1977年1月,美國政府頒布:採納IBM公司設計的方案作為非機密數據的正式數據加密標准(DES棗Data Encryption Standard)。
目前在國內,隨著三金工程尤其是金卡工程的啟動,DES演算法在POS、ATM、磁卡及智能卡(IC卡)、加油站、高速公路收費站等領域被廣泛應用,以此來實現關鍵數據的保密,如信用卡持卡人的PIN的加密傳輸,IC卡與POS間的雙向認證、金融交易數據包的MAC校驗等,均用到DES演算法。
DES演算法的入口參數有三個:Key、Data、Mode。其中Key為8個位元組共64位,是DES演算法的工作密鑰;Data也為8個位元組64位,是要被加密或被解密的數據;Mode為DES的工作方式,有兩種:加密或解密。
DES演算法是這樣工作的:如Mode為加密,則用Key 去把數據Data進行加密, 生成Data的密碼形式(64位)作為DES的輸出結果;如Mode為解密,則用Key去把密碼形式的數據Data解密,還原為Data的明碼形式(64位)作為DES的輸出結果。在通信網路的兩端,雙方約定一致的Key,在通信的源點用Key對核心數據進行DES加密,然後以密碼形式在公共通信網(如電話網)中傳輸到通信網路的終點,數據到達目的地後,用同樣的Key對密碼數據進行解密,便再現了明碼形式的核心數據。這樣,便保證了核心數據(如PIN、MAC等)在公共通信網中傳輸的安全性和可靠性。
通過定期在通信網路的源端和目的端同時改用新的Key,便能更進一步提高數據的保密性,這正是現在金融交易網路的流行做法。
DES演算法詳述
DES演算法把64位的明文輸入塊變為64位的密文輸出塊,它所使用的密鑰也是64位,整個演算法的主流程圖如下:
其功能是把輸入的64位數據塊按位重新組合,並把輸出分為L0、R0兩部分,每部分各長32位,其置換規則見下表:
58,50,12,34,26,18,10,2,60,52,44,36,28,20,12,4,
62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8,
57,49,41,33,25,17, 9,1,59,51,43,35,27,19,11,3,
61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7,
即將輸入的第58位換到第一位,第50位換到第2位,...,依此類推,最後一位是原來的第7位。L0、R0則是換位輸出後的兩部分,L0是輸出的左32位,R0 是右32位,例:設置換前的輸入值為D1D2D3......D64,則經過初始置換後的結果為:L0=D58D50...D8;R0=D57D49...D7。
經過16次迭代運算後。得到L16、R16,將此作為輸入,進行逆置換,即得到密文輸出。逆置換正好是初始置的逆運算,例如,第1位經過初始置換後,處於第40位,而通過逆置換,又將第40位換回到第1位,其逆置換規則如下表所示:
40,8,48,16,56,24,64,32,39,7,47,15,55,23,63,31,
38,6,46,14,54,22,62,30,37,5,45,13,53,21,61,29,
36,4,44,12,52,20,60,28,35,3,43,11,51,19,59,27,
34,2,42,10,50,18,58 26,33,1,41, 9,49,17,57,25,
放大換位表
32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10,11,
12,13,12,13,14,15,16,17,16,17,18,19,20,21,20,21,
22,23,24,25,24,25,26,27,28,29,28,29,30,31,32, 1,
單純換位表
16,7,20,21,29,12,28,17, 1,15,23,26, 5,18,31,10,
2,8,24,14,32,27, 3, 9,19,13,30, 6,22,11, 4,25,
在f(Ri,Ki)演算法描述圖中,S1,S2...S8為選擇函數,其功能是把6bit數據變為4bit數據。下面給出選擇函數Si(i=1,2......8)的功能表:
選擇函數Si
S1:
14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,
0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,
4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,
15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13,
S2:
15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,
3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,
0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,
13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9,
S3:
10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,
13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,
13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,
1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12,
S4:
7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,
13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,
10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,
3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14,
S5:
2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,
14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,
4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,
11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3,
S6:
12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,
10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,
9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,
4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13,
S7:
4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,
13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,
