導航:首頁 > 源碼編譯 > 編程演算法

編程演算法

發布時間:2022-01-19 22:45:15

編程演算法有什麼用

程序=演算法+數據結構 沒有好的演算法,很難寫出優秀的程序!

㈡ 軟體編程經常用的演算法都有哪些

排序演算法 所謂排序,就是使一串記錄,按照其中的某個或某些關鍵字的大小,遞增或遞減的排列起來的操作。
分類
在計算機科學所使用的排序演算法通常被分類為:
計算的復雜度(最差、平均、和最好表現),依據串列(list)的大小(n)。一般而言,好的表現是O。(n log n),且壞的行為是Ω(n2)。對於一個排序理想的表現是O(n)。僅使用一個抽象關鍵比較運算的排序演算法總平均上總是至少需要Ω(n log n)。
記憶體使用量(以及其他電腦資源的使用)
穩定度:穩定排序演算法會依照相等的關鍵(換言之就是值)維持紀錄的相對次序。也就是一個排序演算法是穩定的,就是當有兩個有相等關鍵的紀錄R和S,且在原本的串列中R出現在S之前,在排序過的串列中R也將會是在S之前。
一般的方法:插入、交換、選擇、合並等等。交換排序包含冒泡排序(bubble sort)和快速排序(quicksort)。選擇排序包含shaker排序和堆排序(heapsort)。
當相等的元素是無法分辨的,比如像是整數,穩定度並不是一個問題。然而,假設以下的數對將要以他們的第一個數字來排序。
(4, 1) (3, 1) (3, 7) (5, 6)
在這個狀況下,有可能產生兩種不同的結果,一個是依照相等的鍵值維持相對的次序,而另外一個則沒有:
(3, 1) (3, 7) (4, 1) (5, 6) (維持次序)
(3, 7) (3, 1) (4, 1) (5, 6) (次序被改變)
不穩定排序演算法可能會在相等的鍵值中改變紀錄的相對次序,但是穩定排序演算法從來不會如此。不穩定排序演算法可以被特別地時作為穩定。作這件事情的一個方式是人工擴充鍵值的比較,如此在其他方面相同鍵值的兩個物件間之比較,就會被決定使用在原先資料次序中的條目,當作一個同分決賽。然而,要記住這種次序通常牽涉到額外的空間負擔。
排列演算法列表
在這個表格中,n是要被排序的紀錄數量以及k是不同鍵值的數量。
穩定的
冒泡排序(bubble sort) — O(n2)
雞尾酒排序 (Cocktail sort, 雙向的冒泡排序) — O(n2)
插入排序 (insertion sort)— O(n2)
桶排序 (bucket sort)— O(n); 需要 O(k) 額外 記憶體
計數排序 (counting sort) — O(n+k); 需要 O(n+k) 額外 記憶體
歸並排序 (merge sort)— O(n log n); 需要 O(n) 額外記憶體
原地歸並排序 — O(n2)
二叉樹排序 (Binary tree sort) — O(n log n); 需要 O(n) 額外記憶體
鴿巢排序 (Pigeonhole sort) — O(n+k); 需要 O(k) 額外記憶體
基數排序 (radix sort)— O(n·k); 需要 O(n) 額外記憶體
Gnome sort — O(n2)
Library sort — O(n log n) with high probability, 需要 (1+ε)n 額外記憶體
不穩定
選擇排序 (selection sort)— O(n2)
希爾排序 (shell sort)— O(n log n) 如果使用最佳的現在版本
Comb sort — O(n log n)
堆排序 (heapsort)— O(n log n)
Smoothsort — O(n log n)
快速排序 (quicksort)— O(n log n) 期望時間, O(n2) 最壞情況; 對於大的、亂數串列一般相信是最快的已知排序
Introsort — O(n log n)
