1. des和rsa屬於什麼加密技術
RAS:不對稱加密演算法
不對稱加密演算法使用兩把完全不同但又是完全匹配的一對鑰匙—公鑰和私鑰。在使用不對稱加密演算法加密文件時,只有使用匹配的一對公鑰和私鑰,才能完成對明文的加密和解密過程。加密明文時採用公鑰加密,解密密文時使用私鑰才能完成,而且發信方(加密者)知道收信方的公鑰,只有收信方(解密者)才是唯一知道自己私鑰的人。不對稱加密演算法的基本原理是,如果發信方想發送只有收信方才能解讀的加密信息,發信方必須首先知道收信方的公鑰,然後利用收信方的公鑰來加密原文;收信方收到加密密文後,使用自己的私鑰才能解密密文。顯然,採用不對稱加密演算法,收發信雙方在通信之前,收信方必須將自己早已隨機生成的公鑰送給發信方,而自己保留私鑰。由於不對稱演算法擁有兩個密鑰,因而特別適用於分布式系統中的數據加密。廣泛應用的不對稱加密演算法有RSA演算法和美國國家標准局提出的DSA。以不對稱加密演算法為基礎的加
2. RSA加密演算法,求大神幫解答
如果用一段已經知道的明文,經過公鑰加密,得到密文。現在已知明文密文和n, 是不是就可以通過解密的公式不斷的冪運算求出私鑰d呢?
3. rsa是公鑰加密還是私鑰加密
公鑰加密,私鑰解密。
4. RSA是什麼意思
RSA演算法是一種非對稱密碼演算法,所謂非對稱,就是指該演算法需要一對密鑰,使用其中一個加密,則需要用另一個才能解密。
RSA的演算法涉及三個參數,n、e1、e2。
其中,n是兩個大質數p、q的積,n的二進製表示時所佔用的位數,就是所謂的密鑰長度。
e1和e2是一對相關的值,e1可以任意取,但要求e1與(p-1)*(q-1)互質;再選擇e2,要求(e2*e1)mod((p-1)*(q-1))=1。
(n及e1),(n及e2)就是密鑰對。
RSA加解密的演算法完全相同,設A為明文,B為密文,則:A=B^e1 mod n;B=A^e2 mod n;
e1和e2可以互換使用,即:
A=B^e2 mod n;B=A^e1 mod n;
補充回答:
對明文進行加密,有兩種情況需要這樣作:
1、您向朋友傳送加密數據,您希望只有您的朋友可以解密,這樣的話,您需要首先獲取您朋友的密鑰對中公開的那一個密鑰,e及n。然後用這個密鑰進行加密,這樣密文只有您的朋友可以解密,因為對應的私鑰只有您朋友擁有。
2、您向朋友傳送一段數據附加您的數字簽名,您需要對您的數據進行MD5之類的運算以取得數據的"指紋",再對"指紋"進行加密,加密將使用您自己的密鑰對中的不公開的私鑰。您的朋友收到數據後,用同樣的運算獲得數據指紋,再用您的公鑰對加密指紋進行解密,比較解密結果與他自己計算出來的指紋是否一致,即可確定數據是否的確是您發送的、以及在傳輸過程中是否被篡改。
密鑰的獲得,通常由某個機構頒發(如CA中心),當然也可以由您自己創建密鑰,但這樣作,您的密鑰並不具有權威性。
計算方面,按公式計算就行了,如果您的加密強度為1024位,則結果會在有效數據前面補0以補齊不足的位數。補入的0並不影響解密運算。
5. RSA的加密技術
RSA是一種非對稱加密技術,也就是說加密密鑰和解密密鑰是不一樣的,而且不能互相推導,是基於大素數分解理論的一種演算法。常用於身份認證,數據簽名等方面。只要密鑰不被泄露,到目前為止還無法破解。
6. RSA演算法加密
RSA加密演算法是一種典型的非對稱加密演算法,它基於大數的因式分解數學難題,它也是應用最廣泛的非對稱加密演算法,於1978年由美國麻省理工學院(MIT)的三位學著:Ron Rivest、Adi Shamir 和 Leonard Adleman 共同提出。
它的原理較為簡單,假設有消息發送方A和消息接收方B,通過下面的幾個步驟,就可以完成消息的加密傳遞:
消息發送方A在本地構建密鑰對,公鑰和私鑰;
消息發送方A將產生的公鑰發送給消息接收方B;
B向A發送數據時,通過公鑰進行加密,A接收到數據後通過私鑰進行解密,完成一次通信;
反之,A向B發送數據時,通過私鑰對數據進行加密,B接收到數據後通過公鑰進行解密。
由於公鑰是消息發送方A暴露給消息接收方B的,所以這種方式也存在一定的安全隱患,如果公鑰在數據傳輸過程中泄漏,則A通過私鑰加密的數據就可能被解密。
如果要建立更安全的加密消息傳遞模型,需要消息發送方和消息接收方各構建一套密鑰對,並分別將各自的公鑰暴露給對方,在進行消息傳遞時,A通過B的公鑰對數據加密,B接收到消息通過B的私鑰進行解密,反之,B通過A的公鑰進行加密,A接收到消息後通過A的私鑰進行解密。
當然,這種方式可能存在數據傳遞被模擬的隱患,但可以通過數字簽名等技術進行安全性的進一步提升。由於存在多次的非對稱加解密,這種方式帶來的效率問題也更加嚴重。
7. RSA 加密 是什麼
RSA(非對稱加密):使用公鑰加密,私鑰解密!
