導航:首頁 > 文檔加密 > rsa加密全稱

rsa加密全稱

發布時間:2022-06-24 23:43:06

⑴ RSA是哪個國家的簡稱

RSA是南非的簡稱。南非的全稱是The Republic of South Africa,簡稱RSA。

南非共和國,簡稱「南非」。地處南半球,有「彩虹之國」之美譽,位於非洲大陸的最南端,陸地面積為1219090平方公里,其東、南、西三面被印度洋和大西洋環抱,陸地上與納米比亞、波札那、賴索托、辛巴威、莫三比克和史瓦濟蘭接壤。

南非擁有三個首都:行政首都(中央政府所在地)為茨瓦內,立法首都(議會所在地)為開普敦,司法首都(最高法院所在地)為布隆方丹。



(1)rsa加密全稱擴展閱讀:

南非的經濟

南非是非洲第二大經濟體,人均生活水平在非洲名列前茅,工業體系是非洲最完善的,深井采礦技術是位居世界前列,礦產是南非經濟主要來源。

南非屬於中等收入的發展中國家,也是非洲經濟最發達的國家之一。自然資源十分豐富。金融、法律體系比較完善,通訊、交通、能源等基礎設施良好。礦業、製造業、農業和服務業均較發達,是經濟四大支柱,深井采礦等技術居於世界領先地位。

但國民經濟各部門、地區發展不平衡,城鄉、黑白二元經濟特徵明顯。上世紀80年代初至90年代初受國際制裁影響,經濟出現衰退。新南非政府制定了「重建與發展計劃」,強調提高黑人社會、經濟地位。



⑵ 高分求java的RSA 和IDEA 加密解密演算法

RSA演算法非常簡單,概述如下:
找兩素數p和q
取n=p*q
取t=(p-1)*(q-1)
取任何一個數e,要求滿足e<t並且e與t互素(就是最大公因數為1)
取d*e%t==1

這樣最終得到三個數: n d e

設消息為數M (M <n)
設c=(M**d)%n就得到了加密後的消息c
設m=(c**e)%n則 m == M,從而完成對c的解密。
註:**表示次方,上面兩式中的d和e可以互換。

在對稱加密中:
n d兩個數構成公鑰,可以告訴別人;
n e兩個數構成私鑰,e自己保留,不讓任何人知道。
給別人發送的信息使用e加密,只要別人能用d解開就證明信息是由你發送的,構成了簽名機制。
別人給你發送信息時使用d加密,這樣只有擁有e的你能夠對其解密。

rsa的安全性在於對於一個大數n,沒有有效的方法能夠將其分解
從而在已知n d的情況下無法獲得e;同樣在已知n e的情況下無法
求得d。

<二>實踐

接下來我們來一個實踐,看看實際的操作:
找兩個素數:
p=47
q=59
這樣
n=p*q=2773
t=(p-1)*(q-1)=2668
取e=63,滿足e<t並且e和t互素
用perl簡單窮舉可以獲得滿主 e*d%t ==1的數d:
C:\Temp>perl -e "foreach $i (1..9999){ print($i),last if $i*63%2668==1 }"
847
即d=847

最終我們獲得關鍵的
n=2773
d=847
e=63

取消息M=244我們看看

加密:

c=M**d%n = 244**847%2773
用perl的大數計算來算一下:
C:\Temp>perl -Mbigint -e "print 244**847%2773"
465
即用d對M加密後獲得加密信息c=465

解密:

我們可以用e來對加密後的c進行解密,還原M:
m=c**e%n=465**63%2773 :
C:\Temp>perl -Mbigint -e "print 465**63%2773"
244
即用e對c解密後獲得m=244 , 該值和原始信息M相等。

<三>字元串加密

把上面的過程集成一下我們就能實現一個對字元串加密解密的示例了。
每次取字元串中的一個字元的ascii值作為M進行計算,其輸出為加密後16進制
的數的字元串形式,按3位元組表示,如01F

代碼如下:

