⑴ 分形幾何求電子書
分形幾何
文件名
大小
瀏覽量
分形市場分析—將混沌理論應用到投資與經濟...
5.5 M 12
分形藝術程序設計.pdf
4.5 M 8
分形幾何-數學基礎及其應用-曾文曲.pdf
6.4 M 8
分形幾何中的技巧.pdf
8.6 M 9
分形幾何學(第2版) 陳顒.pdf
7.1 M 10
分形幾何學.pdf
7.3 M 12
分形圖形學.pdf
⑵ 分形幾何 此書有沒有免費的
嘆為觀止!數學大師與漂亮的分形幾何學
《美國數學會會志》今年連續在9月號和10月號上刊發憶述文章,回憶了美籍法國數學大師、「分形幾何學之父」伯努瓦•曼德爾布羅的奮斗歷程,並高度評價他為科學發展作出了巨大貢獻。
《美國數學會會志》(Notices of the AMS)今年連續在9月號和10月號上刊發憶述文章,回憶了美籍法國數學大師、「分形幾何學之父」伯努瓦•曼德爾布羅(BenoitMandelbrot)的奮斗歷程,並高度評價他為科學發展作出了巨大貢獻。
曼德爾布羅的生平與奮斗
1924年11月20日,伯努瓦•曼德爾布羅出生於波蘭華沙的一個立陶宛猶太人家庭。父親是成衣批發商,母親是牙科醫生。由於當時局勢緊張,他的學業時斷時續,受的教育也很不正規。他聲稱自己從未認真學習過字母,也沒有系統地背誦過乘法口訣,只背過五以下的乘法表。11歲時,他跟著家人逃避戰亂來到法國巴黎,投奔他的叔叔、知名數學家佐列姆•曼德爾布羅。戰爭來臨時,一家人又逃到法國南部的蒂勒鎮。曼德爾布羅做過一陣子機床維修學徒工後,巴黎解放,沒有什麼學術根底的他,完全靠自己的天賦和直覺,通過了巴黎高等理工學校長達一個月的筆試和口試。在該校學習期間,他參加過法國著名的數學團體——布爾巴基(Bourbaki)協會,但由於該協會摒棄一切圖畫,過分強調邏輯分析和形式主義,使得他無法忍受而成了一位叛逆者。那時候他已經意識到,不管給出什麼解析問題,他總是可以用腦海中浮現的形狀來思考。
曼德爾布羅1948年獲美國加州理工學院碩士學位,1952年獲巴黎大學博士學位。畢業後,他的職業生涯並不順利,先是在瑞士知名心理學家讓•皮亞傑(JeanPiaget)手下幹了一段時間,然後於1953年前往美國普林斯頓高等研究院工作了一年。1958年,他在IBM公司的沃森研究中心獲得一個職位。在那裡,他依靠自己的幾何直覺去研究看似毫無規律可循的事物,分析過棉花價格的漲落規律、尼羅河水位的變化情況、電話通路中自發雜訊的本質以及英國海岸線的真實長度。在他看來,自然界的規律並不總是通過簡化為理想的圖形才能發現,往往復雜性本身也是有規律的。
與經典的描繪光滑、圓潤對象的幾何學(如歐氏幾何學)相反,曼德爾布羅創造了一種表現斑點、纏繞、破碎對象的幾何學。他認為,這種復雜性不是隨機和偶然的,這些奇形怪狀是有意義的,是自相似的,是跨越不同尺度對稱的,而且這常常是理解事物本質的關鍵。他為這種復雜性引入了分維和分形(fractal)的概念,並將分形理論歸納為一個簡潔的公式:f(z)=z?+c。在2010年春季的一次演講中,曼德爾布羅解釋說,如果你切開一朵花椰菜,會看到一樣的花椰菜,只是小一點;如果你不斷地切、不斷地切,你還會看到一樣的花椰菜,只是更小一點。
曼德爾布羅擅長於形象的、空間的思維,具有把復雜問題化為簡單的、生動的、甚至彩色的圖象的本領。他是個數學天才,又是個幾何學與計算機科學兼通的奇才。1967年發表於美國《科學》雜志上的「英國的海岸線有多長」的劃時代論文,是他的分形思想萌芽的重要標志。1973年,在法蘭西科學院講學期間,他提出了分形幾何學的整體思想,並認為分維是個可用於研究許多自然現象的有力工具。