1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,
6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12,
S8:
13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,
1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,
7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,
2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11,
在此以S1為例說明其功能,我們可以看到:在S1中,共有4行數據,命名為0,1、2、3行;每行有16列,命名為0、1、2、3,......,14、15列。
現設輸入為: D=D1D2D3D4D5D6
令:列=D2D3D4D5
行=D1D6
然後在S1表中查得對應的數,以4位二進製表示,此即為選擇函數S1的輸出。下面給出子密鑰Ki(48bit)的生成演算法
從子密鑰Ki的生成演算法描述圖中我們可以看到:初始Key值為64位,但DES演算法規定,其中第8、16、......64位是奇偶校驗位,不參與DES運算。故Key 實際可用位數便只有56位。即:經過縮小選擇換位表1的變換後,Key 的位數由64 位變成了56位,此56位分為C0、D0兩部分,各28位,然後分別進行第1次循環左移,得到C1、D1,將C1(28位)、D1(28位)合並得到56位,再經過縮小選擇換位2,從而便得到了密鑰K0(48位)。依此類推,便可得到K1、K2、......、K15,不過需要注意的是,16次循環左移對應的左移位數要依據下述規則進行:
循環左移位數
1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1
以上介紹了DES演算法的加密過程。DES演算法的解密過程是一樣的,區別僅僅在於第一次迭代時用子密鑰K15,第二次K14、......,最後一次用K0,演算法本身並沒有任何變化。
Ⅱ MD5 DES 的加密是什麼意思
MD5的加密程序
package org.lxh.myzngt.util;
public class MD5Code {
/*
* 下面這些S11-S44實際上是一個4*4的矩陣,在原始的C實現中是用#define 實現的, 這里把它們實現成為static
* final是表示了只讀,切能在同一個進程空間內的多個 Instance間共享
*/
static final int S11 = 7;
static final int S12 = 12;
static final int S13 = 17;
static final int S14 = 22;
static final int S21 = 5;
static final int S22 = 9;
static final int S23 = 14;
static final int S24 = 20;
static final int S31 = 4;
static final int S32 = 11;
static final int S33 = 16;
static final int S34 = 23;
static final int S41 = 6;
static final int S42 = 10;
static final int S43 = 15;
static final int S44 = 21;
static final byte[] PADDING = { -128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0 };
/*
* 下面的三個成員是MD5計算過程中用到的3個核心數據,在原始的C實現中 被定義到MD5_CTX結構中
*/
private long[] state = new long[4];// state (ABCD)
private long[] count = new long[2];// number of bits, molo 2^64 (lsb
// first)
private byte[] buffer = new byte[64]; // input buffer
/*
* digestHexStr是MD5的唯一一個公共成員,是最新一次計算結果的 16進制ASCII表示.
*/
public String digestHexStr;
/*
* digest,是最新一次計算結果的2進制內部表示,表示128bit的MD5值.
*/
private byte[] digest = new byte[16];
/*
* getMD5ofStr是類MD5最主要的公共方法,入口參數是你想要進行MD5變換的字元串
* 返回的是變換完的結果,這個結果是從公共成員digestHexStr取得的.
*/
public String getMD5ofStr(String inbuf) {
md5Init();
md5Update(inbuf.getBytes(), inbuf.length());
md5Final();
digestHexStr = "";
for (int i = 0; i < 16; i++) {
digestHexStr += byteHEX(digest[i]);
}
return digestHexStr;
}
// 這是MD5這個類的標准構造函數,javaBean要求有一個public的並且沒有參數的構造函數
public MD5Code() {
md5Init();
return;
}
/* md5Init是一個初始化函數,初始化核心變數,裝入標準的幻數 */
private void md5Init() {
count[0] = 0L;
count[1] = 0L;
// /* Load magic initialization constants.
state[0] = 0x67452301L;
state[1] = 0xefcdab89L;
state[2] = 0x98badcfeL;
state[3] = 0x10325476L;
return;
}
/*
* F, G, H ,I 是4個基本的MD5函數,在原始的MD5的C實現中,由於它們是
* 簡單的位運算,可能出於效率的考慮把它們實現成了宏,在java中,我們把它們 實現成了private方法,名字保持了原來C中的。
*/
private long F(long x, long y, long z) {
return (x & y) | ((~x) & z);
}
private long G(long x, long y, long z) {
return (x & z) | (y & (~z));
}
private long H(long x, long y, long z) {
return x ^ y ^ z;
}
private long I(long x, long y, long z) {
return y ^ (x | (~z));
}
/*
* FF,GG,HH和II將調用F,G,H,I進行近一步變換 FF, GG, HH, and II transformations for
* rounds 1, 2, 3, and 4. Rotation is separate from addition to prevent
* recomputation.
