1. 加密的目的
以某種特殊的演算法改變原有的信息數據,使得未授權的用戶即使獲得了已加密的信號,但因不知解密的方法,仍然無法了解信息的內容。
加密建立在對信息進行數學編碼和解碼的基礎上。 我們使用的加密類型分為兩種密鑰 -- 一種是公共密鑰,一種是私人密鑰。 您發送信息給我們時,使用公共密鑰加密信息。 一旦我們收到您的加密信息,我們則使用私人密鑰破譯信息密碼。 同一密鑰不能既是加密信息又是解密信息。 因此,使用私人密鑰加密的信息只能使用公共密鑰解密,反之亦然,以確保您的信息安全。
2. 數據加密和數據簽名的原理作用
加密可以幫助保護數據不被查看和修改,並且可以幫助在本不安全的信道上提供安全的通信方式。例如,可以使用加密演算法對數據進行加密,在加密狀態下傳輸數據,然後由預定的接收方對數據進行解密。如果第三方截獲了加密的數據,解密數據是很困難的。
在一個使用加密的典型場合中,雙方(小紅和小明)在不安全的信道上通信。小紅和小明想要確保任何可能正在偵聽的人無法理解他們之間的通信。而且,由於小紅和小明相距遙遠,因此小紅必須確保她從小明處收到的信息沒有在傳輸期間被任何人修改。此外,她必須確定信息確實是發自小明而不是有人模仿小明發出的。
加密用於達到以下目的:
保密性:幫助保護用戶的標識或數據不被讀取。
數據完整性:幫助保護數據不更改。
身份驗證:確保數據發自特定的一方。
為了達到這些目的,您可以使用演算法和慣例的組合(稱作加密基元)來創建加密方案。下表列出了加密基元及它們的用法。
加密基元 使用
私鑰加密(對稱加密) 對數據執行轉換,使第三方無法讀取該數據。此類型的加密使用單個共享的機密密鑰來加密和解密數據。
公鑰加密(不對稱加密) 對數據執行轉換,使第三方無法讀取該數據。此類加密使用公鑰/私鑰對來加密和解密數據。
加密簽名 通過創建對特定方唯一的數字簽名來幫助驗證數據是否發自特定方。此過程還使用哈希函數。
加密哈希 將數據從任意長度映射為定長位元組序列。哈希在統計上是唯一的;不同的雙位元組序列不會哈希為同一個值。
私鑰加密
私鑰加密演算法使用單個私鑰來加密和解密數據。由於具有密鑰的任意一方都可以使用該密鑰解密數據,因此必須保護密鑰不被未經授權的代理得到。私鑰加密又稱為對稱加密,因為同一密鑰既用於加密又用於解密。私鑰加密演算法非常快(與公鑰演算法相比),特別適用於對較大的數據流執行加密轉換。
通常,私鑰演算法(稱為塊密碼)用於一次加密一個數據塊。塊密碼(如 RC2、DES、TrippleDES 和 Rijndael)通過加密將 n 位元組的輸入塊轉換為加密位元組的輸出塊。如果要加密或解密位元組序列,必須逐塊進行。由於 n 很小(對於 RC2、DES 和 TripleDES,n = 8 位元組;n = 16 [默認值];n = 24;對於 Rijndael,n = 32),因此必須對大於 n 的值一次加密一個塊。
基類庫中提供的塊密碼類使用稱作密碼塊鏈 (CBC) 的鏈模式,它使用一個密鑰和一個初始化向量 (IV) 對數據執行加密轉換。對於給定的私鑰 k,一個不使用初始化向量的簡單塊密碼將把相同的明文輸入塊加密為同樣的密文輸出塊。如果在明文流中有重復的塊,那麼在密文流中將存在重復的塊。如果未經授權的用戶知道有關明文塊的結構的任何信息,就可以使用這些信息解密已知的密文塊並有可能發現您的密鑰。若要克服這個問題,可將上一個塊中的信息混合到加密下一個塊的過程中。這樣,兩個相同的明文塊的輸出就會不同。由於該技術使用上一個塊加密下一個塊,因此使用了一個 IV 來加密數據的第一個塊。使用該系統,未經授權的用戶有可能知道的公共消息標頭將無法用於對密鑰進行反向工程。
