導航:首頁 > 文檔加密 > mahout實戰pdf

mahout實戰pdf

發布時間:2022-06-27 01:19:49

A. 大數據培訓課題有哪些

大數據開發工程師課程體系——Java部分。
第一階段:靜態網頁基礎
1、學習Web標准化網頁製作,必備的HTML標記和屬性
2、學習HTML表格、表單的設計與製作
3、學習CSS、豐富HTML網頁的樣式
4、通過CSS布局和定位的學習、讓HTML頁面布局更加美觀
5、復習所有知識、完成項目布置
第二階段:JavaSE+JavaWeb
1、掌握JAVASE基礎語法
2、掌握JAVASE面向對象使用
3、掌握JAVASEAPI常見操作類使用並靈活應用
4、熟練掌握MYSQL資料庫的基本操作,SQL語句
5、熟練使用JDBC完成資料庫的數據操作
6、掌握線程,網路編程,反射基本原理以及使用
7、項目實戰 + 擴充知識:人事管理系統
第三階段:前端UI框架
1、JAVASCRIPT
2、掌握Jquery基本操作和使用
3、掌握註解基本概念和使用
4、掌握版本控制工具使用
5、掌握easyui基本使用
6、項目實戰+擴充知識:項目案例實戰
POI基本使用和通過註解封裝Excel、druid連接池資料庫監聽,日誌Log4j/Slf4j
第四階段:企業級開發框架
1、熟練掌握spring、spring mvc、mybatis/
2、熟悉struts2
3、熟悉Shiro、redis等
4、項目實戰:內容管理系統系統、項目管理平台流程引擎activity,爬蟲技術nutch,lucene,webService CXF、Tomcat集群 熱備 MySQL讀寫分離
以上Java課程共計384課時,合計48天!

大數據開發工程師課程體系——大數據部分
第五階段:大數據前傳
大數據前篇、大數據課程體系、計劃介紹、大數據環境准備&搭建
第六階段:CentOS課程體系
CentOS介紹與安裝部署、CentOS常用管理命令解析、CentOS常用Shell編程命令、CentOS階段作業與實戰訓練
第七階段:Maven課程體系
Maven初識:安裝部署基礎概念、Maven精講:依賴聚合與繼承、Maven私服:搭建管理與應用、Maven應用:案列分析、Maven階段作業與實戰訓練
第八階段:HDFS課程體系
Hdfs入門:為什麼要HDFS與概念、Hdfs深入剖析:內部結構與讀寫原理、Hdfs深入剖析:故障讀寫容錯與備份機制、HdfsHA高可用與Federation聯邦、Hdfs訪問API介面詳解、HDFS實戰訓練、HDFS階段作業與實戰訓練
第九階段:MapRece課程體系
MapRece深入剖析:執行過程詳解、MapRece深入剖析:MR原理解析、MapRece深入剖析:分片混洗詳解、MapRece編程基礎、MapRece編程進階、MapRec階段作業與實戰訓練
第十階段:Yarn課程體系
Yarn原理介紹:框架組件流程調度
第十一階段:Hbase課程體系
Yarn原理介紹:框架組件流程調度、HBase入門:模型坐標結構訪問場景、HBase深入剖析:合並分裂數據定位、Hbase訪問Shell介面、Hbase訪問API介面、HbaseRowkey設計、Hbase實戰訓練
第十二階段:MongoDB課程體系
MongoDB精講:原理概念模型場景、MongoDB精講:安全與用戶管理、MongoDB實戰訓練、MongoDB階段作業與實戰訓練
第十三階段:Redis課程體系
Redis快速入門、Redis配置解析、Redis持久化RDB與AOF、Redis操作解析、Redis分頁與排序、Redis階段作業與實戰訓練
第十四階段:Scala課程體系
Scala入門:介紹環境搭建第1個Scala程序、Scala流程式控制制、異常處理、Scala數據類型、運算符、Scala函數基礎、Scala常規函數、Scala集合類、Scala類、Scala對象、Scala特徵、Scala模式匹配、Scala階段作業與實戰訓練
第十五階段:Kafka課程體系
Kafka初窺門徑:主題分區讀寫原理分布式、Kafka生產&消費API、Kafka階段作業與實戰訓練
第十六階段:Spark課程體系
Spark快速入門、Spark編程模型、Spark深入剖析、Spark深入剖析、SparkSQL簡介、SparkSQL程序開發光速入門、SparkSQL程序開發數據源、SparkSQL程序開DataFrame、SparkSQL程序開發DataSet、SparkSQL程序開發數據類型、SparkStreaming入門、SparkStreaming程序開發如何開始、SparkStreaming程序開發DStream的輸入源、SparkStreaming程序開發Dstream的操作、SparkStreaming程序開發程序開發--性能優化、SparkStreaming程序開發容錯容災、SparkMllib 解析與實戰、SparkGraphX 解析與實戰
第十七階段:Hive課程提體系
體系結構機制場景、HiveDDL操作、HiveDML操作、HiveDQL操作、Hive階段作業與實戰訓練
第十八階段:企業級項目實戰
1、基於美團網的大型離線電商數據分析平台
2、移動基站信號監測大數據
3、大規模設備運維大數據分析挖掘平台
4、基 於互聯網海量數據的輿情大數據平台項目
大數據部分共計學習656課時,合計82天!
0基礎學員估計學習1040課時,150天!