*/
private long FF(long a, long b, long c, long d, long x, long s, long ac) {
a += F(b, c, d) + x + ac;
a = ((int) a << s) | ((int) a >>> (32 - s));
a += b;
return a;
}
private long GG(long a, long b, long c, long d, long x, long s, long ac) {
a += G(b, c, d) + x + ac;
a = ((int) a << s) | ((int) a >>> (32 - s));
a += b;
return a;
}
private long HH(long a, long b, long c, long d, long x, long s, long ac) {
a += H(b, c, d) + x + ac;
a = ((int) a << s) | ((int) a >>> (32 - s));
a += b;
return a;
}
private long II(long a, long b, long c, long d, long x, long s, long ac) {
a += I(b, c, d) + x + ac;
a = ((int) a << s) | ((int) a >>> (32 - s));
a += b;
return a;
}
/*
* md5Update是MD5的主計算過程,inbuf是要變換的位元組串,inputlen是長度,這個
* 函數由getMD5ofStr調用,調用之前需要調用md5init,因此把它設計成private的
*/
private void md5Update(byte[] inbuf, int inputLen) {
int i, index, partLen;
byte[] block = new byte[64];
index = (int) (count[0] >>> 3) & 0x3F;
// /* Update number of bits */
if ((count[0] += (inputLen << 3)) < (inputLen << 3))
count[1]++;
count[1] += (inputLen >>> 29);
partLen = 64 - index;
// Transform as many times as possible.
if (inputLen >= partLen) {
md5Memcpy(buffer, inbuf, index, 0, partLen);
md5Transform(buffer);
for (i = partLen; i + 63 < inputLen; i += 64) {
md5Memcpy(block, inbuf, 0, i, 64);
md5Transform(block);
}
index = 0;
} else
i = 0;
// /* Buffer remaining input */
md5Memcpy(buffer, inbuf, index, i, inputLen - i);
}
/*
* md5Final整理和填寫輸出結果
*/
private void md5Final() {
byte[] bits = new byte[8];
int index, padLen;
// /* Save number of bits */
Encode(bits, count, 8);
// /* Pad out to 56 mod 64.
index = (int) (count[0] >>> 3) & 0x3f;
padLen = (index < 56) ? (56 - index) : (120 - index);
md5Update(PADDING, padLen);
// /* Append length (before padding) */
md5Update(bits, 8);
// /* Store state in digest */
Encode(digest, state, 16);
}
/*
* md5Memcpy是一個內部使用的byte數組的塊拷貝函數,從input的inpos開始把len長度的
* 位元組拷貝到output的outpos位置開始
*/
private void md5Memcpy(byte[] output, byte[] input, int outpos, int inpos,
int len) {
int i;