1982年,曼德爾布羅完成了經典著作《大自然的分形幾何學》。這本書將他對宇宙所知和所懷疑的一切都搜羅其中,其銷量超過任何一本其他高等數學書籍。曼德爾布羅的奇思妙想,在當時主流科學家看來解決不了什麼問題,因為它既不能證明什麼東西,也不能創造什麼東西。實際上,分形在當今多種學科中得到了廣泛的應用,由於分形的引入,一些學科煥發新的活力。在經濟學領域,人們用分形來分析股票價格;在生物學領域,人們用分形來分析細胞生長規律;在物理學領域,人們用分形來分析湍流和臨界現象。
四處出擊的曼德爾布羅,曾經不被他涉足的所有領域所接納,即便是在數學家中間,他也是被遺忘的,直到其怪誕想法發展成為一門成熟的幾何學,他提供的技術和語言成為混沌科學不可分割的部分。到了晚年,他獲得的各種榮譽和頭銜不可計數,包括著名的沃爾夫物理學獎。沃爾夫獎委員會對他的評語是,「通過認識分形普遍存在和發展研究分形的數學工具,他改變了我們的自然觀。」有學者預言,分形幾何學可能具有如相對論一般的意義。
美國知名科普作家詹姆斯•格萊克(James Gleick)在《混沌:開創新科學》一書中評價曼德爾布羅說,他始終是個局外人,在數學的不時髦的角落裡持著非正統的看法,探索著一些並未使他受歡迎的學科,為了把文章發表出去不得不把最偉大的思想隱藏起來,主要靠著約克鎮高地(IBM總部所在地)僱主的信任才得以存活。他對像經濟學這樣的一些領域搞過突擊,然後又撤走,留下一些招惹性的想法而缺少論據充分的工作。
曼德爾布羅非常崇拜有「數學全才」之稱的亨利•龐加萊(Henri Poincare);他說,「一位極其偉大的數學家,他開創了數學的許多分支。他曾經說過他本人從不去證明復雜的定理,也不太在意這些證明,他更注重的是概念。」他還說,「跟他相比我還差得很多。我的意思是我發現的許多真相並不是純數學推導而來,而是對數學圖景的熟練掌握之後所提出的新問題而已。」
曼德爾布羅還說過,如果把競賽置於一切之上,如果為了闡明競賽規則而退縮到狹隘定義的專業中去,科學就會毀滅。別人稱他為「分形幾何學之父」,而他卻戲謔自己是「流浪漢學者」,又稱自己是「特立獨行者」和「按需先鋒隊」,徜徉於自己愛好的天地中。他一直是哈佛大學、馬薩諸塞理工學院的訪問教授,但1987年才在耶魯大學數學系獲得正式教職,12年後才成為終身教授,此時他已經75歲。
曼德爾布羅投身科學事業50餘年來,在許多領域做出了重要貢獻,橫跨數學、物理學、地學、哲學、經濟學、生理學、計算機科學、天文學、情報學、信息與通訊、城市與人口、設計與藝術等學科和專業,是一位名副其實的博學家。
2010年10月14日,曼德爾布羅在美國馬薩諸塞州劍橋市因病逝世,享年85歲。法國總統尼古拉•薩科齊向曼德爾布羅家人表示哀悼,「法國對曾經接納伯努瓦•曼德爾布羅、讓他受益於最好的教育而感到驕傲」,「他的工作完全是在主流科學之外發展起來,卻成為現代信息理論的基礎」。國際學術界也對失去這位勇於創新的天才數學家感到悲痛。
分形幾何學的意義與應用
分形幾何學的基本思想是:客觀事物具有自相似的層次結構,局部與整體在形態、功能、信息、時間、空間等方面具有統計意義上的相似性,成為自相似性。自相似性是指局部是整體成比例縮小的性質。形象地說,就是當用不同倍數的照相機拍攝研究對象時,無論放大倍數如何改變,看到的照片都是相似的,而從相片上無法判斷所用的相機的倍數,即標度不變性或全息性。