#!/usr/bin/perl -w
#RSA 計算過程學習程序編寫的測試程序
#watercloud 2003-8-12
#
use strict;
use Math::BigInt;

my %RSA_CORE = (n=>2773,e=>63,d=>847); #p=47,q=59

my $N=new Math::BigInt($RSA_CORE{n});
my $E=new Math::BigInt($RSA_CORE{e});
my $D=new Math::BigInt($RSA_CORE{d});

print "N=$N D=$D E=$E\n";

sub RSA_ENCRYPT
{
my $r_mess = shift @_;
my ($c,$i,$M,$C,$cmess);

for($i=0;$i < length($$r_mess);$i++)
{
$c=ord(substr($$r_mess,$i,1));
$M=Math::BigInt->new($c);
$C=$M->(); $C->bmodpow($D,$N);
$c=sprintf "%03X",$C;
$cmess.=$c;
}
return \$cmess;
}

sub RSA_DECRYPT
{
my $r_mess = shift @_;
my ($c,$i,$M,$C,$dmess);

for($i=0;$i < length($$r_mess);$i+=3)
{
$c=substr($$r_mess,$i,3);
$c=hex($c);
$M=Math::BigInt->new($c);
$C=$M->(); $C->bmodpow($E,$N);
$c=chr($C);
$dmess.=$c;
}
return \$dmess;
}

my $mess="RSA 娃哈哈哈~~~";
$mess=$ARGV[0] if @ARGV >= 1;
print "原始串:",$mess,"\n";

my $r_cmess = RSA_ENCRYPT(\$mess);
print "加密串:",$$r_cmess,"\n";

my $r_dmess = RSA_DECRYPT($r_cmess);
print "解密串:",$$r_dmess,"\n";

#EOF

測試一下:
C:\Temp>perl rsa-test.pl
N=2773 D=847 E=63
原始串:RSA 娃哈哈哈~~~
加密串:
解密串:RSA 娃哈哈哈~~~

C:\Temp>perl rsa-test.pl 安全焦點(xfocus)
N=2773 D=847 E=63
原始串:安全焦點(xfocus)
加密串:
解密串:安全焦點(xfocus)

<四>提高

前面已經提到,rsa的安全來源於n足夠大,我們測試中使用的n是非常小的,根本不能保障安全性,
我們可以通過RSAKit、RSATool之類的工具獲得足夠大的N 及D E。
通過工具,我們獲得1024位的N及D E來測試一下:

n=EC3A85F5005D
4C2013433B383B
A50E114705D7E2
BC511951

d=0x10001

e=DD28C523C2995
47B77324E66AFF2
789BD782A592D2B
1965

設原始信息
M=

完成這么大數字的計算依賴於大數運算庫,用perl來運算非常簡單:

A) 用d對M進行加密如下:
c=M**d%n :
C:\Temp>perl -Mbigint -e " $x=Math::BigInt->bmodpow(0x11111111111122222222222233
333333333, 0x10001,
D55EDBC4F0
6E37108DD6
);print $x->as_hex"
b73d2576bd
47715caa6b
d59ea89b91
f1834580c3f6d90898

即用d對M加密後信息為:
c=b73d2576bd
47715caa6b
d59ea89b91
f1834580c3f6d90898

B) 用e對c進行解密如下:

m=c**e%n :
C:\Temp>perl -Mbigint -e " $x=Math::BigInt->bmodpow(0x17b287be418c69ecd7c39227ab
5aa1d99ef3
0cb4764414
, 0xE760A
3C29954C5D
7324E66AFF
2789BD782A
592D2B1965, CD15F90
4F017F9CCF
DD60438941
);print $x->as_hex"

(我的P4 1.6G的機器上計算了約5秒鍾)

得到用e解密後的m= == M

C) RSA通常的實現
RSA簡潔幽雅,但計算速度比較慢,通常加密中並不是直接使用RSA 來對所有的信息進行加密,
最常見的情況是隨機產生一個對稱加密的密鑰,然後使用對稱加密演算法對信息加密,之後用
RSA對剛才的加密密鑰進行加密。

最後需要說明的是,當前小於1024位的N已經被證明是不安全的
自己使用中不要使用小於1024位的RSA,最好使用2048位的。

----------------------------------------------------------

一個簡單的RSA演算法實現JAVA源代碼:

filename:RSA.java

/*
* Created on Mar 3, 2005
*
* TODO To change the template for this generated file go to
* Window - Preferences - Java - Code Style - Code Templates
*/

import java.math.BigInteger;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.FileWriter;
import java.io.FileReader;
import java.io.BufferedReader;
import java.util.StringTokenizer;

/**
* @author Steve
*
* TODO To change the template for this generated type comment go to
* Window - Preferences - Java - Code Style - Code Templates
*/
public class RSA {

/**
* BigInteger.ZERO
*/
private static final BigInteger ZERO = BigInteger.ZERO;