for (i = 0; i < len; i++)
output[outpos + i] = input[inpos + i];
}
/*
* md5Transform是MD5核心變換程序,有md5Update調用,block是分塊的原始位元組
*/
private void md5Transform(byte block[]) {
long a = state[0], b = state[1], c = state[2], d = state[3];
long[] x = new long[16];
Decode(x, block, 64);
/* Round 1 */
a = FF(a, b, c, d, x[0], S11, 0xd76aa478L); /* 1 */
d = FF(d, a, b, c, x[1], S12, 0xe8c7b756L); /* 2 */
c = FF(c, d, a, b, x[2], S13, 0x242070dbL); /* 3 */
b = FF(b, c, d, a, x[3], S14, 0xc1bdceeeL); /* 4 */
a = FF(a, b, c, d, x[4], S11, 0xf57c0fafL); /* 5 */
d = FF(d, a, b, c, x[5], S12, 0x4787c62aL); /* 6 */
c = FF(c, d, a, b, x[6], S13, 0xa8304613L); /* 7 */
b = FF(b, c, d, a, x[7], S14, 0xfd469501L); /* 8 */
a = FF(a, b, c, d, x[8], S11, 0x698098d8L); /* 9 */
d = FF(d, a, b, c, x[9], S12, 0x8b44f7afL); /* 10 */
c = FF(c, d, a, b, x[10], S13, 0xffff5bb1L); /* 11 */
b = FF(b, c, d, a, x[11], S14, 0x895cd7beL); /* 12 */
a = FF(a, b, c, d, x[12], S11, 0x6b901122L); /* 13 */
d = FF(d, a, b, c, x[13], S12, 0xfd987193L); /* 14 */
c = FF(c, d, a, b, x[14], S13, 0xa679438eL); /* 15 */
b = FF(b, c, d, a, x[15], S14, 0x49b40821L); /* 16 */
/* Round 2 */
a = GG(a, b, c, d, x[1], S21, 0xf61e2562L); /* 17 */
d = GG(d, a, b, c, x[6], S22, 0xc040b340L); /* 18 */
c = GG(c, d, a, b, x[11], S23, 0x265e5a51L); /* 19 */
b = GG(b, c, d, a, x[0], S24, 0xe9b6c7aaL); /* 20 */
a = GG(a, b, c, d, x[5], S21, 0xd62f105dL); /* 21 */
d = GG(d, a, b, c, x[10], S22, 0x2441453L); /* 22 */
c = GG(c, d, a, b, x[15], S23, 0xd8a1e681L); /* 23 */
b = GG(b, c, d, a, x[4], S24, 0xe7d3fbc8L); /* 24 */
a = GG(a, b, c, d, x[9], S21, 0x21e1cde6L); /* 25 */
d = GG(d, a, b, c, x[14], S22, 0xc33707d6L); /* 26 */
c = GG(c, d, a, b, x[3], S23, 0xf4d50d87L); /* 27 */
b = GG(b, c, d, a, x[8], S24, 0x455a14edL); /* 28 */
a = GG(a, b, c, d, x[13], S21, 0xa9e3e905L); /* 29 */
d = GG(d, a, b, c, x[2], S22, 0xfcefa3f8L); /* 30 */
c = GG(c, d, a, b, x[7], S23, 0x676f02d9L); /* 31 */
b = GG(b, c, d, a, x[12], S24, 0x8d2a4c8aL); /* 32 */
/* Round 3 */
