導航:首頁 > 源碼編譯 > k均值聚類演算法

k均值聚類演算法

發布時間:2022-01-19 14:13:46

A. K均值聚類法和系統聚類法有什麼區別,這兩種聚類方法的適用條件都是什麼

適用條件:系統聚類法適於二維有序樣品聚類的樣品個數比較均勻。K均值聚類法適用於快速高效,特別是大量數據時使用。

兩者區別如下:

一、指代不同

1、K均值聚類法:是一種迭代求解的聚類分析演算法

2、系統聚類法:又叫分層聚類法,聚類分析的一種方法。

二、步驟不同

1、K均值聚類法:步驟是隨機選取K個對象作為初始的聚類中心,然後計算每個對象與各個種子聚類中心之間的距離,把每個對象分配給距離它最近的聚類中心。

2、系統聚類法:開始時把每個樣品作為一類,然後把最靠近的樣品(即距離最小的群品)首先聚為小類,再將已聚合的小類按其類間距離再合並,不斷繼續下去,最後把一切子類都聚合到一個大類。


三、目的不同

1、K均值聚類法:終止條件可以是沒有(或最小數目)對象被重新分配給不同的聚類,沒有(或最小數目)聚類中心再發生變化,誤差平方和局部最小。

2、系統聚類法:是以距離為相似統計量時,確定新類與其他各類之間距離的方法,如最短距離法、最長距離法、中間距離法、重心法、群平均法、離差平方和法、歐氏距離等。


B. 如何對點進行k均值聚類演算法 matlab

在聚類分析中,K-均值聚類演算法(k-means algorithm)是無監督分類中的一種基本方法,其也稱為C-均值演算法,其基本思想是:通過迭代的方法,逐次更新各聚類中心的值,直至得到最好的聚類結果.\x0d假設要把樣本集分為c個類別,演算法如下:\x0d(1)適當選擇c個類的初始中心;\x0d(2)在第k次迭代中,對任意一個樣本,求其到c個中心的距離,將該樣本歸到距離最短的中心所在的類,\x0d(3)利用均值等方法更新該類的中心值;\x0d(4)對於所有的c個聚類中心,如果利用(2)(3)的迭代法更新後,值保持不變,則迭代結束,否則繼續迭代.\x0d下面介紹作者編寫的一個分兩類的程序,可以把其作為函數調用.\x0d%% function [samp1,samp2]=kmeans(samp); 作為調用函數時去掉注釋符\x0dsamp=[11.1506 6.7222 2.3139 5.9018 11.0827 5.7459 13.2174 13.8243 4.8005 0.9370 12.3576]; %樣本集\x0d[l0 l]=size(samp);\x0d%%利用均值把樣本分為兩類,再將每類的均值作為聚類中心\x0dth0=mean(samp);n1=0;n2=0;c1=0.0;c1=double(c1);c2=c1;for i=1:lif samp(i)<th0\x0dc1=c1+samp(i);n1=n1+1;elsec2=c2+samp(i);n2=n2+1;endendc1=c1/n1;c2=c2/n2; %初始聚類中心t=0;cl1=c1;cl2=c2;\x0dc11=c1;c22=c2; %聚類中心while t==0samp1=zeros(1,l);\x0dsamp2=samp1;n1=1;n2=1;for i=1:lif abs(samp(i)-c11)<abs(samp(i)-c22)\x0dsamp1(n1)=samp(i);\x0dcl1=cl1+samp(i);n1=n1+1;\x0dc11=cl1/n1;elsesamp2(n2)=samp(i);\x0dcl2=cl2+samp(i);n2=n2+1;\x0dc22=cl2/n2;endendif c11==c1 && c22==c2t=1;endcl1=c11;cl2=c22;\x0dc1=c11;c2=c22;\x0dend %samp1,samp2為聚類的結果.\x0d初始中心值這里採用均值的辦法,也可以根據問題的性質,用經驗的方法來確定,或者將樣本集隨機分成c類,計算每類的均值.\x0dk-均值演算法需要事先知道分類的數量,這是其不足之處.

