『壹』 三極體P75N75資料,最好是pdf
到這免費注冊個賬戶即可下載http://www.shimei.cn/bbs/read.php?tid=1928,不行留下你的郵箱我給你傳過去
『貳』 高頻大功率三極體有哪些型號pdf
大功率三極體型號很多,比如P-普通管、V-微波管、W-穩壓管、C-參量管、Z-整流管、L-整流堆、S-隧道管、N-阻尼管、U- 光電器件、K-開關管、X-低頻小功率管(F3MHz,Pc1W)、A-高頻大功率管(f>3MHz,Pc>1W)、T-半導體晶閘管(可控整流器)、Y-體效應器件、B-雪崩管、J-階躍恢復管、CS-場效應管、BT-半導體特殊器件、FH-復合管、PIN-PIN型管、JG-激光器件。大功率三極體型號用數字表示序號用漢語拼音字母表示規格號。
日本半導體分立器件型號命名方法,日本生產的半導體分立器件,由五至七部分組成。通常只用到前五個部分,其各部分的符號意義如下:第一部分:用數字表示器件有效電極數目或類型。0-光電(即光敏)二極體三極體及上述器件的組合管、1-二極體、2三極或具有兩個pn結的其他器件、3-具有四個有效電極或具有三個pn結的其他器件、┄┄依此類推。
第二部分:日本電子工業協會JEIA注冊標志。S-表示已在日本電子工業協會JEIA注冊登記的半導體分立器件。
第三部分:用字母表示器件使用材料極性和類型。A-PNP型高頻管、B-PNP型低頻管、C-NPN型高頻管、D-NPN型低頻管、F-P控制極可控硅、G-N控制極可控硅、H-N基極單結晶體管、J-P溝道場效應管、K-N 溝道場效應管、M-雙向可控硅。
第四部分:用數字表示在日本電子工業協會JEIA登記的順序號。兩位以上的整數-從「11」開始,表示在日本電子工業協會JEIA登記的順序號;不同公司的性能相同的器件可以使用同一順序號;數字越大,越是近期產品。
第五部分: 用字母表示同一型號的改進型產品標志。A、B、C、D、E、F表示這一器件是原型號產品的改進產品。
『叄』 三極體pdf上的hfe和B有什麼區別B不是固有屬性嗎怎麼hfe還有最大值最小值電路設計的時候怎麼確定
hfe指晶體管的直流放大倍數,即輸入信號的幅值無變化時Ic和Ib的比值。β值為晶體管的交流放大倍數,低頻小信號時與hfe值接近。 在低頻電壓放大器設計中可近似地看為一樣。
『肆』 請問在三極體PDF文檔裡面那個符號是表徵它的放大倍數的
一般是HFE,或DC current gain。
『伍』 請問三極體D313可以用D799代用嗎有沒有此三極體的PDF發下可以嗎請高手點撥下,謝謝!
D313是普通三極體,它的參數是:硅、 NPN、 60V、4A 、30W。
D799 是達林頓功率放大管,參數是:硅、 NPN 、600V、 6A、 30W。
因此,不要用D799去代換D313,可以代換D313的型號是:2SD235、 2SC1061、 2SD790或者2SD234 。
『陸』 高頻三極體和低頻三極體的有什麼區別~! 在pdf裡面怎麼 看出他們的區別啊~!比如2SD1616與2SC2655
顧名思義,高頻管就是能工作在比較高的頻率,低頻管只能工作在比較比較低的頻率。
數據手冊里一般有一個參數叫fT,叫帶寬增益積。比如在NEC的2SD1616的datasheet里,fT是160MHz,也就是說這個三極體對160MHz的信號的電流增益是1,進來多大出去還是多大。如果是10MHz的信號,電流增益就是16倍。這個fT越高,三極體就越適合放大高頻信號。
『柒』 9012三極體 pdf 怎樣區分引腳呀
用萬用表測量就可測出來: 三極體的基極對另外兩個極是兩個PN結,用RX1K歐姆檔測,
指針表的黑表表筆接一個腳,紅表筆分別測另兩個腳,測得兩個都是正向導通時,黑表筆接的就是NPN型三極體的基極.
指針表的紅表筆接一個腳,黑表筆分別測另兩個腳,測得兩個都是正向導通時,紅表筆接的就是PNP型三極體的基極.