例如,一棵參天大樹與它自身上的樹枝及樹枝上的枝杈在形狀上沒什麼大的區別,大樹與樹枝這種關系,在幾何形狀上稱之為自相似關系;我們再拿來一片樹葉,仔細觀察一下葉脈,它們也具備這種性質;動物也不例外,一頭牛身體中的一個細胞基因記錄著這頭牛的全部生長信息;還有高山的表面,您無論怎樣放大其局部,它都如此粗糙不平等等。這些例子在我們的身邊到處可見。正如曼德爾布羅在《大自然的分形幾何》一書中寫道:「雲朵不是球形的,山巒不是錐形的,海岸線不是圓形的,樹皮不是光滑的,閃電也不是一條直線。」
在歐氏空間中,人們習慣把空間看成三維的,平面或球面看成二維,而把直線或曲線看成一維。也可以梢加推廣,認為點是零維的,還可以引入高維空間,人們通常習慣於整數的維數。然而,分形幾何學認為維數也可以是分數,稱其為分數維(簡稱分維);分維是分形的定量表徵和基本參數。曼德爾布羅曾描述過一個繩球的維數:從很遠的距離觀察這個繩球,可看作一點(零維);從較近的距離觀察,它充滿了一個球形空間(三維);再近一些,就看到了繩子(一維);再向微觀深入,繩子又變成了三維的柱,三維的柱又可分解成一維的纖維。
德國知名數學家費利克斯•豪斯道夫(Felix Hausdorff)在1919年提出了連續空間的概念,也就是空間維數是可以連續變化的,它可以是整數也可以是分數,被稱為豪斯道夫維數。因此,曼德爾布羅也把分形定義為豪斯道夫維數大於或等於拓撲維數的集合。
上世紀80年代初開始的「分形熱」經久不息。美國物理學大師約翰•惠勒(John Wheeler)曾說過:今後誰不熟悉分形,誰就不能被稱為科學上的文化人。由此可見分形的重要性。
中國知名學者周海中曾指出:分形幾何不僅展示了數學之美,也揭示了世界的本質,從而改變了人們理解自然奧秘的方式;可以說分形幾何是真正描述大自然的幾何學,對它的研究也極大地拓展了人類的認知疆域。
分形幾何學作為當今世界十分風靡和活躍的新理論、新學科,它的出現,使人們重新審視這個世界:世界是非線性的,分形無處不在。分形幾何學不僅讓人們感悟到科學與藝術的融合,數學與藝術審美的統一,而且還有其深刻的科學方法論意義。
分形打開了一個完全嶄新和令人興奮的幾何學大門。它不僅給人們以美的享受,在實際應用方面也有重要的價值。例如英國的海岸線為什麼測不準?因為歐氏一維測度與海岸線的維數不一致。根據曼德爾布羅的計算,英國海岸線的維數為1.26。有了分維,海岸線的長度就可以確定了。
海岸線作為曲線,其特徵是極不規則、極不光滑的,呈現極其蜿蜒復雜的變化。我們不能從形狀和結構上區分這部分海岸與那部分海岸有什麼本質的不同,這種幾乎同樣程度的不規則性和復雜性,說明海岸線在形貌上是自相似的,也就是局部形態和整體形態的相似。在沒有建築物或其他東西作為參照物時,在空中拍攝的100公里長的海岸線與10公里長海岸線的兩張照片,看上去會十分相似。
分形幾何學在數學、物理學、生物學等許多科學領域中都得到了廣泛的應用,甚至對流行文化領域也產生了重要影響。例如在1970年代後期曼德爾布羅集合成為一種文化符號,被大量印製在T恤、棒球帽和帆布包上。今天,人們可以在網路上,瀏覽與欣賞各種不同風格且優美奇妙的分形作品,這類作品一般是運用迭代法並通過計算機處理才能表現出來的;有的針對科學研究中要表達的一些特別的對象,有的則完全是藝術。美妙驚奇的分形圖畫,有時令人心曠神怡,有時又令人眼花繚亂。分形幾何使我們看到從《星際迷航》、《星球大戰》直到《指環王》、《阿凡達》、《讓子彈飛》中的一幕幕激動人心的特效場景,把手機天線縮小到能夠藏進機身,把飛機儀錶板設計得更加一目瞭然,把屋內裝修設計得更加舒適美觀......