/**
* BigInteger.ONE
*/
private static final BigInteger ONE = BigInteger.ONE;

/**
* Pseudo BigInteger.TWO
*/
private static final BigInteger TWO = new BigInteger("2");

private BigInteger myKey;

private BigInteger myMod;

private int blockSize;

public RSA (BigInteger key, BigInteger n, int b) {
myKey = key;
myMod = n;
blockSize = b;
}

public void encodeFile (String filename) {
byte[] bytes = new byte[blockSize / 8 + 1];
byte[] temp;
int tempLen;
InputStream is = null;
FileWriter writer = null;
try {
is = new FileInputStream(filename);
writer = new FileWriter(filename + ".enc");
}
catch (FileNotFoundException e1){
System.out.println("File not found: " + filename);
}
catch (IOException e1){
System.out.println("File not found: " + filename + ".enc");
}

/**
* Write encoded message to 'filename'.enc
*/
try {
while ((tempLen = is.read(bytes, 1, blockSize / 8)) > 0) {
for (int i = tempLen + 1; i < bytes.length; ++i) {
bytes[i] = 0;
}
writer.write(encodeDecode(new BigInteger(bytes)) + " ");
}
}
catch (IOException e1) {
System.out.println("error writing to file");
}

/**
* Close input stream and file writer
*/
try {
is.close();
writer.close();
}
catch (IOException e1) {
System.out.println("Error closing file.");
}
}

public void decodeFile (String filename) {

FileReader reader = null;
OutputStream os = null;
try {
reader = new FileReader(filename);
os = new FileOutputStream(filename.replaceAll(".enc", ".dec"));
}
catch (FileNotFoundException e1) {
if (reader == null)
System.out.println("File not found: " + filename);
else
System.out.println("File not found: " + filename.replaceAll(".enc", "dec"));
}

BufferedReader br = new BufferedReader(reader);
int offset;
byte[] temp, toFile;
StringTokenizer st = null;
try {
while (br.ready()) {
st = new StringTokenizer(br.readLine());
while (st.hasMoreTokens()){
toFile = encodeDecode(new BigInteger(st.nextToken())).toByteArray();
System.out.println(toFile.length + " x " + (blockSize / 8));

if (toFile[0] == 0 && toFile.length != (blockSize / 8)) {
temp = new byte[blockSize / 8];
offset = temp.length - toFile.length;
for (int i = toFile.length - 1; (i <= 0) && ((i + offset) <= 0); --i) {
temp[i + offset] = toFile[i];
}
toFile = temp;
}

/*if (toFile.length != ((blockSize / 8) + 1)){
temp = new byte[(blockSize / 8) + 1];
System.out.println(toFile.length + " x " + temp.length);
for (int i = 1; i < temp.length; i++) {
temp[i] = toFile[i - 1];
}
toFile = temp;
}
else
System.out.println(toFile.length + " " + ((blockSize / 8) + 1));*/
os.write(toFile);
}
}
}
catch (IOException e1) {
System.out.println("Something went wrong");
}

/**
* close data streams
*/
try {
os.close();
reader.close();
}
catch (IOException e1) {
System.out.println("Error closing file.");
}
}

/**
* Performs <tt>base</tt>^<sup><tt>pow</tt></sup> within the molar
* domain of <tt>mod</tt>.
*
* @param base the base to be raised
* @param pow the power to which the base will be raisded
* @param mod the molar domain over which to perform this operation
* @return <tt>base</tt>^<sup><tt>pow</tt></sup> within the molar
* domain of <tt>mod</tt>.
*/
public BigInteger encodeDecode(BigInteger base) {
BigInteger a = ONE;
BigInteger s = base;
BigInteger n = myKey;

while (!n.equals(ZERO)) {
if(!n.mod(TWO).equals(ZERO))
a = a.multiply(s).mod(myMod);

s = s.pow(2).mod(myMod);
n = n.divide(TWO);
}

return a;
}

}

在這里提供兩個版本的RSA演算法JAVA實現的代碼下載:

1. 來自於 http://www.javafr.com/code.aspx?ID=27020 的RSA演算法實現源代碼包:
http://zeal.newmenbase.net/attachment/JavaFR_RSA_Source.rar

2. 來自於 http://www.ferrara.linux.it/Members/lucabariani/RSA/implementazioneRsa/ 的實現:
http://zeal.newmenbase.net/attachment/sorgentiJava.tar.gz - 源代碼包
http://zeal.newmenbase.net/attachment/algoritmoRSA.jar - 編譯好的jar包

