法、圖論的演算法、動態規劃以及數值分析、加密演算法、排序演算法、檢索演算法、隨機化演算法、並行演算法,厄米變形模型,隨機森林演算法。
演算法可以宏泛地分為三類:
一、有限的,確定性演算法 這類演算法在有限的一段時間內終止。他們可能要花很長時間來執行指定的任務,但仍將在一定的時間內終止。這類演算法得出的結果常取決於輸入值。
二、有限的,非確定演算法 這類演算法在有限的時間內終止。然而,對於一個(或一些)給定的數值,演算法的結果並不是唯一的或確定的。
三、無限的演算法 是那些由於沒有定義終止定義條件,或定義的條件無法由輸入的數據滿足而不終止運行的演算法。通常,無限演算法的產生是由於未能確定的定義終止條件。
希望我能幫助你解疑釋惑。
㈢ 數學演算法
這個演算法實際上就是數學上的分段函數 當x>=4時,y=2x-1;當x<4時,y=x^2-2x+3,你可以自己畫一下函數圖像,很容易就能看出當X=1時函數值最小,為2。