可以危及用此類型密碼加密的數據的一個方法是,對每個可能的密鑰執行窮舉搜索。根據用於執行加密的密鑰大小,即使使用最快的計算機執行這種搜索,也極其耗時,因此難以實施。使用較大的密鑰大小將使解密更加困難。雖然從理論上說加密不會使對手無法檢索加密的數據,但這確實極大增加了這樣做的成本。如果執行徹底搜索來檢索只在幾天內有意義的數據需要花費三個月的時間,那麼窮舉搜索的方法是不實用的。
私鑰加密的缺點是它假定雙方已就密鑰和 IV 達成協議,並且互相傳達了密鑰和 IV 的值。並且,密鑰必須對未經授權的用戶保密。由於存在這些問題,私鑰加密通常與公鑰加密一起使用,來秘密地傳達密鑰和 IV 的值。
假設小紅和小明是要在不安全的信道上進行通信的雙方,他們可能按以下方式使用私鑰加密。小紅和小明都同意使用一種具有特定密鑰和 IV 的特定演算法(如 Rijndael)。小紅撰寫一條消息並創建要在其上發送該消息的網路流。接下來,她使用該密鑰和 IV 加密該文本,並通過 Internet 發送該文本。她沒有將密鑰和 IV 發送給小明。小明收到該加密文本並使用預先商定的密鑰和 IV 對它進行解密。如果傳輸的內容被人截獲,截獲者將無法恢復原始消息,因為截獲者並不知道密鑰或 IV。在這個方案中,密鑰必須保密,但 IV 不需要保密。在一個實際方案中,將由小紅或小明生成私鑰並使用公鑰(不對稱)加密將私鑰(對稱)傳遞給對方。有關更多信息,請參見本主題後面的有關公鑰加密的部分。
.NET Framework 提供以下實現私鑰加密演算法的類:
DESCryptoServiceProvider
RC2CryptoServiceProvider
RijndaelManaged
公鑰加密
公鑰加密使用一個必須對未經授權的用戶保密的私鑰和一個可以對任何人公開的公鑰。公鑰和私鑰都在數學上相關聯;用公鑰加密的數據只能用私鑰解密,而用私鑰簽名的數據只能用公鑰驗證。公鑰可以提供給任何人;公鑰用於對要發送到私鑰持有者的數據進行加密。兩個密鑰對於通信會話都是唯一的。公鑰加密演算法也稱為不對稱演算法,原因是需要用一個密鑰加密數據而需要用另一個密鑰來解密數據。
公鑰加密演算法使用固定的緩沖區大小,而私鑰加密演算法使用長度可變的緩沖區。公鑰演算法無法像私鑰演算法那樣將數據鏈接起來成為流,原因是它只可以加密少量數據。因此,不對稱操作不使用與對稱操作相同的流模型。
雙方(小紅和小明)可以按照下列方式使用公鑰加密。首先,小紅生成一個公鑰/私鑰對。如果小明想要給小紅發送一條加密的消息,他將向她索要她的公鑰。小紅通過不安全的網路將她的公鑰發送給小明,小明接著使用該密鑰加密消息。(如果小明在不安全的信道如公共網路上收到小紅的密鑰,則小明必須同小紅驗證他具有她的公鑰的正確副本。)小明將加密的消息發送給小紅,而小紅使用她的私鑰解密該消息。
但是,在傳輸小紅的公鑰期間,未經授權的代理可能截獲該密鑰。而且,同一代理可能截獲來自小明的加密消息。但是,該代理無法用公鑰解密該消息。該消息只能用小紅的私鑰解密,而該私鑰沒有被傳輸。小紅不使用她的私鑰加密給小明的答復消息,原因是任何具有公鑰的人都可以解密該消息。如果小紅想要將消息發送回小明,她將向小明索要他的公鑰並使用該公鑰加密她的消息。然後,小明使用與他相關聯的私鑰來解密該消息。
在一個實際方案中,小紅和小明使用公鑰(不對稱)加密來傳輸私(對稱)鑰,而對他們的會話的其餘部分使用私鑰加密。
公鑰加密具有更大的密鑰空間(或密鑰的可能值范圍),因此不大容易受到對每個可能密鑰都進行嘗試的窮舉攻擊。由於不必保護公鑰,因此它易於分發。公鑰演算法可用於創建數字簽名以驗證數據發送方的身份。但是,公鑰演算法非常慢(與私鑰演算法相比),不適合用來加密大量數據。公鑰演算法僅對傳輸很少量的數據有用。公鑰加密通常用於加密一個私鑰演算法將要使用的密鑰和 IV。傳輸密鑰和 IV 後,會話的其餘部分將使用私鑰加密。
.NET Framework 提供以下實現公鑰加密演算法的類:
DSACryptoServiceProvider
RSACryptoServiceProvider