這就區分出了是NPN還是PNP的三極體了,同時知道了基極(B).
發射極(E)和集電極(C),區分:測得正向電阻稍小的那個是集電極.
用指針表測三級管,,比數字表方便,直觀
.但要 一定記住歐姆檔的表筆,黑筆是表內電池的正極,紅筆是電池的負極(數字表與這相反)
『捌』 求三極體的詳細資料
晶體管(transistor 計:MOS transistor; npn 化:transistor)
【簡介】也叫 三極體 sān jí ɡuǎn 晶體管(transistor)是一種固體半導體器件,可以用於檢波、整流、放大、開關、穩壓、信號調制和許多其它功能。晶體管作為一種可變開關,基於輸入的電壓,控制流出的電流,因此晶體管可做為電流的開關,和一般機械開關(如Relay、switch)不同處在於晶體管是利用電訊號來控制,而且開關速度可以非常之快,在實驗室中的切換速度可達100GHz以上。
半導體三極體,是內部含有兩個PN結,外部通常為三個引出電極的半導體器件。它對電信號有放大和開關等作用,應用十分廣泛。輸入級和輸出級都採用晶體管的邏輯電路,叫做晶體管-晶體管邏輯電路,書刊和實用中都簡稱為TTL電路,它屬於半導體集成電路的一種,其中用得最普遍的是TTL與非門。TTL與非門是將若干個晶體管和電阻元件組成的電路系統集中製造在一塊很小的矽片上,封裝成一個獨立的元件。半導體三極體[font color=#000000]是電路中[/font]應用最廣泛的器件之一,在電路中用「V」或「VT」(舊文字元號為「Q」、「GB」等)表示。
半導體三極體主要分為兩大類:雙極性晶體管(BJT)和場效應晶體管(FET)。晶體管有三個極;雙極性晶體管的三個極,分別由N型跟P型組成發射極(Emitter)、基極 (Base) 和集電極(Collector);場效應晶體管的三個極,分別是源極 (Source)、柵極(Gate)和漏極(Drain)。晶體管因為有三種極性,所以也有三種的使用方式,分別是發射極接地(又稱共射放大、CE組態)、基極接地(又稱路最常用的用途應該是屬於訊號放大這一方面,其次是阻抗匹配、訊號轉換……等,晶體管在電路中是個很重要的組件,許多精密的組件主要都是由晶體管製成的。
三極體的導通 三極體處於放大狀態還是開關狀態要看給三極體基極加的直流偏置,隨這個電流變化,三極體工作狀態由截止-線性區-飽和狀態變化而變, 如果三極體Ib(直流偏置點)一定時,三極體工作在線性區,此時Ic電流的變化只隨著Ib的交流信號變化,Ib繼續升高,三極體進入飽和狀態,此時三極體的Ic不再變化,三極體將工作在開關狀態。
三極體為開關管使用時工作在飽和狀態1,用放大狀態1表示不是很科學。
請對照三極體手冊的Ib;Ic曲線加以參考我的回答來理解三極體的工作狀態,三極體be結和ce結導通三極體才能正常工作。
如果三極體沒有加直流偏置時,放大電路時輸入的交流正弦信號正半周時,基極對發射極而言是正的,由於發射結加的是反向電壓,此時沒有基極電流和集電極電流,此時集電極電流變化與基極反相,在輸入電壓的負半周,發射極電位對於基極電位為正的,此時由於發射極加的是正向電壓,才有基極和集電極電流通過,此時集電極電流變化與基極同相, 在三極體沒有加直流偏置時三極體be結和ce結導通,三極體放大電路將只有半個波輸出將產生嚴重的失真。
晶體管被認為是現代歷史中最偉大的發明之一,在重要性方面可以與印刷術,汽車和電話等發明相提並論。晶體管實際上是所有現代電器的關鍵活動(active)元件。晶體管在當今社會的重要性,主要是因為晶體管可以使用高度自動化的過程,進行大規模生產的能力,因而可以不可思議地達到極低的單位成本。