C. 系統聚類和k均值聚類區別和聯系

摘要 你好k_means均值聚類,採用歐式距離做為相似度指標,將相似度高的數據對象劃分為一類,通過反復迭代計算新質心,並且樣本觀測所屬的類會不斷的調整,使得新質心與所有數據對象的平方誤差總和最小的一種迭代型快速聚類演算法,變數類型為連續型變數,需要主動設定分類數。

D. k均值聚類演算法、c均值聚類演算法、模糊的c均值聚類演算法的區別

k均值聚類:---------一種硬聚類演算法,隸屬度只有兩個取值0或1,提出的基本根據是「類內誤差平方和最小化」准則;
模糊的c均值聚類演算法:-------- 一種模糊聚類演算法,是k均值聚類演算法的推廣形式,隸屬度取值為[0 1]區間內的任何一個數,提出的基本根據是「類內加權誤差平方和最小化」准則;
這兩個方法都是迭代求取最終的聚類劃分,即聚類中心與隸屬度值。兩者都不能保證找到問題的最優解,都有可能收斂到局部極值,模糊c均值甚至可能是鞍點。
至於c均值似乎沒有這么叫的,至少從我看到文獻來看是沒有。不必糾結於名稱。如果你看的是某本模式識別的書,可能它想表達的意思就是k均值。
實際上k-means這個單詞最先是好像在1965年的一篇文獻提出來的,後來很多人把這種聚類叫做k均值。但是實際上十多年前就有了類似的演算法,但是名字不一樣,k均值的歷史相當的復雜,在若干不同的領域都被單獨提出。追尋演算法的名稱與歷史沒什麼意義,明白具體的實現方法就好了。

E. k均值聚類演算法聚類個數怎麼確定

演算法:
第一步:選K個初始聚類中心,z1(1),z2(1),…,zK(1),其中括弧內的序號為尋找聚類中心的迭代運算的次序號。聚類中心的向量值可任意設定,例如可選開始的K個模式樣本的向量值作為初始聚類中心。

F. K均值聚類

k均值聚類演算法是一種迭代求解的聚類分析演算法,其步驟是,預將數據分為K組,則隨機選取K個對象作為初始的聚類中心,然後計算每個對象與各個種子聚類中心之間的距離,把每個對象分配給距離它最近的聚類中心。

聚類中心以及分配給它們的對象就代表一個聚類。每分配一個樣本,聚類的聚類中心會根據聚類中現有的對象被重新計算。

這個過程將不斷重復直到滿足某個終止條件。終止條件可以是沒有(或最小數目)對象被重新分配給不同的聚類,沒有(或最小數目)聚類中心再發生變化,誤差平方和局部最小。

k均值聚類是最著名的劃分聚類演算法,由於簡潔和效率使得他成為所有聚類演算法中最廣泛使用的。給定一個數據點集合和需要的聚類數目k,k由用戶指定,k均值演算法根據某個距離函數反復把數據分入k個聚類中。

G. kmeans聚類演算法是什麼

K-means演算法是最為經典的基於劃分的聚類方法,是十大經典數據挖掘演算法之一。K-means演算法的基本思想是:以空間中k個點為中心進行聚類,對最靠近他們的對象歸類。通過迭代的方法,逐次更新各聚類中心的值,直至得到最好的聚類結果。

聚類屬於無監督學習,以往的回歸、樸素貝葉斯、SVM等都是有類別標簽y的,也就是說樣例中已經給出了樣例的分類。而聚類的樣本中卻沒有給定y,只有特徵x,比如假設宇宙中的星星可以表示成三維空間中的點集。

(7)k均值聚類演算法擴展閱讀:

k個聚類以便使得所獲得的聚類滿足:同一聚類中的對象相似度較高;而不同聚類中的對象相似度較小。聚類相似度是利用各聚類中對象的均值所獲得一個「中心對象」(引力中心)來進行計算的。

(1)適當選擇c個類的初始中心;

(2)在第k次迭代中,對任意一個樣本,求其到c個中心的距離,將該樣本歸到距離最短的中心所在的類;

(3)利用均值等方法更新該類的中心值;

(4)對於所有的c個聚類中心,如果利用(2)(3)的迭代法更新後,值保持不變,則迭代結束,否則繼續迭代。

閱讀全文

與k均值聚類演算法相關的資料

熱點內容
無法接伺服器是什麼情況 瀏覽:210
壓縮褲的尺寸如何選擇 瀏覽:469
伺服器命令如何下載文件夾下 瀏覽:548
交叉編譯工具的安裝位置 瀏覽:587
linux命令ping本地地址 瀏覽:214
方舟編譯器和超級文件管理 瀏覽:118
81年的程序員 瀏覽:32
技能人才佔比演算法 瀏覽:55
s8文件夾忘記密碼怎麼辦 瀏覽:918
大家的日語中級pdf 瀏覽:438
編譯與運行什麼區別 瀏覽:841
死或生5PS3解壓 瀏覽:244
pdf怎麼刪字 瀏覽:54
買壓縮面膜注意什麼 瀏覽:111
新加坡玩什麼伺服器好 瀏覽:140
加密金融科技發展 瀏覽:565
易學java編譯器 瀏覽:59
克隆usb加密狗 瀏覽:882
動態代理編譯器 瀏覽:65
單片機io口電流放大 瀏覽:656