數字簽名
公鑰演算法還可用於構成數字簽名。數字簽名驗證發送方的身份(如果您信任發送方的公鑰)並幫助保護數據的完整性。使用由小紅生成的公鑰,小紅的數據的接收者可以通過將數字簽名與小紅的數據和小紅的公鑰進行比較來驗證是否是小紅發送了該數據。
為了使用公鑰加密對消息進行數字簽名,小紅首先將哈希演算法應用於該消息以創建消息摘要。該消息摘要是數據的緊湊且唯一的表示形式。然後,小紅用她的私鑰加密該消息摘要以創建她的個人簽名。在收到消息和簽名時,小明使用小紅的公鑰解密簽名以恢復消息摘要,並使用與小紅所使用的相同的哈希演算法來散列消息。如果小明計算的消息摘要與從小紅那裡收到的消息摘要完全一致,小明就可以確定該消息來自私鑰的持有人,並且數據未被修改過。如果小明相信小紅是私鑰的持有人,則他知道該消息來自小紅。
請注意,由於發送方的公鑰為大家所周知,並且它通常包含在數字簽名格式中,因此任何人都可以驗證簽名。此方法不保守消息的機密;若要使消息保密,還必須對消息進行加密。
.NET Framework 提供以下實現數字簽名演算法的類:
DSACryptoServiceProvider
RSACryptoServiceProvider
哈希值
哈希演算法將任意長度的二進制值映射為固定長度的較小二進制值,這個小的二進制值稱為哈希值。哈希值是一段數據唯一且極其緊湊的數值表示形式。如果散列一段明文而且哪怕只更改該段落的一個字母,隨後的哈希計算都將產生不同的值。要找到散列為同一個值的兩個不同的輸入,在計算上是不可能的。
消息身份驗證代碼 (MAC) 哈希函數通常與數字簽名一起用於對數據進行簽名,而消息檢測代碼 (MDC) 哈希函數則用於數據完整性。
雙方(小紅和小明)可按下面的方式使用哈希函數來確保數據的完整性。如果小紅對小明編寫一條消息並創建該消息的哈希,則小明可以在稍後散列該消息並將他的哈希與原始哈希進行比較。如果兩個哈希值相同,則該消息沒有被更改;如果值不相同,則該消息在小紅編寫它之後已被更改。為了使此系統發揮作用,小紅必須對除小明外的所有人保密原始的哈希值。
.NET Framework 提供以下實現數字簽名演算法的類:
HMACSHA1
MACTripleDES
MD5CryptoServiceProvider
SHA1Managed
SHA256Managed
SHA384Managed
SHA512Managed
隨機數生成
隨機數生成是許多加密操作不可分割的組成部分。例如,加密密鑰需要盡可能地隨機,以便使生成的密鑰很難再現。加密隨機數生成器必須生成無法以計算方法推算出(低於 p < .05 的概率)的輸出;即,任何推算下一個輸出位的方法不得比隨機猜測具有更高的成功概率。.NET Framework 中的類使用隨機數生成器生成加密密鑰。
RNGCryptoServiceProvider 類是隨機數生成器演算法的實現。
3. 數據加密的基本信息
和防火牆配合使用的數據加密技術,是為提高信息系統和數據的安全性和保密性,防止秘密數據被外部破譯而採用的主要技術手段之一。在技術上分別從軟體和硬體兩方面採取措施。按照作用的不同,數據加密技術可分為數據傳輸加密技術、數據存儲加密技術、數據完整性的鑒別技術和密鑰管理技術。
數據傳輸加密技術的目的是對傳輸中的數據流加密,通常有線路加密與端—端加密兩種。線路加密側重在線路上而不考慮信源與信宿,是對保密信息通過各線路採用不同的加密密鑰提供安全保護。端—端加密指信息由發送端自動加密,並且由TCP/IP進行數據包封裝,然後作為不可閱讀和不可識別的數據穿過互聯網,當這些信息到達目的地,將被自動重組、解密,而成為可讀的數據。
數據存儲加密技術的目的是防止在存儲環節上的數據失密,數據存儲加密技術可分為密文存儲和存取控制兩種。前者一般是通過加密演算法轉換、附加密碼、加密模塊等方法實現;後者則是對用戶資格、許可權加以審查和限制,防止非法用戶存取數據或合法用戶越權存取數據。