最後一提的是,英國的數學「極客」丹尼爾•懷特(Daniel White)利用特定的數學方程式,經過反復運用迭代演算法(迭代演算法是用計算機解決問題的一種基本方法,利用計算機運算速度快、適合做重復性操作的特點,讓計算機對一組指令或一定步驟進行重復執行,在每次執行這組指令或步驟時,都從變數的原值推出一個新值),最終創作出一組令人嘆為觀止的三維分形結構圖案;這組圖案被英國《自然》雜志評為「2009年度十大科學圖片」之一。(金炳南寫於法國圖盧茲大學)
⑶ 《分形幾何學》txt下載在線閱讀全文,求百度網盤雲資源
《分形幾何學》(陳顒 陳凌)電子書網盤下載免費在線閱讀
鏈接:
書名:分形幾何學
作者:陳顒 陳凌
豆瓣評分:8.2
出版社:地震出版社
出版年份:2005-2
頁數:284
內容簡介:
作 者:陳顒,陳凌著 頁數:290頁 出版社:地震出版社
簡介:本書是分形幾何的普及教材。
⑷ 《分形物理學》pdf下載在線閱讀,求百度網盤雲資源
《分形物理學》(楊展如)電子書網盤下載免費在線閱讀
資源鏈接:
鏈接:https://pan..com/s/1iCiVnNwacTX4FBf0GHsoAw
書名:分形物理學
作者:楊展如
出版社:上海科技教育出版社
出版年份:1996-09
頁數:241
內容簡介:
內容提要
本書是非線性科學叢書中的一種,概要介紹了分形物理的
理論及其最新進展。全書計分7章,內容包括分形幾何的基本概
念,自旋系統的相變,臨界動力學,分形上的動力學,多重分形及
分形生長。本書可供大學物理系、數學系教師、研究生和高年級
學生閱讀,也可供自然科學和工程技術領域中的研究人員參考。
本書由陶瑞寶、文志英審閱。
⑸ 《分形大自然的藝術構造》pdf下載在線閱讀,求百度網盤雲資源
《分形》(汪富泉)電子書網盤下載免費在線閱讀
資源鏈接:
鏈接:https://pan..com/s/1xs-FrpQ1nYVp9QqBjMJWIg
書名:分形
作者:汪富泉
出版社:山東教育出版社
出版年份:1996-12
頁數:236
內容簡介:內容提要
分形是當代科學中最有影響和感召力的基本概
念之一,分形幾何學是探索復雜性的有效工具,對各
門自然科學均產生了並將繼續產生深遠的影響。本
書共分兩篇六章。第一篇深入淺出地介紹分形與分
維的基本概念、計算分形維數的方法及純數學中的
分形實例。第二篇分五章介紹自然界中形形色色的
分形現象,既有物質世界的真實形態,又有計算機仿
真結果。內容包括:宇宙大尺度的分形結構,多姿多
彩的地表形態及復雜地質構造的分形特徵,物理、化
學、生物等領域中的物體與過程在組織結構與形態
上的分形藝術。其中較詳細地介紹了作者近年來在
分形理論及地球科學、生物物理、化學物理中的分形
等研究工作。
本書可供高等學校高年級學生、教師和科技人
員閱讀。
作者簡介:作者簡介
汪富泉,男,1955年生,四川師范學院副教授。
已發表的論著有《分形幾何與動力系統》、《利齊曲率
滿足某些條件的極小子流形》、《關於黎曼流形的某
些整體性質》、《直積流形擬共形平坦的條件》、《蛋白
質的譜維數》、《G-P演算法的改進及其應用》和《關聯