B. 大數據課程都學什麼啊

大數據技術專業屬於交叉學科:以統計學、數學、計算機為三大支撐性學科;生物、醫學、環境科學、經濟學、社會學、管理學為應用拓展性學科。

此外還需學習數據採集、分析、處理軟體,學習數學建模軟體及計算機編程語言等,知識結構是二專多能復合的跨界人才(有專業知識、有數據思維)。

C. Hadoop實戰的作品目錄

第一部分Hadoop——一種分布式編程框架
第1章Hadoop簡介2
1.1為什麼寫《Hadoop 實戰》3
1.2什麼是Hadoop3
1.3了解分布式系統和Hadoop4
1.4比較SQL資料庫和Hadoop5
1.5理解MapRece6
1.5.1動手擴展一個簡單程序7
1.5.2相同程序在MapRece中的擴展9
1.6用Hadoop統計單詞——運行第一個程序11
1.7Hadoop歷史15
1.8小結16
1.9資源16
第2章初識Hadoop17
2.1Hadoop的構造模塊17
2.1.1NameNode17
2.1.2DataNode18
2.1.3Secondary NameNode19
2.1.4JobTracker19
2.1.5TaskTracker19
2.2為Hadoop集群安裝SSH21
2.2.1定義一個公共賬號21
2.2.2驗證SSH安裝21
2.2.3生成SSH密鑰對21
2.2.4將公鑰分布並登錄驗證22
2.3運行Hadoop22
2.3.1本地(單機)模式23
2.3.2偽分布模式24
2.3.3全分布模式25
2.4基於Web的集群用戶界面28
2.5小結30
第3章Hadoop組件31
3.1HDFS文件操作31
3.1.1基本文件命令32
3.1.2編程讀寫HDFS35
3.2剖析MapRece程序37
3.2.1Hadoop數據類型39
3.2.2Mapper40
3.2.3Recer41
3.2.4Partitioner:重定向Mapper輸出41
3.2.5Combiner:本地rece43
3.2.6預定義mapper和Recer類的單詞計數43
3.3讀和寫43
3.3.1InputFormat44
3.3.2OutputFormat49
3.4小結50
第二部分實戰
第4章編寫MapRece基礎程序52
4.1獲得專利數據集52
4.1.1專利引用數據53
4.1.2專利描述數據54
4.2構建MapRece程序的基礎模板55
4.3計數60
4.4適應Hadoop API的改變64
4.5Hadoop的Streaming67
4.5.1通過Unix命令使用Streaming68
4.5.2通過腳本使用Streaming69
4.5.3用Streaming處理鍵/值對72
4.5.4通過Aggregate包使用Streaming75
4.6使用combiner提升性能80
4.7溫故知新83
4.8小結84
4.9更多資源84
第5章高階MapRece85
5.1鏈接MapRece作業85
5.1.1順序鏈接MapRece作業85
5.1.2具有復雜依賴的MapRece鏈接86
5.1.3預處理和後處理階段的鏈接86
5.2聯結不同來源的數據89
5.2.1Rece側的聯結90
5.2.2基於DistributedCache的復制聯結98
5.2.3半聯結:map側過濾後在rece側聯結101
5.3創建一個Bloom filter102
5.3.1Bloom filter做了什麼102
5.3.2實現一個Bloom filter104
5.3.3Hadoop 0.20以上版本的Bloom filter110
5.4溫故知新110
5.5小結111
5.6更多資源112
第6章編程實踐113
6.1開發MapRece程序113
6.1.1本地模式114
6.1.2偽分布模式118
6.2生產集群上的監視和調試123
6.2.1計數器123
6.2.2跳過壞記錄125
6.2.3用IsolationRunner重新運行出錯的任務128
6.3性能調優129