數據完整性鑒別技術的目的是對介入信息傳送、存取和處理的人的身份和相關數據內容進行驗證,一般包括口令、密鑰、身份、數據等項的鑒別。系統通過對比驗證對象輸入的特徵值是否符合預先設定的參數,實現對數據的安全保護。
密鑰管理技術包括密鑰的產生、分配、保存、更換和銷毀等各個環節上的保密措施。 數據加密的術語有 :
明文,即原始的或未加密的數據。通過加密演算法對其進行加密,加密演算法的輸入信息為明文和密鑰;
密文,明文加密後的格式,是加密演算法的輸出信息。加密演算法是公開的,而密鑰則是不公開的。密文不應為無密鑰的用戶理解,用於數據的存儲以及傳輸;
密鑰,是由數字、字母或特殊符號組成的字元串,用它控制數據加密、解密的過程;
加密,把明文轉換為密文的過程;
加密演算法,加密所採用的變換方法;
解密,對密文實施與加密相逆的變換,從而獲得明文的過程;
解密演算法,解密所採用的變換方法。
加密技術是一種防止信息泄露的技術。它的核心技術是密碼學,密碼學是研究密碼系統或通信安全的一門學科,它又分為密碼編碼學和密碼分析學。
任何一個加密系統都是由明文、密文、演算法和密鑰組成。發送方通過加密設備或加密演算法,用加密密鑰將數據加密後發送出去。接收方在收到密文後,用解密密鑰將密文解密,恢復為明文。在傳輸過程中,即使密文被非法分子偷竊獲取,得到的也只是無法識別的密文,從而起到數據保密的作用。
例:明文為字元串:
AS KINGFISHERS CATCH FIRE
(為簡便起見,假定所處理的數據字元僅為大寫字母和空格符)。假定密鑰為字元串:
ELIOT
加密演算法為:
1) 將明文劃分成多個密鑰字元串長度大小的塊(空格符以+表示)
AS+KI NGFIS HERS+ CATCH +FIRE
2) 用0~26范圍的整數取代明文的每個字元,空格符=00,A=01,...,Z=26:
3) 與步驟2一樣對密鑰的每個字元進行取代:
0512091520
4) 對明文的每個塊,將其每個字元用對應的整數編碼與密鑰中相應位置的字元的整數編碼的和模27後的值(整數編碼)取代:
舉例:第一個整數編碼為 (01+05)%27=06
5) 將步驟4的結果中的整數編碼再用其等價字元替換:
FDIZB SSOXL MQ+GT HMBRA ERRFY
如果給出密鑰,該例的解密過程很簡單。問題是對於一個惡意攻擊者來說,在不知道密鑰的情況下,利用相匹配的明文和密文獲得密鑰究竟有多困難?對於上面的簡單例子,答案是相當容易的,不是一般的容易,但是,復雜的加密模式同樣很容易設計出。理想的情況是採用的加密模式使得攻擊者為了破解所付出的代價應遠遠超過其所獲得的利益。實際上,該目的適用於所有的安全性措施。這種加密模式的可接受的最終目標是:即使是該模式的發明者也無法通過相匹配的明文和密文獲得密鑰,從而也無法破解密文。 傳統加密方法有兩種,替換和置換。上面的例子採用的就是替換的方法:使用密鑰將明文中的每一個字元轉換為密文中的一個字元。而置換僅將明文的字元按不同的順序重新排列。單獨使用這兩種方法的任意一種都是不夠安全的,但是將這兩種方法結合起來就能提供相當高的安全程度。數據加密標准(Data Encryption Standard,簡稱DES)就採用了這種結合演算法,它由IBM制定,並在1977年成為美國官方加密標准。
DES的工作原理為:將明文分割成許多64位大小的塊,每個塊用64位密鑰進行加密,實際上,密鑰由56位數據位和8位奇偶校驗位組成,因此只有56個可能的密碼而不是64個。每塊先用初始置換方法進行加密,再連續進行16次復雜的替換,最後再對其施用初始置換的逆。第i步的替換並不是直接利用原始的密鑰K,而是由K與i計算出的密鑰Ki。