維數在油氣勘探中的應用》等。
李後強,男,1962年生,四川聯合大學教授,非
線性科學研究室主任,博士生導師。作為第一作者合
著的《分形理論在分子科學中的應用》獲1992年度
國家教委科學技術進步一等獎,已發表的論著還有
《分形與分維》、《分形理論及其應用》等。
⑹ 《大自然的分形幾何學》pdf下載在線閱讀,求百度網盤雲資源
《大自然的分形幾何學》([波] 伯努瓦·B. 曼德布羅特)電子書網盤下載免費在線閱讀
鏈接:https://pan..com/s/1nfXxRZYPVfQ9GGkfWlH1Fg
書名:大自然的分形幾何學
作者:[波] 伯努瓦·B. 曼德布羅特
譯者:陳守吉
豆瓣評分:8.7
出版社:上海遠東出版社
出版年份:1998-12
頁數:575
作者簡介:
作者簡歷
1924年12月20日生於波蘭華沙。
1944年就讀於法國巴黎高等技術學院,1947 年畢業,獲工程師證書。
1948 -1949 年 獲美國加州理工學院航空工程碩士,後任航空學工程
師。
1952 年獲巴黎大學數學科學博士。
1949 -1957年 法國國家科學研究中心(CNRS)成員(先任隨員,後任授
課教師,再後任導師)
1957-1958年 法國里爾大學應用數學講師。
法國巴黎高等技術學院分析數學講師。
1958-1993 年 紐約IBM托馬斯・J・華生研究中心成員(1958-1947
年),研究員(1974-1993年)。
1987- 耶魯大學數學系副教授。
⑺ 分形幾何是什麼
分形幾何學是一門以非規則幾何形態為研究對象的幾何學。由於不規則現象在自然界是普遍存在的,因此分形幾何又稱為描述大自然的幾何學。分形幾何建立以後,很快就引起了許多學科的關注,這是由於它不僅在理論上,而且在實用上都具有重要價值。
分形幾何學的基本思想是:客觀事物具有自相似的層次結構,局部與整體在形態、功能、信息、時間、空間等方面具有統計意義上的相似性,稱為自相似性。
例如,一塊磁鐵中的每一部分都像整體一樣具有南北兩極,不斷分割下去,每一部分都具有和整體磁鐵相同的磁場。這種自相似的層次結構,適當的放大或縮小幾何尺寸,整個結構不變。
分形幾何與傳統幾何相比有什麼特點:
(1)從整體上看,分形幾何圖形是處處不規則的。例如,海岸線和山川形狀,從遠距離觀察,其形狀是極不規則的。
(2)在不同尺度上,圖形的規則性又是相同的。上述的海 岸線和山川形狀,從近距離觀察,其局部形狀又和整體形態相似,它們從整體到局部,都是自相似的。當然,也有一些分形幾何圖形,它們並不完全是自相似的。
其中一些是用來描述一般隨即現象的, 還有一些是用來描述混沌和非線性系統的。
⑻ 分形理論簡述
分形幾何(Fractal Geometry)的概念是由曼德布羅特(B.B.Mandelbrot.1975)在1975年首先提出的.幾十年來,它已經發展成為一門新型的數學分支.這是一個研究和處理自然與工程中不規則圖形的強有力的理論工具,它的應用幾乎涉及自然科學的各個領域,甚至於社會科學,並且實際上正起著把現代科學各個領域連接起來的作用,分形是從新的角度解釋了事物發展的本質.