另外關於RSA演算法的php實現請參見文章:
php下的RSA演算法實現

關於使用VB實現RSA演算法的源代碼下載(此程序採用了psc1演算法來實現快速的RSA加密):
http://zeal.newmenbase.net/attachment/vb_PSC1_RSA.rar

RSA加密的JavaScript實現: http://www.ohdave.com/rsa/

⑶ 簡述DES演算法和RSA演算法的基本思想

DES演算法全稱為Data Encryption Standard,即數據加密演算法,它是IBM公司於1975年研究成功並公開發表的。DES演算法的入口參數有三個:Key、Data、Mode。其中Key為8個位元組共64位,是DES演算法的工作密鑰;Data也為8個位元組64位,是要被加密或被解密的數據;Mode為DES的工作方式,有兩種:加密或解密。
DES演算法把64位的明文輸入塊變為64位的密文輸出塊,它所使用的密鑰也是64位,其演算法主要分為兩步:
1�初始置換
其功能是把輸入的64位數據塊按位重新組合,並把輸出分為L0、R0兩部分,每部分各長3 2位,其置換規則為將輸入的第58位換到第一位,第50位換到第2位……依此類推,最後一位是原來的第7位。L0、R0則是換位輸出後的兩部分,L0是輸出的左32位,R0是右32位,例:設置換前的輸入值為D1D2D3……D64,則經過初始置換後的結果為:L0=D58D50……D8;R0=D57D49……D7。
2�逆置換
經過16次迭代運算後,得到L16、R16,將此作為輸入,進行逆置換,逆置換正好是初始置換的逆運算,由此即得到密文輸出。

RSA演算法簡介
這種演算法1978年就出現了,它是第一個既能用於數據加密也能用於數字簽名的演算法。它易於理解和操作,也很流行。演算法的名字以發明者的名字命名:Ron Rivest, AdiShamir 和Leonard Adleman。但RSA的安全性一直未能得到理論上的證明。

RSA的安全性依賴於大數分解。公鑰和私鑰都是兩個大素數( 大於 100個十進制位)的函數。據猜測,從一個密鑰和密文推斷出明文的難度等同於分解兩個大素數的積。

密鑰對的產生。選擇兩個大素數,p 和q 。計算:

n = p * q

然後隨機選擇加密密鑰e,要求 e 和 ( p - 1 ) * ( q - 1 ) 互質。最後,利用Euclid 演算法計算解密密鑰d, 滿足

e * d = 1 ( mod ( p - 1 ) * ( q - 1 ) )

其中n和d也要互質。數e和n是公鑰,d是私鑰。兩個素數p和q不再需要,應該丟棄,不要讓任何人知道。

加密信息 m(二進製表示)時,首先把m分成等長數據塊 m1 ,m2,..., mi ,塊長s,其中 2^s <= n, s 盡可能的大。對應的密文是:

ci = mi^e ( mod n ) ( a )

解密時作如下計算:

mi = ci^d ( mod n ) ( b )

RSA 可用於數字簽名,方案是用 ( a ) 式簽名, ( b )式驗證。具體操作時考慮到安全性和 m信息量較大等因素,一般是先作 HASH 運算。

RSA 的安全性。

RSA的安全性依賴於大數分解,但是否等同於大數分解一直未能得到理論上的證明,因為沒有證明破解RSA就一定需要作大數分解。假設存在一種無須分解大數的演算法,那它肯定可以修改成為大數分解演算法。目前, RSA的一些變種演算法已被證明等價於大數分解。不管怎樣,分解n是最顯然的攻擊方法。現在,人們已能分解140多個十進制位的大素數。因此,模數n必須選大一些,因具體適用情況而定。

RSA的速度。

由於進行的都是大數計算,使得RSA最快的情況也比DES慢上100倍,無論是軟體還是硬體實現。速度一直是RSA的缺陷。一般來說只用於少量數據加密。

RSA的選擇密文攻擊。

RSA在選擇密文攻擊面前很脆弱。一般攻擊者是將某一信息作一下偽裝(Blind),讓擁有私鑰的實體簽署。然後,經過計算就可得到它所想要的信息。實際上,攻擊利用的都是同一個弱點,即存在這樣一個事實:乘冪保留了輸入的乘法結構:

( XM )^d = X^d *M^d mod n

前面已經提到,這個固有的問題來自於公鑰密碼系統的最有用的特徵--每個人都能使用公鑰。但從演算法上無法解決這一問題,主要措施有兩條:一條是採用好的公鑰協議,保證工作過程中實體不對其他實體任意產生的信息解密,不對自己一無所知的信息簽名;另一條是決不對陌生人送來的隨機文檔簽名,簽名時首先使用One-Way Hash Function對文檔作HASH處理,或同時使用不同的簽名演算法。在中提到了幾種不同類型的攻擊方法。

RSA的公共模數攻擊。

若系統中共有一個模數,只是不同的人擁有不同的e和d,系統將是危險的。最普遍的情況是同一信息用不同的公鑰加密,這些公鑰共模而且互質,那末該信息無需私鑰就可得到恢復。設P為信息明文,兩個加密密鑰為e1和e2,公共模數是n,則:

C1 = P^e1 mod n

C2 = P^e2 mod n

密碼分析者知道n、e1、e2、C1和C2,就能得到P。

因為e1和e2互質,故用Euclidean演算法能找到r和s,滿足:

r * e1 + s * e2 = 1

假設r為負數,需再用Euclidean演算法計算C1^(-1),則

( C1^(-1) )^(-r) * C2^s = P mod n

另外,還有其它幾種利用公共模數攻擊的方法。總之,如果知道給定模數的一對e和d,一是有利於攻擊者分解模數,一是有利於攻擊者計算出其它成對的e』和d』,而無需分解模數。解決辦法只有一個,那就是不要共享模數n。

RSA的小指數攻擊。 有一種提高RSA速度的建議是使公鑰e取較小的值,這樣會使加密變得易於實現,速度有所提高。但這樣作是不安全的,對付辦法就是e和d都取較大的值。

RSA演算法是第一個能同時用於加密和數字簽名的演算法,也易於理解和操作。 RSA是被研究得最廣泛的公鑰演算法,從提出到現在已近二十年,經歷了各種攻擊的考驗,逐漸為人們接受,普遍認為是目前最優秀的公鑰方案之一。RSA的安全性依賴於大數的因子分解,但並沒有從理論上證明破譯RSA的難度與大數分解難度等價。即RSA的重大缺陷是無法從理論上把握它的保密性能如何,而且密碼學界多數人士傾向於因子分解不是NPC問題。RSA的缺點主要有:A)產生密鑰很麻煩,受到素數產生技術的限制,因而難以做到一次一密。B)分組長度太大,為保證安全性,n 至少也要 600 bits以上,使運算代價很高,尤其是速度較慢,較對稱密碼演算法慢幾個數量級;且隨著大數分解技術的發展,這個長度還在增加,不利於數據格式的標准化。目前,SET(Secure Electronic Transaction)協議中要求CA採用2048比特長的密鑰,其他實體使用1024比特的密鑰。

⑷ 手機RSA是什麼

MTK是台灣聯發科技多媒體晶元提供商的簡稱,全稱叫MediaTek。公司早期主要生產以DVD,CDROM等存儲器的IC晶元聞名。在2000年後,聯發科在手機方面也推出了一系列的IC晶元,目前其已經成為世界十大IC晶片設計廠商之一。

⑸ 什麼是SSL加密,什麼是TLS加密

SSL加密是Netscape公司所提出的安全保密協議,在瀏覽器和Web伺服器之間構造安全通道來進行數據傳輸,SSL運行在TCP/IP層之上、應用層之下,為應用程序提供加密數據通道,它採用了RC4、MD5以及RSA等加密演算法,使用40 位的密鑰,適用於商業信息的加密。

TLS是安全傳輸層協議。安全傳輸層協議(TLS)用於在兩個通信應用程序之間提供保密性和數據完整性。該協議由兩層組成: TLS 記錄協議(TLS Record)和 TLS 握手協議(TLS Handshake)。較低的層為 TLS 記錄協議,位於某個可靠的傳輸協議上面。

(5)rsa加密全稱擴展閱讀:

SSL加密並不保護數據中心本身,而是確保了SSL加密設備的數據中心安全,可以監控企業中來往於數據中心的最終用戶流量。

從某個角度來看,數據中心管理員可以放心將加密裝置放在某個地方,需要使用時再進行應用,數據中心應該會有更合理的方法來應對利用SSL的惡意攻擊,需要找到SSL加密應用的最佳實踐。

TLS協議是可選的,必須配置客戶端和伺服器才能使用。主要有兩種方式實現這一目標:一個是使用統一的TLS協議通信埠(例如:用於HTTPS的埠443)。另一個是客戶端請求伺服器連接到TLS時使用特定的協議機制(例如:郵件、新聞協議和STARTTLS)。