雖然數以百萬計的單體晶體管還在使用,但是絕大多數的晶體管是和電阻、電容一起被裝配在微晶元(晶元)上以製造完整的電路。模擬的或數字的或者這兩者被集成在同一塊晶元上。設計和開發一個復雜晶元的成本是相當高的,但是當分攤到通常百萬個生產單位上,每個晶元的價格就是最小的。一個邏輯門包含20個晶體管,而2005年一個高級的微處理器使用的晶體管數量達2.89億個。
晶體管的低成本、靈活性和可靠性使得其成為非機械任務的通用器件,例如數字計算。在控制電器和機械方面,晶體管電路也正在取代電機設備,因為它通常是更便宜、更有效地,僅僅使用標准集成電路並編寫計算機程序來完成同樣的機械任務,使用電子控制,而不是設計一個等效的機械控制。
因為晶體管的低成本和後來的電子計算機、數字化信息的浪潮來到了。由於計算機提供快速的查找、分類和處理數字信息的能力,在信息數字化方面投入了越來越多的精力。今天的許多媒體是通過電子形式發布的,最終通過計算機轉化和呈現為模擬形式。受到數字化革命影響的領域包括電視、廣播和報紙。
【晶體管分類】
按半導體材料和極性分類
按晶體管使用的半導體材料可分為硅材料晶體管和鍺材料晶體管。按晶體管的極性可分為鍺NPN型晶體管、鍺PNP晶體管、硅NPN型晶體管和硅PNP型晶體管。
按結構及製造工藝分類
晶體管按其結構及製造工藝可分為擴散型晶體管、合金型晶體管和平面型晶體管。
按電流容量分類
晶體管按電流容量可分為小功率晶體管、中功率晶體管和大功率晶體管。
按工作頻率分類
晶體管按工作頻率可分為低頻晶體管、高頻晶體管和超高頻晶體管等。
按封裝結構分類
晶體管按封裝結構可分為金屬封裝(簡稱金封)晶體管、塑料封裝(簡稱塑封)晶體管、玻璃殼封裝(簡稱玻封)晶體管、表面封裝(片狀)晶體管和陶瓷封裝晶體管等。其封裝外形多種多樣。
按功能和用途分類
晶體管按功能和用途可分為低雜訊放大晶體管、中高頻放大晶體管、低頻放大晶體管、開關晶體管、達林頓晶體管、高反壓晶體管、帶阻晶體管、帶阻尼晶體管、微波晶體管、光敏晶體管和磁敏晶體管等多種類型。
※ 電力晶體管
電力晶體管按英文Giant Transistor直譯為巨型晶體管,是一種耐高電壓、大電流的雙極結型晶體管(Bipolar Junction Transistor—BJT),所以有時也稱為Power BJT;其特性有:耐壓高,電流大,開關特性好,但驅動電路復雜,驅動功率大;GTR和普通雙極結型晶體管的工作原理是一樣的。
※ 光晶體管
光晶體管(phototransistor)由雙極型晶體管或場效應晶體管等三端器件構成的光電器件。光在這類器件的有源區內被吸收,產生光生載流子,通過內部電放大機構,產生光電流增益。光晶體管三端工作,故容易實現電控或電同步。光晶體管所用材料通常是砷化鎵(CaAs),主要分為雙極型光晶體管、場效應光晶體管及其相關器件。雙極型光晶體管通常增益很高,但速度不太快,對於GaAs-GaAlAs,放大系數可大於1000,響應時間大於納秒,常用於光探測器,也可用於光放大。場效應光晶體管響應速度快(約為50皮秒),但缺點是光敏面積小,增益小(放大系數可大於10),常用作極高速光探測器。與此相關還有許多其他平面型光電器件,其特點均是速度快(響應時間幾十皮秒)、適於集成。這類器件可望在光電集成中得到應用。
※ 雙極晶體管
雙極晶體管(bipolar transistor)指在音頻電路中使用得非常普遍的一種晶體管。雙極則源於電流系在兩種半導體材料中流過的關系。雙極晶體管根據工作電壓的極性而可分為NPN型或PNP型。
※ 雙極結型晶體管 雙極結型晶體管(Bipolar Junction Transistor—BJT)又稱為半導體三極體,它是通過一定的工藝將兩個PN結結合在一起的器件,有PNP和NPN兩種組合結構;外部引出三個極:集電極,發射極和基極,集電極從集電區引出,發射極從發射區引出,基極從基區引出(基區在中間);BJT有放大作用,重要依靠它的發射極電流能夠通過基區傳輸到達集電區而實現的,為了保證這一傳輸過程,一方面要滿足內部條件,即要求發射區雜質濃度要遠大於基區雜質濃度,同時基區厚度要很小,另一方面要滿足外部條件,即發射結要正向偏置(加正向電壓)、集電結要反偏置;BJT種類很多,按照頻率分,有高頻管,低頻管,按照功率分,有小、中、大功率管,按照半導體材料分,有硅管和鍺管等;其構成的放大電路形式有:共發射極、共基極和共集電極放大電路。