a = HH(a, b, c, d, x[5], S31, 0xfffa3942L); /* 33 */
d = HH(d, a, b, c, x[8], S32, 0x8771f681L); /* 34 */
c = HH(c, d, a, b, x[11], S33, 0x6d9d6122L); /* 35 */
b = HH(b, c, d, a, x[14], S34, 0xfde5380cL); /* 36 */
a = HH(a, b, c, d, x[1], S31, 0xa4beea44L); /* 37 */
d = HH(d, a, b, c, x[4], S32, 0x4bdecfa9L); /* 38 */
c = HH(c, d, a, b, x[7], S33, 0xf6bb4b60L); /* 39 */
b = HH(b, c, d, a, x[10], S34, 0xbebfbc70L); /* 40 */
a = HH(a, b, c, d, x[13], S31, 0x289b7ec6L); /* 41 */
d = HH(d, a, b, c, x[0], S32, 0xeaa127faL); /* 42 */
c = HH(c, d, a, b, x[3], S33, 0xd4ef3085L); /* 43 */
b = HH(b, c, d, a, x[6], S34, 0x4881d05L); /* 44 */
a = HH(a, b, c, d, x[9], S31, 0xd9d4d039L); /* 45 */
d = HH(d, a, b, c, x[12], S32, 0xe6db99e5L); /* 46 */
c = HH(c, d, a, b, x[15], S33, 0x1fa27cf8L); /* 47 */
b = HH(b, c, d, a, x[2], S34, 0xc4ac5665L); /* 48 */
/* Round 4 */
a = II(a, b, c, d, x[0], S41, 0xf4292244L); /* 49 */
d = II(d, a, b, c, x[7], S42, 0x432aff97L); /* 50 */
c = II(c, d, a, b, x[14], S43, 0xab9423a7L); /* 51 */
b = II(b, c, d, a, x[5], S44, 0xfc93a039L); /* 52 */
a = II(a, b, c, d, x[12], S41, 0x655b59c3L); /* 53 */
d = II(d, a, b, c, x[3], S42, 0x8f0ccc92L); /* 54 */
c = II(c, d, a, b, x[10], S43, 0xffeff47dL); /* 55 */
b = II(b, c, d, a, x[1], S44, 0x85845dd1L); /* 56 */
a = II(a, b, c, d, x[8], S41, 0x6fa87e4fL); /* 57 */
d = II(d, a, b, c, x[15], S42, 0xfe2ce6e0L); /* 58 */
c = II(c, d, a, b, x[6], S43, 0xa3014314L); /* 59 */
b = II(b, c, d, a, x[13], S44, 0x4e0811a1L); /* 60 */
a = II(a, b, c, d, x[4], S41, 0xf7537e82L); /* 61 */
d = II(d, a, b, c, x[11], S42, 0xbd3af235L); /* 62 */
c = II(c, d, a, b, x[2], S43, 0x2ad7d2bbL); /* 63 */
b = II(b, c, d, a, x[9], S44, 0xeb86d391L); /* 64 */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
}
/*
* Encode把long數組按順序拆成byte數組,因為java的long類型是64bit的, 只拆低32bit,以適應原始C實現的用途
*/
private void Encode(byte[] output, long[] input, int len) {
int i, j;
for (i = 0, j = 0; j < len; i++, j += 4) {
output[j] = (byte) (input[i] & 0xffL);
output[j + 1] = (byte) ((input[i] >>> 8) & 0xffL);