8. RSA公鑰加密是什麼意思
RSA公鑰密碼是1977年由Ron Rivest、Adi Shamirh和LenAdleman在MIT(美國麻省理工學院〉開發的,1978年首次公布[RIVE78]。它是目前最有影響的公鑰加密演算法,它能夠抵抗到目前為止已知的所有密碼攻擊。目前它已被ISO推薦為公鑰數據加密標准。RSA演算法基於一個十分簡單的數論事實:將兩個大素數相乘十分容易,但是想分解它們的乘積卻極端困難,因此可以將乘積公開作為加密密鑰。
RSA的演算法結構相當簡單,整個演算法可以描述如下:
(1)選取兩個大素數p和q(保密);
(2)計算n=pq(公開),γ=(p一1〉(q-1)(保密);
(3)隨機選取整數e(公開,加密密鑰),使得ed(ear)=1
(4)計算d(保密,私人密鑰),使得ed≡1(mod r),即d=e-1(mod r);
(5)加密:c=me mod n
(6)解密:m=cd mod n。
利用RSA對被加密的信息m (長度小於log2n的整數)進行加密得到相應的密文c=me mod n;解密演算法則是計算m=cd modn RSA的優點是不需要密鑰分配,但缺點是速度慢。
9. 什麼是RSA演算法,求簡單解釋。
RSA公鑰加密演算法是1977年由Ron Rivest、Adi Shamirh和LenAdleman在(美國麻省理工學院)開發的。RSA取名來自開發他們三者的名字。RSA是目前最有影響力的公鑰加密演算法,它能夠
抵抗到目前為止已知的所有密碼攻擊,已被ISO推薦為公鑰數據加密標准。RSA演算法基於一個十分簡單的數論事實:將兩個大素數相乘十分容易,但那時想要對其乘積進行因式分解卻極其困難,因此可以將乘積公開作為加密密鑰。由於進行的都是大數計算,使得RSA最快的情況也比DES慢上好幾倍,無論是軟體還是硬體實現。速度一直是RSA的缺陷。一般來說只用於少量數據加密。RSA的速度比對應同樣安全級別的對稱密碼演算法要慢1000倍左右。
基礎
大數分解和素性檢測——將兩個大素數相乘在計算上很容易實現,但將該乘積分解為兩個大素數因子的計算量是相當巨大的,以至於在實際計算中是不能實現的。
1.RSA密碼體制的建立:
(1)選擇兩個不同的大素數p和q;
(2)計算乘積n=pq和Φ(n)=(p-1)(q-1);
(3)選擇大於1小於Φ(n)的隨機整數e,使得gcd(e,Φ(n))=1;
(4)計算d使得de=1mod Φ(n);
(5)對每一個密鑰k=(n,p,q,d,e),定義加密變換為Ek(x)=xemodn,解密變換為Dk(x)=ydmodn,這里x,y∈Zn;
(6)以{e,n}為公開密鑰,{p,q,d}為私有密鑰。
2.RSA演算法實例:
下面用兩個小素數7和17來建立一個簡單的RSA演算法:
(1)選擇兩個素數p=7和q=17;
(2)計算n=pq=7 17=119,計算Φ(n)=(p-1)(q-1)=6 16=96;
(3)選擇一個隨機整數e=5,它小於Φ(n)=96並且於96互素;
(4)求出d,使得de=1mod96且d<96,此處求出d=77,因為 77 5=385=4 96+1;
(5)輸入明文M=19,計算19模119的5次冪,Me=195=66mod119,傳出密文C=66;(6)接收密文66,計算66模119的77次冪;Cd=6677≡19mod119得到明文19。