一旦客戶端和伺服器都同意使用TLS協議,他們通過使用一個握手過程協商出一個有狀態的連接以傳輸數據。通過握手,客戶端和伺服器協商各種參數用於創建安全連接。

參考資料來源:網路-SSL加密技術

參考資料來源:網路-TLS

⑹ DES RSA PGP的異同 電子商務用哪種方式多一些

DES演算法全稱為Data Encryption Standard,即數據加密演算法。RSA演算法基於一個十分簡單的數論事實:將兩個大素數相乘十分容易,但是想要對其乘積進行因式分解卻極其困難,因此可以將乘積公開作為加密密鑰。PGP(Pretty Good Privacy),是一個基於RSA公鑰加密體系的郵件加密軟體。,電子商務用第一種比較多,因為是數據加密演算法,能夠在很大程度上保護數據安全。

⑺ DES與RSA的比較

DES演算法全稱為Data Encryption Standard,即數據加密演算法,它是IBM公司於1975年研究成功並公開發表的。DES演算法的入口參數有三個:Key、Data、Mode。其中Key為8個位元組共64位,是DES演算法的工作密鑰;Data也為8個位元組64位,是要被加密或被解密的數據;Mode為DES的工作方式,有兩種:加密或解密。 DES演算法把64位的明文輸入塊變為64位的密文輸出塊,它所使用的密鑰也是64位,其演算法主要分為兩步: 1�初始置換 其功能是把輸入的64位數據塊按位重新組合,並把輸出分為L0、R0兩部分,每部分各長3 2位,其置換規則為將輸入的第58位換到第一位,第50位換到第2位……依此類推,最後一位是原來的第7位。L0、R0則是換位輸出後的兩部分,L0是輸出的左32位,R0是右32位,例:設置換前的輸入值為D1D2D3……D64,則經過初始置換後的結果為:L0=D58D50……D8;R0=D57D49……D7。 2�逆置換 經過16次迭代運算後,得到L16、R16,將此作為輸入,進行逆置換,逆置換正好是初始置換的逆運算,由此即得到密文輸出。 RSA演算法簡介 這種演算法1978年就出現了,它是第一個既能用於數據加密也能用於數字簽名的演算法。它易於理解和操作,也很流行。演算法的名字以發明者的名字命名:Ron Rivest, AdiShamir 和Leonard Adleman。但RSA的安全性一直未能得到理論上的證明。 RSA的安全性依賴於大數分解。公鑰和私鑰都是兩個大素數( 大於 100個十進制位)的函數。據猜測,從一個密鑰和密文推斷出明文的難度等同於分解兩個大素數的積。 密鑰對的產生。選擇兩個大素數,p 和q 。計算: n = p * q 然後隨機選擇加密密鑰e,要求 e 和 ( p - 1 ) * ( q - 1 ) 互質。最後,利用Euclid 演算法計算解密密鑰d, 滿足 e * d = 1 ( mod ( p - 1 ) * ( q - 1 ) ) 其中n和d也要互質。數e和n是公鑰,d是私鑰。兩個素數p和q不再需要,應該丟棄,不要讓任何人知道。 加密信息 m(二進製表示)時,首先把m分成等長數據塊 m1 ,m2,..., mi ,塊長s,其中 2^s <= n, s 盡可能的大。對應的密文是: ci = mi^e ( mod n ) ( a ) 解密時作如下計算: mi = ci^d ( mod n ) ( b ) RSA 可用於數字簽名,方案是用 ( a ) 式簽名, ( b )式驗證。具體操作時考慮到安全性和 m信息量較大等因素,一般是先作 HASH 運算。 RSA 的安全性。 RSA的安全性依賴於大數分解,但是否等同於大數分解一直未能得到理論上的證明,因為沒有證明破解RSA就一定需要作大數分解。假設存在一種無須分解大數的演算法,那它肯定可以修改成為大數分解演算法。目前, RSA的一些變種演算法已被證明等價於大數分解。不管怎樣,分解n是最顯然的攻擊方法。現在,人們已能分解140多個十進制位的大素數。因此,模數n必須選大一些,因具體適用情況而定。 RSA的速度。 由於進行的都是大數計算,使得RSA最快的情況也比DES慢上100倍,無論是軟體還是硬體實現。速度一直是RSA的缺陷。一般來說只用於少量數據加密。 RSA的選擇密文攻擊。 RSA在選擇密文攻擊面前很脆弱。一般攻擊者是將某一信息作一下偽裝(Blind),讓擁有私鑰的實體簽署。然後,經過計算就可得到它所想要的信息。實際上,攻擊利用的都是同一個弱點,即存在這樣一個事實:乘冪保留了輸入的乘法結構: ( XM )^d = X^d *M^d mod n 前面已經提到,這個固有的問題來自於公鑰密碼系統的最有用的特徵--每個人都能使用公鑰。但從演算法上無法解決這一問題,主要措施有兩條:一條是採用好的公鑰協議,保證工作過程中實體不對其他實體任意產生的信息解密,不對自己一無所知的信息簽名;另一條是決不對陌生人送來的隨機文檔簽名,簽名時首先使用One-Way Hash Function對文檔作HASH處理,或同時使用不同的簽名演算法。在中提到了幾種不同類型的攻擊方法