output[j + 2] = (byte) ((input[i] >>> 16) & 0xffL);
output[j + 3] = (byte) ((input[i] >>> 24) & 0xffL);
}
}
/*
* Decode把byte數組按順序合成成long數組,因為java的long類型是64bit的,
* 只合成低32bit,高32bit清零,以適應原始C實現的用途
*/
private void Decode(long[] output, byte[] input, int len) {
int i, j;
for (i = 0, j = 0; j < len; i++, j += 4)
output[i] = b2iu(input[j]) | (b2iu(input[j + 1]) << 8)
| (b2iu(input[j + 2]) << 16) | (b2iu(input[j + 3]) << 24);
return;
}
/*
* b2iu是我寫的一個把byte按照不考慮正負號的原則的」升位」程序,因為java沒有unsigned運算
*/
public static long b2iu(byte b) {
return b < 0 ? b & 0x7F + 128 : b;
}
/*
* byteHEX(),用來把一個byte類型的數轉換成十六進制的ASCII表示,
* 因為java中的byte的toString無法實現這一點,我們又沒有C語言中的 sprintf(outbuf,"%02X",ib)
*/
public static String byteHEX(byte ib) {
char[] Digit = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A',
'B', 'C', 'D', 'E', 'F' };
char[] ob = new char[2];
ob[0] = Digit[(ib >>> 4) & 0X0F];
ob[1] = Digit[ib & 0X0F];
String s = new String(ob);
return s;
}
}
Ⅲ 「DES」和「AES」演算法的比較,各自優缺點有哪些
DES演算法優點:DES演算法具有極高安全性,到目前為止,除了用窮舉搜索法對DES演算法進行攻擊外,還沒有發現更有效的辦法。
DES演算法缺點:
1、分組比較短。
2、密鑰太短。
3、密碼生命周期短。
4、運算速度較慢。
AES演算法優點:
1、運算速度快。
2、對內存的需求非常低,適合於受限環境。
3、分組長度和密鑰長度設計靈活。
4、 AES標准支持可變分組長度,分組長度可設定為32比特的任意倍數,最小值為128比特,最大值為256比特。
5、 AES的密鑰長度比DES大,它也可設定為32比特的任意倍數,最小值為128比特,最大值為256比特,所以用窮舉法是不可能破解的。
6、很好的抵抗差分密碼分析及線性密碼分析的能力。
AES演算法缺點:目前尚未存在對AES 演算法完整版的成功攻擊,但已經提出對其簡化演算法的攻擊。
(3)數據加密標准des安全性取決於擴展閱讀:
高級加密標准(英語:Advanced Encryption Standard,縮寫:AES),在密碼學中又稱Rijndael加密法,是美國聯邦政府採用的一種區塊加密標准。
這個標准用來替代原先的DES,已經被多方分析且廣為全世界所使用。經過五年的甄選流程,高級加密標准由美國國家標准與技術研究院(NIST)於2001年11月26日發布於FIPS PUB 197,並在2002年5月26日成為有效的標准。2006年,高級加密標准已然成為對稱密鑰加密中最流行的演算法之一。
Ⅳ DES是什麼意思
DES全稱為Data Encryption Standard,即數據加密標准,是一種使用密鑰加密的塊演算法。
1977年被美國聯邦政府的國家標准局確定為聯邦資料處理標准(FIPS),並授權在非密級政府通信中使用,隨後該演算法在國際上廣泛流傳開來。需要注意的是,在某些文獻中,作為演算法的DES稱為數據加密演算法(Data Encryption Algorithm,DEA),已與作為標準的DES區分開來。
1、數據加密標准
DES的原始思想可以參照二戰德國的恩格瑪機,其基本思想大致相同。傳統的密碼加密都是由古代的循環移位思想而來,恩格瑪機在這個基礎之上進行了擴散模糊。但是本質原理都是一樣的。現代DES在二進制級別做著同樣的事:替代模糊,增加分析的難度。
2、折疊加密原理