分形(fractal)一詞最早由B.B.Mandelbrot於1975年從拉丁文fractus創造出來,《自然界中的分形幾何》(Mandelbrot,1982)為其經典之作.最先它所描述的是具有嚴格自相似結構的幾何形體,物體的形狀與標度無關,子體的數目N(r)與線性尺度(標度r)之間存在冪函數關系,即N(r)∝1/rD.分形的核心是標度不變性(或自相似性),即在任何標度下物體的性質(如形狀,結構等)不變.數學上的分形實際是一種具有無窮嵌套結構的極限圖形,分形的突出特點就是不存在特徵尺度,描述分形的特徵量是分形維數D.不過,現實的分形只是在一定的標度范圍內呈現出自相似或自仿射的特性,這一標度范圍也就稱為(現實)分形的無標度區,在無標度區內,冪函數關系始終成立.
分形理論認為,分形內部任何一個相對獨立的部分,在一定程度上都是整體的再現和相對縮影(分形元),人們可以通過認識部分來認識整體.但是分形元只是構成整體的單位,與整體相似,並不簡單地等同於整體,整體的復雜性遠遠大於分形元.更為重要的是,分形理論指出了分形元構成整體所遵循的原理和規律,是對系統論的一個重要的貢獻.
從分析事物的角度來看,分形論和系統論體現了從兩個極端出發達到對事物全面認識的思路.系統論從整體出發來確立各部分的系統性質,從宏觀到微觀考察整體與部分的相關性;而分形論則是從部分出發確立整體性質,沿著從微觀到宏觀的方向展開.系統論強調部分對整體的依賴性,而分形論則強調整體對部分的依賴性,兩者的互補,揭示了系統多層次面、多視角、多方位的聯系方式,豐富和深化了局部與整體之間的辯證關系.
分形論的提出,對科學認識論與方法論具有廣泛而深遠的意義.第一,它揭示了整體與部分之間的內在聯系,找到了從部分過渡到整體的媒介與橋梁,說明了部分與整體之間的信息「同構」.第二,分形與混沌和現代非線性科學的普遍聯系與交叉滲透,打破了學科間的條塊分割局面,使各個領域的科學家團結在一起.第三,為描述非線性復雜系統提供了簡潔有力的幾何語言,使人們的系統思維方法由線性進展到非線性,並得以從局部中認識整體,從有限中認識無限,從非規則中認識規則,從混沌中認識有序.
分形理論與耗散結構理論、混沌理論是相互補充和緊密聯系的,都是在非線性科學的研究中所取得的重要成果.耗散結構理論著眼於從熱力學角度研究在開放系統和遠離平衡條件下形成的自組織,為熱力學第二定律的「退化論」和達爾文的「進化論」開辟了一條聯系通道,把自然科學和社會科學置於統一的世界觀和認識論中.混沌理論側重於從動力學觀點研究不可積系統軌道的不穩定性,有助於消除對於自然界的確定論和隨機論兩套對立描述體系之間的鴻溝,深化對於偶然性和必然性這些范疇的認識.分形理論則從幾何角度,研究不可積系統幾何圖形的自相似性質,可能成為定量描述耗散結構和混沌吸引子這些復雜而無規則現象的有力工具,進一步推動非線性科學的發展.
分形理論是一門新興的橫斷學科,它給自然科學、社會科學、工程技術、文學藝術等極廣泛的學科領域提供了一般的科學方法和思考方式.就目前所知,它有很高程度的應用普遍性.這是因為,具有標度不變性的分形結構是現實世界普遍存在的一大類結構,該結構的含義十分豐富,它不僅指研究對象的空間幾何形態,而是一般地指其拓撲維(幾何維數)小於其測量維數的點集,如事件點的分布,能量點的分布,時間點的分布,過程點的分布,甚至是意識點、思維點的分布.
分形思想的基本點可以簡單表述如下:分形研究的對象是具有自相似性的無序系統,其維數的變化是連續的.從分形研究的進展看,近年來,又提出若干新的概念,其中包括自仿射分形、自反演分形、遞歸分形、多重分形、胖分形等等.有些分形常不具有嚴格的自相似性,正如定義所表達的,局部以某種方式與整體相似.