DES具有這樣的特性,其解密演算法與加密演算法相同,除了密鑰Ki的施加順序相反以外。 多年來,許多人都認為DES並不是真的很安全。事實上,即使不採用智能的方法,隨著快速、高度並行的處理器的出現,強制破解DES也是可能的。公開密鑰加密方法使得DES以及類似的傳統加密技術過時了。公開密鑰加密方法中,加密演算法和加密密鑰都是公開的,任何人都可將明文轉換成密文。但是相應的解密密鑰是保密的(公開密鑰方法包括兩個密鑰,分別用於加密和解密),而且無法從加密密鑰推導出,因此,即使是加密者若未被授權也無法執行相應的解密。
公開密鑰加密思想最初是由Diffie和Hellman提出的,最著名的是Rivest、Shamir以及Adleman提出的,通常稱為RSA(以三個發明者的首位字母命名)的方法,該方法基於下面的兩個事實:
1) 已有確定一個數是不是質數的快速演算法;
2) 尚未找到確定一個合數的質因子的快速演算法。
RSA方法的工作原理如下:
1) 任意選取兩個不同的大質數p和q,計算乘積r=p*q;
2) 任意選取一個大整數e,e與(p-1)*(q-1)互質,整數e用做加密密鑰。注意:e的選取是很容易的,例如,所有大於p和q的質數都可用。
3) 確定解密密鑰d:
(d * e) molo(p - 1)*(q - 1) = 1
根據e、p和q可以容易地計算出d。
4) 公開整數r和e,但是不公開d;
5) 將明文P (假設P是一個小於r的整數)加密為密文C,計算方法為:
C = P^e molo r
6) 將密文C解密為明文P,計算方法為:
P = C^d molo r
然而只根據r和e(不是p和q)要計算出d是不可能的。因此,任何人都可對明文進行加密,但只有授權用戶(知道d)才可對密文解密。
下面舉一簡單的例子對上述過程進行說明,顯然我們只能選取很小的數字。
例:選取p=3, q=5,則r=15,(p-1)*(q-1)=8。選取e=11(大於p和q的質數),通過(d*11)molo(8) = 1。
計算出d =3。
假定明文為整數13。則密文C為
C = P^e molo r
= 13^11 molo 15
= 1,792,160,394,037 molo 15
= 7
復原明文P為:
P = C^d molo r
= 7^3 molo 15
= 343 molo 15
= 13
因為e和d互逆,公開密鑰加密方法也允許採用這樣的方式對加密信息進行簽名,以便接收方能確定簽名不是偽造的。假設A和B希望通過公開密鑰加密方法進行數據傳輸,A和B分別公開加密演算法和相應的密鑰,但不公開解密演算法和相應的密鑰。A和B的加密演算法分別是ECA和ECB,解密演算法分別是DCA和DCB,ECA和DCA互逆,ECB和DCB互逆。若A要向B發送明文P,不是簡單地發送ECB(P),而是先對P施以其解密演算法DCA,再用加密演算法ECB對結果加密後發送出去。
密文C為:
C = ECB(DCA(P))
B收到C後,先後施以其解密演算法DCB和加密演算法ECA,得到明文P:
ECA(DCB(C))
= ECA(DCB(ECB(DCA(P))))
= ECA(DCA(P)) /*DCB和ECB相互抵消*/
= P /*DCB和ECB相互抵消*/
這樣B就確定報文確實是從A發出的,因為只有當加密過程利用了DCA演算法,用ECA才能獲得P,只有A才知道DCA演算法,沒
有人,即使是B也不能偽造A的簽名。 前言
隨著信息化的高速發展,人們對信息安全的需求接踵而至,人才競爭、市場競爭、金融危機、敵特機構等都給企事業單位的發展帶來巨大風險,內部竊密、黑客攻擊、無意識泄密等竊密手段成為了人與人之間、企業與企業之間、國與國之間的安全隱患。
市場的需求、人的安全意識、環境的諸多因素促使著我國的信息安全高速發展,信息安全經歷了從傳統的單一防護如防火牆到信息安全整體解決方案、從傳統的老三樣防火牆、入侵檢測、殺毒軟體到多元化的信息安全防護、從傳統的外部網路防護到內網安全、主機安全等。
傳統數據加密技術分析