DES 使用一個 56 位的密鑰以及附加的 8 位奇偶校驗位,產生最大 64 位的分組大小。這是一個迭代的分組密碼,使用稱為 Feistel 的技術,其中將加密的文本塊分成兩半。使用子密鑰對其中一半應用循環功能,然後將輸出與另一半進行"異或"運算;接著交換這兩半,這一過程會繼續下去,但最後一個循環不交換。DES 使用 16 個循環,使用異或,置換,代換,移位操作四種基本運算。
Ⅳ 什麼叫多字母加密
多字母順序加密的這種演算法的每個字母的後推位次並不相同,假如D代替了A ,並不一定是E取代B。在第二次世界大戰中名聲大震的Enigma自動加密機,也基於這個原理工作。
相對而言:
羅馬的將軍們用字母後推3位的方法加密往來的信函。比如,用D來代替A,E代替B,以此類推。這個單一字母順序加密法,直到九世紀才被阿拉伯的學者通過不斷的分析破解。
http://www.chip.cn/index.php?option=com_content&view=article&id=3040:2010-09-01-07-23-41&catid=5:news-remarks&Itemid=13
時間之旅:天書奇譚-加密篇
導言:每個人都在問這個問題:你能保密碼?2500年來,統治者、保密機構和密碼破譯家一直尋找著答案。
一直以來,加密技術都應用於政治領域。現如今,每個人在網上沖浪、收發email或者使用網上銀行的時候,都要用到加密演算法。加密能避免「竊聽」事件的發生,如果沒有加密演算法,互聯網或許不會是今天這個樣子。
現代數據加密演算法的原理仍基於羅馬帝國的凱撒與他的將軍們聯系所使用的加密方法,它的原理基於凱撒時代的字母表。羅馬的將軍們用字母後推3位的方法加密往來的信函。比如,用D來代替A,E代替B,以此類推。這個單一字母順序加密法,直到九世紀才被阿拉伯的學者通過不斷的分析破解。然而,法國人Blaise de Vigenère的多字母順序加密就不那麼容易破解了,這種演算法的每個字母的後推位次並不相同,假如D代替了A ,並不一定是E取代B。在第二次世界大戰中名聲大震的Enigma自動加密機,也基於這個原理工作。
計算機時代的到來,使得這一切都發生了改變。伴隨著不斷上升的處理能力,演算法變得越來越復雜,「攻擊」也變得越來越高效。此後,密碼破譯家便遵循Kerckhoffs原則,一個密碼系統應該是安全的,即使該系統的一切,除了密鑰,都可以作為公共知識。這種「開源」理念的好處是,任何人都可以試驗這種加密演算法的優劣。
用於科學研究目的的攻擊是可取的。如果攻擊是成功的,一個更好的演算法便有了用武之地。在1998年,數據加密標准(DES)的命運便是如此,它曾是美國當局首選的加密方法。密鑰的長度只有短短的56位,如果使用強力攻擊,很快便可破解。
DES 的繼任者從競爭中勝出,Rijndael演算法贏得了最後的勝利。美國國家標准技術研究所(NIST)選擇Rijndael作為美國政府加密標准(AES)的加密演算法,該演算法使用128位密鑰,適用WLAN,能夠勝任藍光加密。然而,這么經典的對稱演算法對於網路通訊還是不夠安全。發送者和接收者使用相同的密鑰加密和解密。任何人都可以截獲密鑰,因為它並未加密。
發明於上世紀70年代的非對稱加密法幫助解決了這個問題。接收者生成公共密鑰和私人密鑰兩個部分,他將公共密鑰發送給那些需要向他發送加密信息的人。公共密鑰可以加密文件,但是這些文件需要私人密鑰才能解碼。這一演算法的缺點是:密鑰對需要兩組大的原始數字生成,非常耗時。對網路銀行等個人業務,對稱法和非對稱法組合使用的方法是有效的。信息部分使用對稱法加密,但密鑰應採用非對稱法加密。
當量子電腦有足夠的能力使用強力攻擊破解128位的密鑰的時候,非對稱加密法就不安全了。量子密碼學利用物理學原理保護信息,以量子為信息載體,經由量子信道傳送,在合法用戶之間建立共享的密鑰,它的安全性由「海森堡測不準原理」及「單量子不可復制定理」保證。
加密史
400v.Chr. Skytale(天書)
時間之旅:天書奇譚-加密篇
Skytale 就是一種加密用的、具有一定粗細的棍棒或權杖。斯巴達人把重要的信息纏繞在Skytale上的皮革或羊皮紙之後,再把皮革或羊皮紙解下來,這樣就能有效地打亂字母順序。只有把皮(紙)帶再一點點卷回與原來加密的Skytale同樣粗細的棍棒上後,文字信息逐圈並列在棍棒的表面,才能還原出本來的意思。
50v.Chr. 凱撒密碼
時間之旅:天書奇譚-加密篇
羅馬的統治者將字母後推3個位次加密,這就是今天廣為人知的單一字母加密法。
1360 Alphabetum Kaldeorum
時間之旅:天書奇譚-加密篇
奧地利的Rudolf 四世發明了中世紀最受歡迎的加密法,他甚至在墓碑上也使用它。
1467 加密碟
時間之旅:天書奇譚-加密篇
這個工具使得單一字母加密法的字母取代簡單化。
1585 維熱納爾密碼(Vigenère)