※ 場效應晶體管
場效應晶體管(field effect transistor)利用場效應原理工作的晶體管。英文簡稱FET。場效應就是改變外加垂直於半導體表面上電場的方向或大小,以控制半導體導電層(溝道)中多數載流子的密度或類型。它是由電壓調制溝道中的電流,其工作電流是由半導體中的多數載流子輸運。這類只有一種極性載流子參加導電的晶體管又稱單極型晶體管。與雙極型晶體管相比,場效應晶體管具有輸入阻抗高、雜訊小、極限頻率高、功耗小,製造工藝簡單、溫度特性好等特點,廣泛應用於各種放大電路、數字電路和微波電路等。以硅材料為基礎的金屬�氧化物�半導體場效應管(MOSFET)和以砷化鎵材料為基礎的肖特基勢壘柵場效應管(MESFET)是兩種最重要的場效應晶體管,分別為MOS大規模集成電路和MES超高速集成電路的基礎器件。
※ 靜電感應晶體管
靜電感應晶體管SIT(Static Inction Transistor)誕生於1970年,實際上是一種結型場效應晶體管。將用於信息處理的小功率SIT器件的橫向導電結構改為垂直導電結構,即可製成大功率的SIT器件。SIT是一種多子導電的器件,其工作頻率與電力MOSFET相當,甚至超過電力MOSFET,而功率容量也比電力MOSFET大,因而適用於高頻大功率場合,目前已在雷達通信設備、超聲波功率放大、脈沖功率放大和高頻感應加熱等某些專業領域獲得了較多的應用。
但是SIT在柵極不加任何信號時是導通的,柵極加負偏壓時關斷,這被稱為正常導通型器件,使用不太方便。此外,SIT通態電阻較大,使得通態損耗也大,因而SIT還未在大多數電力電子設備中得到廣泛應用。
※ 單電子晶體管
用一個或者少量電子就能記錄信號的晶體管。隨著半導體刻蝕技術和工藝的發展,大規模集成電路的集成度越來越高。以動態隨機存儲器(DRAM)為例,它的集成度差不多以每兩年增加四倍的速度發展,預計單電子晶體管將是最終的目標。目前一般的存儲器每個存儲元包含了20萬個電子,而單電子晶體管每個存儲元只包含了一個或少量電子,因此它將大大降低功耗,提高集成電路的集成度。1989年斯各特(J.H. F.Scott-Thomas)等人在實驗上發現了庫侖阻塞現象。在調制摻雜異質結界面形成的二維電子氣上面,製作一個面積很小的金屬電極,使得在二維電子氣中形成一個量子點,它只能容納少量的電子,也就是它的電容很小,小於一個?F (10~15法拉)。當外加電壓時,如果電壓變化引起量子點中電荷變化量不到一個電子的電荷,則將沒有電流通過。直到電壓增大到能引起一個電子電荷的變化時,才有電流通過。因此電流-電壓關系不是通常的直線關系,而是台階形的。這個實驗在歷史上第一次實現了用人工控制一個電子的運動,為製造單電子晶體管提供了實驗依據。為了提高單電子晶體管的工作溫度,必須使量子點的尺寸小於10納米,目前世界各實驗室都在想各種辦法解決這個問題。有些實驗室宣稱已制出室溫下工作的單電子晶體管,觀察到由電子輸運形成的台階型電流——電壓曲線,但離實用還有相當的距離。
※ 絕緣柵雙極晶體管
絕緣柵雙極晶體管(Insulate-Gate Bipolar Transistor—IGBT)綜合了電力晶體管(Giant Transistor—GTR)和電力場效應晶體管(Power MOSFET)的優點,具有良好的特性,應用領域很廣泛;IGBT也是三端器件:柵極,集電極和發射極。
【主要參數】
晶體管的主要參數有電流放大系數、耗散功率、頻率特性、集電極最大電流、最大反向電壓、反向電流等。