Patience sorting — O(n log n + k) 最外情況時間, 需要 額外的 O(n + k) 空間, 也需要找到最長的遞增子序列(longest increasing subsequence)
不實用的排序演算法
Bogo排序 — O(n × n!) 期望時間, 無窮的最壞情況。
Stupid sort — O(n3); 遞回版本需要 O(n2) 額外記憶體
Bead sort — O(n) or O(√n), 但需要特別的硬體
Pancake sorting — O(n), 但需要特別的硬體
排序的演算法
排序的演算法有很多,對空間的要求及其時間效率也不盡相同。下面列出了一些常見的排序演算法。這裡面插入排序和冒泡排序又被稱作簡單排序,他們對空間的要求不高,但是時間效率卻不穩定;而後面三種排序相對於簡單排序對空間的要求稍高一點,但時間效率卻能穩定在很高的水平。基數排序是針對關鍵字在一個較小范圍內的排序演算法。
插入排序
冒泡排序
選擇排序
快速排序
堆排序
歸並排序
基數排序
希爾排序
插入排序
插入排序是這樣實現的:
首先新建一個空列表,用於保存已排序的有序數列(我們稱之為"有序列表")。
從原數列中取出一個數,將其插入"有序列表"中,使其仍舊保持有序狀態。
重復2號步驟,直至原數列為空。
插入排序的平均時間復雜度為平方級的,效率不高,但是容易實現。它藉助了"逐步擴大成果"的思想,使有序列表的長度逐漸增加,直至其長度等於原列表的長度。
冒泡排序
冒泡排序是這樣實現的:
首先將所有待排序的數字放入工作列表中。
從列表的第一個數字到倒數第二個數字,逐個檢查:若某一位上的數字大於他的下一位,則將它與它的下一位交換。
重復2號步驟,直至再也不能交換。
冒泡排序的平均時間復雜度與插入排序相同,也是平方級的,但也是非常容易實現的演算法。
選擇排序
選擇排序是這樣實現的:
設數組內存放了n個待排數字,數組下標從1開始,到n結束。
i=1
從數組的第i個元素開始到第n個元素,尋找最小的元素。
將上一步找到的最小元素和第i位元素交換。
如果i=n-1演算法結束,否則回到第3步
選擇排序的平均時間復雜度也是O(n²)的。
快速排序
現在開始,我們要接觸高效排序演算法了。實踐證明,快速排序是所有排序演算法中最高效的一種。它採用了分治的思想:先保證列表的前半部分都小於後半部分,然後分別對前半部分和後半部分排序,這樣整個列表就有序了。這是一種先進的思想,也是它高效的原因。因為在排序演算法中,演算法的高效與否與列表中數字間的比較次數有直接的關系,而"保證列表的前半部分都小於後半部分"就使得前半部分的任何一個數從此以後都不再跟後半部分的數進行比較了,大大減少了數字間不必要的比較。但查找數據得另當別論了。
堆排序
堆排序與前面的演算法都不同,它是這樣的:
首先新建一個空列表,作用與插入排序中的"有序列表"相同。
找到數列中最大的數字,將其加在"有序列表"的末尾,並將其從原數列中刪除。
重復2號步驟,直至原數列為空。
堆排序的平均時間復雜度為nlogn,效率高(因為有堆這種數據結構以及它奇妙的特徵,使得"找到數列中最大的數字"這樣的操作只需要O(1)的時間復雜度,維護需要logn的時間復雜度),但是實現相對復雜(可以說是這里7種演算法中比較難實現的)。
看起來似乎堆排序與插入排序有些相像,但他們其實是本質不同的演算法。至少,他們的時間復雜度差了一個數量級,一個是平方級的,一個是對數級的。
平均時間復雜度
插入排序 O(n2)
冒泡排序 O(n2)
選擇排序 O(n2)
快速排序 O(n log n)
堆排序 O(n log n)
歸並排序 O(n log n)
基數排序 O(n)
希爾排序 O(n1.25)
冒泡排序
654
比如說這個,我想讓它從小到大排序,怎麼做呢?
第一步:6跟5比,發現比它大,則交換。564
第二步:5跟4比,發現比它大,則交換。465
第三步:6跟5比,發現比它大,則交換。456