6.3.1通過combiner來減少網路流量129
6.3.2減少輸入數據量129
6.3.3使用壓縮129
6.3.4重用JVM132
6.3.5根據猜測執行來運行132
6.3.6代碼重構與演算法重寫133
6.4小結134
第7章細則手冊135
7.1向任務傳遞作業定製的參數135
7.2探查任務特定信息137
7.3劃分為多個輸出文件138
7.4以資料庫作為輸入輸出143
7.5保持輸出的順序145
7.6小結146
第8章管理Hadoop147
8.1為實際應用設置特定參數值147
8.2系統體檢149
8.3許可權設置151
8.4配額管理151
8.5啟用回收站152
8.6刪減DataNode152
8.7增加DataNode153
8.8管理NameNode和SNN153
8.9恢復失效的NameNode155
8.10感知網路布局和機架的設計156
8.11多用戶作業的調度157
8.11.1多個JobTracker158
8.11.2公平調度器158
8.12小結160
第三部分Hadoop也瘋狂
第9章在雲上運行Hadoop162
9.1Amazon Web Services簡介162
9.2安裝AWS163
9.2.1獲得AWS身份認證憑據164
9.2.2獲得命令行工具166
9.2.3准備SSH密鑰對168
9.3在EC2上安裝Hadoop169
9.3.1配置安全參數169
9.3.2配置集群類型169
9.4在EC2上運行MapRece程序171
9.4.1將代碼轉移到Hadoop集群上171
9.4.2訪問Hadoop集群上的數據172
9.5清空和關閉EC2實例175
9.6Amazon Elastic MapRece和其他AWS服務176
9.6.1Amazon Elastic MapRece176
9.6.2AWS導入/導出177
9.7小結177
第10章用Pig編程178
10.1像Pig一樣思考178
10.1.1數據流語言179
10.1.2數據類型179
10.1.3用戶定義函數179
10.2安裝Pig179
10.3運行Pig180
10.4通過Grunt學習Pig Latin182
10.5談談Pig Latin186
10.5.1數據類型和schema186
10.5.2表達式和函數187
10.5.3關系型運算符189
10.5.4執行優化196
10.6用戶定義函數196
10.6.1使用UDF196
10.6.2編寫UDF197
10.7腳本199
10.7.1注釋199
10.7.2參數替換200
10.7.3多查詢執行201
10.8Pig實戰——計算相似專利的例子201
10.9小結206
第11章Hive及Hadoop群207
11.1Hive207
11.1.1安裝與配置Hive208
11.1.2查詢的示例210
11.1.3深入HiveQL213
11.1.4Hive小結221
11.2其他Hadoop相關的部分221
11.2.1HBase221
11.2.2ZooKeeper221
11.2.3Cascading221
11.2.4Cloudera222
11.2.5Katta222
11.2.6CloudBase222
11.2.7Aster Data和Greenplum222
11.2.8Hama和Mahout223
11.3小結223
第12章案例研究224
12.1轉換《紐約時報》1100萬個庫存圖片文檔224
12.2挖掘中國移動的數據225
12.3在StumbleUpon推薦最佳網站229
12.3.1分布式StumbleUpon的開端230
12.3.2HBase和StumbleUpon230
12.3.3StumbleUpon上的更多Hadoop應用236
12.4搭建面向企業查詢的分析系統——IBM的ES2項目238
12.4.1ES2系統結構240
12.4.2ES2爬蟲241
12.4.3ES2分析242
12.4.4小結249
12.4.5參考文獻250
附錄AHDFS文件命令251