⑻ DES演算法和RSA演算法的區別

DES演算法全稱為Data Encryption Standard,即數據加密演算法,它是IBM公司於1975年研究成功並公開發表的。DES演算法的入口參數有三個:Key、Data、Mode。其中Key為8個位元組共64位,是DES演算法的工作密鑰;Data也為8個位元組64位,是要被加密或被解密的數據;Mode為DES的工作方式,有兩種:加密或解密。 DES演算法把64位的明文輸入塊變為64位的密文輸出塊,它所使用的密鑰也是64位,其演算法主要分為兩步: 1初始置換 其功能是把輸入的64位數據塊按位重新組合,並把輸出分為L0、R0兩部分,每部分各長3 2位,其置換規則為將輸入的第58位換到第一位,第50位換到第2位……依此類推,最後一位是原來的第7位。L0、R0則是換位輸出後的兩部分,L0是輸出的左32位,R0是右32位,例:設置換前的輸入值為D1D2D3……D64,則經過初始置換後的結果為:L0=D58D50……D8;R0=D57D49……D7。 2逆置換 經過16次迭代運算後,得到L16、R16,將此作為輸入,進行逆置換,逆置換正好是初始置換的逆運算,由此即得到密文輸出。 RSA演算法簡介 這種演算法1978年就出現了,它是第一個既能用於數據加密也能用於數字簽名的演算法。它易於理解和操作,也很流行。演算法的名字以發明者的名字命名:Ron Rivest, AdiShamir 和Leonard Adleman。但RSA的安全性一直未能得到理論上的證明。 RSA的安全性依賴於大數分解。公鑰和私鑰都是兩個大素數( 大於 100個十進制位)的函數。據猜測,從一個密鑰和密文推斷出明文的難度等同於分解兩個大素數的積。 密鑰對的產生。選擇兩個大素數,p 和q 。計算: n = p * q 然後隨機選擇加密密鑰e,要求 e 和 ( p - 1 ) * ( q - 1 ) 互質。最後,利用Euclid 演算法計算解密密鑰d, 滿足 e * d = 1 ( mod ( p - 1 ) * ( q - 1 ) ) 其中n和d也要互質。數e和n是公鑰,d是私鑰。兩個素數p和q不再需要,應該丟棄,不要讓任何人知道。 加密信息 m(二進製表示)時,首先把m分成等長數據塊 m1 ,m2,..., mi ,塊長s,其中 2^s <= n, s 盡可能的大。對應的密文是: ci = mi^e ( mod n ) ( a ) 解密時作如下計算: mi = ci^d ( mod n ) ( b ) RSA 可用於數字簽名,方案是用 ( a ) 式簽名, ( b )式驗證。具體操作時考慮到安全性和 m信息量較大等因素,一般是先作 HASH 運算。 RSA 的安全性。 RSA的安全性依賴於大數分解,但是否等同於大數分解一直未能得到理論上的證明,因為沒有證明破解RSA就一定需要作大數分解。假設存在一種無須分解大數的演算法,那它肯定可以修改成為大數分解演算法。目前, RSA的一些變種演算法已被證明等價於大數分解。不管怎樣,分解n是最顯然的攻擊方法。現在,人們已能分解140多個十進制位的大素數。因此,模數n必須選大一些,因具體適用情況而定。 RSA的速度。 由於進行的都是大數計算,使得RSA最快的情況也比DES慢上100倍,無論是軟體還是硬體實現。速度一直是RSA的缺陷。一般來說只用於少量數據加密。 RSA的選擇密文攻擊。 RSA在選擇密文攻擊面前很脆弱。一般攻擊者是將某一信息作一下偽裝(Blind),讓擁有私鑰的實體簽署。然後,經過計算就可得到它所想要的信息。實際上,攻擊利用的都是同一個弱點,即存在這樣一個事實:乘冪保留了輸入的乘法結構: ( XM )^d = X^d *M^d mod n 前面已經提到,這個固有的問題來自於公鑰密碼系統的最有用的特徵--每個人都能使用公鑰。