㈢ 編程 演算法

演算法,自己想就可以了,不過還是有一些經典的演算法的.

㈣ 計算機編程常用演算法有哪些

貪心演算法,蟻群演算法,遺傳演算法,進化演算法,基於文化的遺傳演算法,禁忌演算法,蒙特卡洛演算法,混沌隨機演算法,序貫數論演算法,粒子群演算法,模擬退火演算法。

模擬退火+遺傳演算法混合編程例子:
http://..com/question/43266691.html
自適應序貫數論演算法例子:
http://..com/question/60173220.html

㈤ 計算機編程的演算法是什麼意思

演算法,對應的英文單詞是algorithm,這是一個很古老的概念,最早來自數學領域,是用於解決某一類問題的公式和思想。

計算機科學領域的演算法,本質是一系列程序指令,用於解答特定的運算和邏輯問題。一般運用時間復雜度和空間復雜度來衡量演算法好壞。

學習演算法,不需要死記硬背那些冗長復雜的背景知識、底層原理、指令語法,需要做的事零五演算法思想、理解演算法對內存空間和性能的影響,以及開動腦筋去尋求解決問題的最佳方案。

數據結構是演算法的基石,是數據的組織、管理和存儲的格式,其目的是為了高效地訪問和修改數據。數據結構的組成方式有:線性結構、樹、圖等。有了數據結構這個舞台,演算法才可以盡情舞蹈,所以在學習演算法之前最好先系統學習數據結構。在解決問題時,不同的演算法會選用不同的數據結構。例如排序演算法中的堆排序,利用的就是二叉堆這樣一種數據結構。

㈥ 如何學習編程演算法

演算法和數學沒那麼大關系的。你去看專門的演算法書去了解一下,這個要根據樓主你的變成語言基礎了。樓主學過C或者C++沒?

㈦ 學編程,什麼叫演算法 為什麼很多人說演算法很難

其實說白了,演算法就是解決某種問題的方式,但也分好的演算法和差的演算法,而學習書本上的知識目的就是為了提升自己的思維方式,借鑒更多好的演算法,因為好的演算法可以提升程序的性能,提高開發效率,就拿最簡單的例子,玩猜數字游戲,1-100裡面隨便選一個數字,然後讓你去猜它是多少,別人會告訴你這個數字大了還是小了,最直接的方式就是從1一直猜到100,但是也有更簡便的方式:就是類似二分法的方式從50開始猜,如果大了就猜1-50中的25,如果小了猜50-100中的75,以此類推,第一種從1-100猜數字是演算法,第二種二分法的方式也是演算法,只是第二種更好.........還有從1加到100,直接方式1+2+3....一個一個的加,另一種方式(1+100)*50,這個就是著名的高斯演算法。

㈧ 請問演算法和編程的區別,最好能舉例

解決一個問題,有不同的解決方法。
這就是演算法。
比如:1 + 2 + 。。。100 = 5050。
顯然,有不同的演算法。

編程,是跟著演算法來的。
當然,同樣的演算法,也能寫出不同的程序結構。
這就是經驗的問題了。

㈨ 編程中的演算法是指什麼

這么給你說吧..有3箱蘋果 一箱2個 求有多少個蘋果..
那麼則有演算法1 3*2
則有演算法2 2+2+2
甚至還可以有演算法3..根據不同人的邏輯思維 有不同的演算法..

閱讀全文

與編程演算法相關的資料

熱點內容
書痴app怎麼下載 瀏覽:186
mc伺服器炸了什麼意思 瀏覽:102
如何打開隔空傳送安卓手機 瀏覽:604
php圖片轉視頻 瀏覽:770
cad中圓角命令怎樣連接 瀏覽:649
伺服器如何組建raid5 瀏覽:982
莫奈pdf 瀏覽:639
手機戰神夜襲文件夾 瀏覽:831
如果appstore被刪了怎麼辦 瀏覽:288
電腦報2017pdf 瀏覽:268
思考快與慢pdf下載 瀏覽:696
ins命令只能插入一條記錄嗎 瀏覽:548
spss如何連接本地伺服器 瀏覽:624
植發稀少加密多少錢一根 瀏覽:692
無法接伺服器是什麼情況 瀏覽:212
壓縮褲的尺寸如何選擇 瀏覽:471
伺服器命令如何下載文件夾下 瀏覽:550
交叉編譯工具的安裝位置 瀏覽:587
linux命令ping本地地址 瀏覽:214
方舟編譯器和超級文件管理 瀏覽:118