D. 小白想轉行做大數據,怎麼入行

大數據技術專業屬於交叉學科:以統計學、數學、計算機為三大支撐性學科;生物、醫學、環境科學、經濟學、社會學、管理學為應用拓展性學科。

此外還需學習數據採集、分析、處理軟體,學習數學建模軟體及計算機編程語言等,知識結構是二專多能復合的跨界人才(有專業知識、有數據思維)。

大數據時代則對從業人員素質的要求越來越高,因為數據處理變得越來越復雜,數據人才的競爭也越來越激烈,很多大公司都在尋找尖端人才。而且,大到國防、金融,小到跟生活息息相關的物流、購物、醫療、交通等,都日益需要大數據的支撐。大數據正在成為一門「顯學」。

對於大數據開發的學習,重在掌握基本知識以及實踐應用,合理安排基礎知識的學習,可以起到事半功倍的效果,以下是比較經典的大數據開發學習路線:

第一階段:JavaSE+MySql+Linux

Java語言入門 → OOP編程 → Java常用Api、集合 → IO/NIO → Java實用技術 → Mysql資料庫 → 階段項目實戰 → Linux基礎 → shell編程

第二階段:Hadoop與生態系統

Hadoop → MapRece → Avro → Hive → Hbase → Zookeeper → Flume → Kafka → Sqoop → Pig

第三階段:Storm與Spark及其生態圈

Storm → Scala → Spark → Spark SQL → Spark Streaming → Spark機器學習

第四階段:其他

Mahout機器學習 → R語言 → Python

第五階段:項目實戰、技術綜合運用
希望對您有所幫助!~

E. 大數據學習一般都學什麼

您好,大數據學習一般分為6個階段

第一階段
JavaSE基礎核心
第二階段
資料庫關鍵技術
第三階段
大數據基礎核心
第四階段
Spark生態體系框架&大數據精選項目
第五階段
Spark生態體系框架&企業無縫對接項目
第六階段
Flink流式數據處理框架
大數據是最近幾年新興的專業,發展的前景是非常好的,選擇大數據是沒有錯的!

F. 數據分析培訓有哪些課程

數據分析課程內容主要是從理論-實操-案例應用步步進階,能讓學員充分掌握概率論和統計理論基礎,能夠熟練運用Excel、SPSS、SAS等一門專業分析軟體,有良好的商業理解能力,能夠根據業務問題指標利用常用數據分析方法進行數據的處理與分析,並得出邏輯清晰的業務報告。如需數據分析培訓推薦選擇【達內教育】。

數據分析是指用適當的統計分析方法對收集來的大量數據進行分析,將它們加以匯總和理解並消化,以求最大化地開發數據的功能,發揮數據的作用。數據分析是為了提取有用信息和形成結論而對數據加以詳細研究和概括總結的過程。感興趣的話點擊此處,免費學習一下

想了解更多有關大數據的相關信息,推薦咨詢【達內教育】。達內與阿里、Adobe、紅帽、ORACLE、微軟、美國計算機行業協會(CompTIA)、網路等國際知名廠商建立了項目合作關系。共同制定行業培訓標准,為達內學員提供高端技術、所學課程受國際廠商認可,讓達內學員更具國際化就業競爭力。達內IT培訓機構,試聽名額限時搶購。

G. 常用的大數據技術有哪些

大數據技術包括數據收集、數據存取、基礎架構、數據處理、統計分析、數據挖掘、模型預測、結果呈現。

1、數據收集:在大數據的生命周期中,數據採集處於第一個環節。根據MapRece產生數據的應用系統分類,大數據的採集主要有4種來源:管理信息系統、Web信息系統、物理信息系統、科學實驗系統。

2、數據存取:大數據的存去採用不同的技術路線,大致可以分為3類。第1類主要面對的是大規模的結構化數據。第2類主要面對的是半結構化和非結構化數據。第3類面對的是結構化和非結構化混合的大數據,

3、基礎架構:雲存儲、分布式文件存儲等。

4、數據處理:對於採集到的不同的數據集,可能存在不同的結構和模式,如文件、XML 樹、關系表等,表現為數據的異構性。對多個異構的數據集,需要做進一步集成處理或整合處理,將來自不同數據集的數據收集、整理、清洗、轉換後,生成到一個新的數據集,為後續查詢和分析處理提供統一的數據視圖。

5、統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、方差分析、卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。

6、數據挖掘:目前,還需要改進已有數據挖掘和機器學習技術;開發數據網路挖掘、特異群組挖掘、圖挖掘等新型數據挖掘技術;突破基於對象的數據連接、相似性連接等大數據融合技術;突破用戶興趣分析、網路行為分析、情感語義分析等面向領域的大數據挖掘技術。