※ 電流放大系數
電流放大系數也稱電流放大倍數,用來表示晶體管放大能力。
根據晶體管工作狀態的不同,電流放大系數又分為直流電流放大系數和交流電流放大系數。
1.直流電流放大系數 直流電流放大系數也稱靜態電流放大系數或直流放大倍數,是指在靜態無變化信號輸入時,晶體管集電極電流IC與基極電流IB的比值,一般用hFE或β表示。
2.交流電流放大系數 交流電流放大系數也稱動態電流放大系數或交流放大倍數,是指在交流狀態下,晶體管集電極電流變化量△IC與基極電流變化量△IB的比值,一般用hfe或β表示。
hFE或β既有區別又關系密切,兩個參數值在低頻時較接近,在高頻時有一些差異。
※ 耗散功率
耗散功率也稱集電極最大允許耗散功率PCM,是指晶體管參數變化不超過規定允許值時的最大集電極耗散功率。
耗散功率與晶體管的最高允許結溫和集電極最大電流有密切關系。晶體管在使用時,其實際功耗不允許超過PCM值,否則會造成晶體管因過載而損壞。
通常將耗散功率PCM小於1W的晶體管稱為小功率晶體管,PCM等於或大於1W、小於5W的晶體管被稱為中功率晶體管,將PCM等於或大於5W的晶體管稱為大功率晶體管。
※ 頻率特性
晶體管的電流放大系數與工作頻率有關。若晶體管超過了其工作頻率范圍,則會出現放大能力減弱甚至失去放大作用。
晶體管的頻率特性參數主要包括特徵頻率fT和最高振盪頻率fM等。
1.特徵頻率fT 晶體管的工作頻率超過截止頻率fβ或fα時,其電流放大系數β值將隨著頻率的升高而下降。特徵頻率是指β值降為1時晶體管的工作頻率。
通常將特徵頻率fT小於或等於3MHZ的晶體管稱為低頻管,將fT大於或等於30MHZ的晶體管稱為高頻管,將fT大於3MHZ、小於30MHZ的晶體管稱為中頻管。
2.最高振盪頻率fM 最高振盪頻率是指晶體管的功率增益降為1時所對應的頻率。
通常,高頻晶體管的最高振盪頻率低於共基極截止頻率fα,而特徵頻率fT則高於共基極截止頻率fα、低於共集電極截止頻率fβ。
集電極最大電流ICM
集電極最大電流是指晶體管集電極所允許通過的最大電流。當晶體管的集電極電流IC超過ICM時,晶體管的β值等參數將發生明顯變化,影響其正常工作,甚至還會損壞。
最大反向電壓
最大反向電壓是指晶體管在工作時所允許施加的最高工作電壓。它包括集電極—發射極反向擊穿電壓、集電極—基極反向擊穿電壓和發射極—基極反向擊穿電壓。
1.集電極——發射極反向擊穿電壓 該電壓是指當晶體管基極開路時,其集電極與發射極之間的最大允許反向電壓,一般用VCEO或BVCEO表示。
2.集電極——基極反向擊穿電壓 該電壓是指當晶體管發射極開路時,其集電極與基極之間的最大允許反向電壓,用VCBO或BVCBO表示。
3.發射極——基極反向擊穿電壓 該電壓是指當晶體管的集電極開路時,其發射極與基極與之間的最大允許反向電壓,用VEBO或BVEBO表示。
※ 反向電流
晶體管的反向電流包括其集電極—基極之間的反向電流ICBO和集電極—發射極之間的反向擊穿電流ICEO。
1.集電極——基極之間的反向電流ICBO ICBO也稱集電結反向漏電電流,是指當晶體管的發射極開路時,集電極與基極之間的反向電流。ICBO對溫度較敏感,該值越小,說明晶體管的溫度特性越好。
2.集電極——發射極之間的反向擊穿電流ICEO ICEO是指當晶體管的基極開路時,其集電極與發射極之間的反向漏電電流,也稱穿透電流。此電流值越小,說明晶體管的性能越好。
『玖』 電子產品的三極體PDF 主要看那些方面 要注意那些地方 怎麼看
電流電壓是都要看的 還有些特定的 比如肖特基看vf值 越小越好 MOS管內阻越小越好。。。。。。我專門做電源器件的
『拾』 三極體PDF資料里,這個APP應用怎麼解釋各位專家來回答下面有圖片,麻煩幫忙解釋說明一下是用在
那句話的意思應該是:射頻波段的放大器和振盪器。