分形理論的自相似性概念,最初是指形態或結構的相似性,即在形態或結構上具有相似性的幾何對象稱為分形,研究這種分形特性的幾何稱為分形幾何學.隨著研究工作的深入發展和領域的拓展,又由於一些新學科,如系統論、資訊理論、控制論、耗散結構理論和協同論等相繼涌現的影響,自相似性概念得到充實與擴展,把信息、功能和時間上的自相似性也包含在自相似性概念之中.於是,把形態(結構)、或信息、或功能、或時間上具有自相似性的客體稱為廣義分形.廣義分形及其生成元可以是幾何實體,也可以是由信息或功能支撐的數理模型,分形體系可以在形態(結構)、信息和功能各個方面同時具有自相似性,也允許只在某一方面具有自相似性;分形體系中的自相似性可以是完全相似,這種情況是不多見的,也可以是統計意義上的相似,這種情況佔大多數,相似性具有層次或級別上的差別.級別最低的為生成元,級別最高的為分形體系的整體.級別愈接近,相似程度越好,級別相差愈大,相似程度越差,當超過一定范圍時,則相似性就不存在了.
分形具有以下幾個基本性質:
(1)自相似性是指事物的局部(或部分)與整體在形態、結構、信息、功能和時間等方面具有統計意義上的相似性.
(2)適當放大或縮小分形對象的幾何尺寸,整個結構並不改變,這種性質稱為標度不變性.
(3)自然現象僅在一定的尺度范圍內,一定的層次中才表現出統計自相似性,在這樣的尺度之外,不再具有分形特徵.換言之,在不同尺度范圍或不同層次上具有不同的分形特徵.
(4)在歐氏幾何學中,維數只能是整數,但是在分形幾何學中維數可以是整數或分數.
(5)自然界中分形是具有冪函數分布的隨機現象,因而必須用統計的方法進行分析和處理.
目前分形的分類有以下幾種:①確定性分形與隨機分形;②比例分形與非比例分形;③均勻分形與非均勻分形;④理論分形與自然分形;⑤空間分形與分形事件(時間分形).
分形研究應注意以下幾個問題:
(1)統計性(隨機性).研究統計意義上的分形特徵,由統計數據分析中找出穩態規律,才能最客觀地描述自然紋理與粗糙度.從形成過程來看,分形是一個無窮隨機過程的體現.如大不列顛海岸線的復雜度是由長期海浪沖擊、侵蝕及風化形成的,其他許多動力過程、凝聚過程也都是無窮隨機的,不可能由某個特徵量來形成.因此,探討分形與隨機序列、信息熵之間的內在聯系是非常必要的.
(2)全局性.分形是整體與局部比較而存在的,它包括多層嵌套及無窮的精細結構.研究一個平面(二維)或立體(三維)的粗糙度,要考慮全局范圍各個方向的平穩性,即區別各向同性或各向異性分布規律.
(3)多標度性.一個物體的分形特性通常是在某些尺度下體現出來,在另一些尺度下則不是分形特性.理想的無標度區幾乎不存在,只有從多標度中研究分形特性才較實際.
模型的建立,其實是分形(相似性)模型的建立.利用相似性原理,建立模型單元,對預測單元進行分形處理和預測.
分形的正問題是給出規律,通過迭代和遞推過程產生分形,產生的幾何對象顯然具有某種相似性.反問題叫做分形重構.廣義而言,它指任何一個幾何上認為是分形的圖形,能否找到產生它的規律,以某種方式來生成它.當我們研究非線性動力學時,混沌動力學會產生分形,而分形重構則是動力學系統研究的逆問題.由於存在「一因多果」、「多因一果」,由分維重構分形還需加入另外參數.
臨界現象與分形有關.重整化群是研究臨界現象的一種方法.該方法首先對小尺寸模型進行計算,然後被重整化至大的或更大的尺度.如果我們有網格狀的一組元素,每個元素具有一定的滲透概率,重整化群方法的一個應用就是計算滲透的開始問題.當元素滲透率達到某一臨界值時,這一組元素的滲透流動就會突然地發生.一旦流動開始後,相聯結元素之間便具有分形結構.