但從演算法上無法解決這一問題,主要措施有兩條:一條是採用好的公鑰協議,保證工作過程中實體不對其他實體任意產生的信息解密,不對自己一無所知的信息簽名;另一條是決不對陌生人送來的隨機文檔簽名,簽名時首先使用One-Way Hash Function對文檔作HASH處理,或同時使用不同的簽名演算法。在中提到了幾種不同類型的攻擊方法。 RSA的公共模數攻擊。 若系統中共有一個模數,只是不同的人擁有不同的e和d,系統將是危險的。最普遍的情況是同一信息用不同的公鑰加密,這些公鑰共模而且互質,那末該信息無需私鑰就可得到恢復。設P為信息明文,兩個加密密鑰為e1和e2,公共模數是n,則: C1 = P^e1 mod n C2 = P^e2 mod n 密碼分析者知道n、e1、e2、C1和C2,就能得到P。 因為e1和e2互質,故用Euclidean演算法能找到r和s,滿足: r * e1 + s * e2 = 1 假設r為負數,需再用Euclidean演算法計算C1^(-1),則 ( C1^(-1) )^(-r) * C2^s = P mod n 另外,還有其它幾種利用公共模數攻擊的方法。總之,如果知道給定模數的一對e和d,一是有利於攻擊者分解模數,一是有利於攻擊者計算出其它成對的e』和d』,而無需分解模數。解決辦法只有一個,那就是不要共享模數n。 RSA的小指數攻擊。 有一種提高RSA速度的建議是使公鑰e取較小的值,這樣會使加密變得易於實現,速度有所提高。但這樣作是不安全的,對付辦法就是e和d都取較大的值。 RSA演算法是第一個能同時用於加密和數字簽名的演算法,也易於理解和操作。 RSA是被研究得最廣泛的公鑰演算法,從提出到現在已近二十年,經歷了各種攻擊的考驗,逐漸為人們接受,普遍認為是目前最優秀的公鑰方案之一。RSA的安全性依賴於大數的因子分解,但並沒有從理論上證明破譯RSA的難度與大數分解難度等價。即RSA的重大缺陷是無法從理論上把握它的保密性能如何,而且密碼學界多數人士傾向於因子分解不是NPC問題。RSA的缺點主要有:A)產生密鑰很麻煩,受到素數產生技術的限制,因而難以做到一次一密。B)分組長度太大,為保證安全性,n 至少也要 600 bits以上,使運算代價很高,尤其是速度較慢,較對稱密碼演算法慢幾個數量級;且隨著大數分解技術的發展,這個長度還在增加,不利於數據格式的標准化。目前,SET(Secure Electronic Transaction)協議中要求CA採用2048比特長的密鑰,其他實體使用1024比特的密鑰。參考資料: http://www.radyinfo.com/KNOWLEDGE/RSA.HTM

閱讀全文

與rsa加密全稱相關的資料

熱點內容
安卓系統下的軟體怎麼移到桌面 瀏覽:78
windows拷貝到linux 瀏覽:752
mdr軟體解壓和別人不一樣 瀏覽:886
單片機串列通信有什麼好處 瀏覽:321
游戲開發程序員書籍 瀏覽:844
pdf中圖片修改 瀏覽:271
匯編編譯後 瀏覽:476
php和java整合 瀏覽:831
js中執行php代碼 瀏覽:444
國產單片機廠商 瀏覽:57
蘋果手機怎麼設置不更新app軟體 瀏覽:287
轉行當程序員如何 瀏覽:496
蘋果id怎麼驗證app 瀏覽:866
查看手機命令 瀏覽:956
抖音反編譯地址 瀏覽:228
如何加密軟體oppoa5 瀏覽:235
java從入門到精通明日科技 瀏覽:98
拆解汽車解壓視頻 瀏覽:600
新版百度雲解壓縮 瀏覽:594
android上下拉刷新 瀏覽:883