7、模型預測:預測模型、機器學習、建模模擬。

8、結果呈現:雲計算、標簽雲、關系圖等。

H. 數據分析培訓一般要多少錢

不同的學習方式,需要的學習費用也不同,如果想要進行系統專業的學習參加一些培訓班,大數據培訓費用在20000元左右。如需大數據培訓推薦選擇【達內教育】。

1、通過自學方式。根據不同的自學方式還是會有一定的費用支出。比如購買教程,購買書籍等都是一種花錢。
2、在線自學方式。很多自學的學生選擇購買此類在線教育的課程(大數據方向課程一般在8000-12000元),在線自學相對花費比較高,而且無老師輔導性價比非常低。
3、資源自學方式。網路上可以免費下去大量大數據學習資料及教學視頻,此類自學方法適用於自學能力非常強的學生,不會有費用支出,時間成為學習成本。
4、書本自學方式。有一部分學生選擇購買書籍進行自學,此類自學方法花費較少,但是學習效果不佳。
5、報大數據培訓班方式。大數據培訓的費用在18000元-20000元左右,不同的機構的培訓費用不同。感興趣的話點擊此處,免費學習一下

想了解更多有關大數據培訓費用的相關信息,推薦咨詢【達內教育】。秉承「名師出高徒、高徒拿高薪」的教學理念,是達內公司確保教學質量的重要環節。作為美國上市職業教育公司,誠信經營,拒絕虛假宣傳是該機構集團的經營理念。該機構在學員報名之前完全公開所有授課講師的授課安排及背景資料,並與學員簽訂《指定授課講師承諾書》,確保學員利益。達內IT培訓機構,試聽名額限時搶購。

I. 大數據培訓大概要多少錢

學習大數據正常的培訓機構費用在1萬到2萬之間。

大數據為企業做的一件重要事情就是告訴企業有關客戶或客戶的信息。使用客戶關系管理等工具,大數據集可以顯示客戶是誰,客戶的行為方式以及客戶與業務的互動方式。通常,復雜的客戶關系管理(CRM)系統在易於使用的可視化界面中提供來自大數據集的精心挖掘的數據,以支持銷售或推動其他工作。
大數據通常也會控制企業供應鏈。
大數據集可用於管理庫存,處理原材料采購,推動產品出貨策略或處理復雜供應鏈的任何部分。通過使用特定的大數據結果,管理人員可以實施即時庫存等策略,從而為企業節省大量資金和資源。企業還可以使用大數據集來識別性能標准,或者幫助進行勞動力管理。大數據集可以向企業展示更多有關性能趨勢以及特定業務位置或成本中心發生的情況。大數據集可以幫助實現業務流程的自動化,實現遠程工作和其他新形式的業務運營。感興趣的話點擊此處,免費學習一下

想了解更多有關大數據的相關信息,推薦咨詢達內教育。達內教育集團歷時一年,耗資千萬,重磅推出「因材施教、分級培優」創新教學模式,同一課程方向,面向不同受眾群體,提供就業、培優、才高三個級別教學課程,達內「因材施教、分級培優「差異化教學模式,讓每一位來達內學習的學員都能找到適合自己的課程。

J. 初步學習Java大數據需要看什麼書嗎

從入門到精通

閱讀全文

與mahout實戰pdf相關的資料

熱點內容
國產單片機廠商 瀏覽:56
蘋果手機怎麼設置不更新app軟體 瀏覽:283
轉行當程序員如何 瀏覽:491
蘋果id怎麼驗證app 瀏覽:863
查看手機命令 瀏覽:952
抖音反編譯地址 瀏覽:224
如何加密軟體oppoa5 瀏覽:232
java從入門到精通明日科技 瀏覽:93
拆解汽車解壓視頻 瀏覽:595
新版百度雲解壓縮 瀏覽:591
android上下拉刷新 瀏覽:878
centos可執行文件反編譯 瀏覽:836
林清玄pdf 瀏覽:270
黑馬程序員java基礎 瀏覽:283
awss3命令 瀏覽:358
百度店鋪客戶訂單手機加密 瀏覽:501
釘釘班群文件夾怎麼上傳文件 瀏覽:749
人社app怎麼解綁手機 瀏覽:101
caj文件夾打不開 瀏覽:475
什麼app可以將電量變色 瀏覽:692