自組織臨界現象的概念可以用來分析地震活動性.按照這個概念,一個自然界的系統處在穩定態的邊緣,一旦偏離這個狀態,系統會自然地演化回到邊緣穩定的狀態.臨界狀態不存在天然的長度標度,因而是分形的.簡單的細胞自動機模型可以說明這種自組織臨界現象.
分形理論作為非線性科學的一個分支,是研究自然界空間結構復雜性的一門學科,可從復雜的看似無序的圖案中,提取出確定性、規律性的參量.既可以反演分形結構的形成機制,又可以從看似隨機的演化過程(時間序列)中推測體系演化的結果,近年來倍受地球科學家的注意.在地質統計學,孔隙介質、儲層非均勻性及石油勘探開發,固相表面或兩相界面,岩石破裂、斷層及地震和地形、地貌學等地球科學各個領域得到了廣泛的應用.
自20世紀80年代初以來,一些專家學者注意到了地質學中的自相似現象,並試圖將分形理論運用於地學之中.以地質學中普遍存在的自相似性現象、地質體高度不規則性和分割性與層次性、地質學中重演現象的普遍性、分形幾何學在其他學科中應用實例與地質學中的研究對象的相似性、地質學中存在一些冪函數關系等為內在基礎,以地質學定量化的需要、非線性地質學的發展及線性地質學難以解決諸多難點、分形理論及現代測試和電算技術的發展為外在基礎,使分形理論與地質學相結合成為可能,它的進一步發展將充實數學地質的研究內容並推動數學地質邁上一個新台階.目前,分形理論應用於地球科學主要包括以下兩個方面的研究:
(1)對「地質存在」——地質體或某些地質現象的分形結構分析,求取相應分形維數,尋找分維值與有關物理參量之間的聯系,探討分形結構形成的機理.這方面的研究相對較多,如人們已對斷裂、斷層和褶皺等地質構造(現象)進行了分形分析,探討分維值與岩石力學性質等之間的關系;從大到海底(或大陸)地貌,小到納米級的微晶表面證實了各類粗糙表面具有分形特徵;計算了河流網路,斷裂網路,地質多孔介質和粘性指進的分維值以及脈厚與品位或品位與儲量等之間的分形關系.
(2)對「地質演化」——地質作用過程進行分形分析,求取分形維數並考察其變化趨勢,從而預測演化的結果.例如,科學家們通過對強震前小震分布的分形研究表明,強震前普遍出現降維現象,從而為地震預報提供有力理論工具.當今的研究,不僅僅局限於分維數的計算,分形模型的建立;而更著重於解釋地質學中引起自相似性特徵的原因或成因,自相似體系的生成過程及模擬,以及用分形理論解決地質學中的疑難問題與實踐問題,如地震和災害地質的預報、石油預測、岩體力學類型劃分、成礦規律與成礦預測等.地球化學數據在很大程度上反映了地質現象的結構特徵.分維是描述分形結構的定量參數,它有可能揭示出地球化學元素空間分布的內在規律.
分維與地質異常有一定的關系.我們可以對不同地段以一定的地質內容為參量對比它們分維大小的差異,以此求得結構地段的位置及范圍,從而確定地質異常;也可以對不同時期可恢復的歷史地質結構格局分別求分維,還可以確定分維背景值.分形是自然界中普遍存在的一種規律性.
總之,分形理論已經滲透到地學領域的各個角落,應用范圍涉及地球物理學、地球化學、石油地質學、構造地質學及災害地質學等.
⑼ 為什麼高等數學會排斥分形幾何
分形幾何文件名大小瀏覽量分形市場分析—將混沌理論應用到投資與經濟...5.5 M 12分形藝術程序設計.pdf4.5 M 8分形幾何-數學基礎及其應用-曾文曲.pdf6.4 M 8分形幾何中的技巧.pdf8.6 M 9分形幾何學(第2版) 陳顒.pdf7.1 M 10分形幾何學.pdf7.3 M 12分形圖形學.pdf