法國外交家Blaise de Vigenère發明了一種方法來對同一條信息中的不同字母用不同的密碼進行加密,這種多字母加密法在誕生後300年內都沒能被破解。
1854 Charles Babbage
時間之旅:天書奇譚-加密篇
計算機的發明者,據說是他第一個破解了維熱納爾代碼,人們在檢查他的遺物時發現了這一破解方法。
1881 Kerkhoff原則
時間之旅:天書奇譚-加密篇
這以後,加密演算法的安全性不再取決於演算法的保密,而是密鑰的保密。
1918 Enigma和一次性密鑰
時間之旅:天書奇譚-加密篇
Enigma是著名的德國加密機,為每個字母生成取代位次。在很長的一段時間內,都被認為是無法破解的。
一次性密鑰在數學上是安全的:使用編碼手冊,為每個文本使用不用的加密方式——在冷戰時期,間諜常使用此工具。
1940 Tuning-Bombe
時間之旅:天書奇譚-加密篇
這個機器由Alan Turking 發明,用於破解Enigma加密機。它包含了多個相互配合使用的Enigma設備。
1965 Fialka
時間之旅:天書奇譚-加密篇
東歐的「Enigma」,一直使用到柏林牆倒塌。自1967起被為認為不再安全。
1973 公共密鑰
英國智囊機構的3個軍官首先開發了非對稱加密。直到1997年才被揭秘。
1976 DES
時間之旅:天書奇譚-加密篇
IBM與NASA合作,為美國官方開發了數據加密標准。然而,評論家發現了將密鑰長度從128位降低到56位這一該演算法的瑕疵。
1977 RSA
時間之旅:天書奇譚-加密篇
Rivest、Shamir 和Adelman三人發明了可靠的非對稱加密法。目前,它主要用於郵件加密和數字簽名等場合。
1998 深度破解
時間之旅:天書奇譚-加密篇
電子國界基金會有一台擁有1800個處理器的計算機,它通過蠻力破解了DES加密法。
2000 AES
時間之旅:天書奇譚-加密篇
DES的繼任者,Rijndael演算法在公開競爭中取勝。高級加密標準是最為廣泛應用的對稱加密手段。
2008 量子密碼網路 DES
使用量子密碼保護的光纖網路在維也納首次展示。
2030未來趨勢:量子計算機
時間之旅:天書奇譚-加密篇
Ⅵ 影響DES密碼體制安全的因素
(1)暴力破解。即重復嘗試各種密鑰知道有一個符合為止。隨著計算機原酸能力的不斷提高,暴力破解所需的事件越來越短。
(2)自身漏洞。DES演算法只用到64位密鑰中的56為,而第8、16、24……64位並未參與DES運算。所以DES的安全性事基於除了第8、16、24……64位的其餘56位的組合變化來保證的。如果把密鑰的8、16、24……64位作為有效數據位使用,將不能保證DES加密數據的安全性。
Ⅶ 什麼是DES
解釋:FIPS46規定了一種數據加密演算法,由於FIPS46的名稱即為數據加密標准(Data Encryption Standard,DES),所以人們就將該標准中所定義的演算法稱為DES演算法。DES演算法是IBM公司於1975年研究成功並公開發表的,並於1977 年成為聯邦信息處理標准。DES的密鑰長度為64位,但由於每位元組由1比特校驗位,所以有效密鑰長度為56位。當前,DES演算法被認為是不安全的,通常使 用3-DES來實現對數據的加密。來源: 中國SSL證書
Ⅷ DES和AES演算法的比較,各自優缺點有哪些
一、數據加密標准不同
1、DES演算法的入口參數有三個:Key、Data、Mode。
其中Key為7個位元組共56位,是DES演算法的工作密鑰;Data為8個位元組64位,是要被加密或被解密的數據;Mode為DES的工作方式,有兩種:加密或解密。
2、AES的基本要求是,採用對稱分組密碼體制,密鑰的長度最少支持為128、192、256,分組長度128位,演算法應易於各種硬體和軟體實現。
因此AES的密鑰長度比DES大, 它也可設定為32比特的任意倍數,最小值為128比特,最大值為256 比特,所以用窮舉法是不可能破解的。
二、運行速度不同
1、作為分組密碼,DES的加密單位僅有64位二進制,這對於數據傳輸來說太小,因為每個分組僅含8個字元,而且其中某些位還要用於奇偶校驗或其他通訊開銷。處理速度慢、加密耗時
2、AES對內存的需求非常低,運算速度快,在有反饋模式、無反饋模式的軟硬體中,Rijndael都表現出非常好的性能。
三、適用范圍不同
1、數據加密標准,速度較快,適用於加密大量數據的場合。DES在安全上是脆弱的,但由於快速DES晶元的大量生產,使得DES仍能暫時繼續使用,為提高安全強度,通常使用獨立密鑰的三級DES
2、AES 適用於8位的小型單片機或者普通的32位微處理器,並且適合用專門的硬體實現,硬體實現能夠使其吞吐量(每秒可以到達的加密/解密bit數)達到十億量級。同樣,其也適用於RFID系統。