信息安全傳統的老三樣(防火牆、入侵檢測、防病毒)成為了企事業單位網路建設的基礎架構,已經遠遠不能滿足用戶的安全需求,新型的安全防護手段逐步成為了信息安全發展的主力軍。例如主機監控、文檔加密等技術。
在新型安全產品的隊列中,主機監控主要採用外圍圍追堵截的技術方案,雖然對信息安全有一定的提高,但是因為產品自身依賴於操作系統,對數據自身沒有有效的安全防護,所以存在著諸多安全漏洞,例如:最基礎的手段拆拔硬碟、winpe光碟引導、USB引導等方式即可將數據盜走,而且不留任何痕跡;此技術更多的可以理解為企業資產管理軟體,單一的產品無法滿足用戶對信息安全的要求。
文檔加密是現今信息安全防護的主力軍,採用透明加解密技術,對數據進行強制加密,不改變用戶原有的使用習慣;此技術對數據自身加密,不管是脫離操作系統,還是非法脫離安全環境,用戶數據自身都是安全的,對環境的依賴性比較小。市面上的文檔加密主要的技術分為磁碟加密、應用層加密、驅動級加密等幾種技術,應用層加密因為對應用程序的依賴性比較強,存在諸多兼容性和二次開發的問題,逐步被各信息安全廠商所淘汰。
當今主流的兩大數據加密技術
我們所能常見到的主要就是磁碟加密和驅動級解密技術:
全盤加密技術是主要是對磁碟進行全盤加密,並且採用主機監控、防水牆等其他防護手段進行整體防護,磁碟加密主要為用戶提供一個安全的運行環境,數據自身未進行加密,操作系統一旦啟動完畢,數據自身在硬碟上以明文形式存在,主要靠防水牆的圍追堵截等方式進行保護。磁碟加密技術的主要弊端是對磁碟進行加密的時間周期較長,造成項目的實施周期也較長,用戶一般無法忍耐;磁碟加密技術是對磁碟進行全盤加密,一旦操作系統出現問題。需要對數據進行恢復也是一件讓用戶比較頭痛的事情,正常一塊500G的硬碟解密一次所需時間需要3-4個小時;市面上的主要做法是對系統盤不做加密防護,而是採用外圍技術進行安全訪問控制,大家知道操作系統的版本不斷升級,微軟自身的安全機制越來越高,人們對系統的控制力度越來越低,尤其黑客技術層層攀高,一旦防護體系被打破,所有一切將暴露無疑。另外,磁碟加密技術是對全盤的信息進行安全管控,其中包括系統文件,對系統的效率性能將大大影響。
驅動級技術是信息加密的主流技術,採用進程+後綴的方式進行安全防護,用戶可以根據企事業單位的實際情況靈活配置,對重要的數據進行強制加密,大大提高了系統的運行效率。驅動級加密技術與磁碟加密技術的最大區別就是驅動級技術會對用戶的數據自身進行保護,驅動級加密採用透明加解密技術,用戶感覺不到系統的存在,不改變用戶的原有操作,數據一旦脫離安全環境,用戶將無法使用,有效提高了數據的安全性;另外驅動級加密技術比磁碟加密技術管理可以更加細粒度,有效實現數據的全生命周期管理,可以控制文件的使用時間、次數、復制、截屏、錄像等操作,並且可以對文件的內部進行細粒度的授權管理和數據的外出訪問控制,做到數據的全方位管理。驅動級加密技術在給用戶的數據帶來安全的同時,也給用戶的使用便利性帶來一定的問題,驅動級加密採用進程加密技術,對同類文件進行全部加密,無法有效區別個人文件與企業文件數據的分類管理,個人電腦與企業辦公的並行運行等問題。
4. 企業為什麼要對數據進行加密
因為怕泄密啊,加密就是為了預防數據泄密發生以後不會直接顯示明文數據,竊取者需要更大的成本付出才可以獲得這些泄密的數據,當然,這個世界沒有無法被破解的加密演算法,只是時間問題,但你就算只需要對方花幾天時間解密,也好過完全明文不加密存儲好啊。
企業數據加密軟體,推薦試試IP-guard
IP-guard是國內領先的企業數據加密軟體,支持多種數據格式,無需用戶手動操作,也不影響既有操作習慣,擁有隻讀、強制、非強制三種加密模式,適用於企業內部文件流通、文件外發、出差辦公等場景。
IP-guard加密基於應用層,擁有成熟的加密系統架構,可以為企業提供針對性的加密解決方案,更為有更高防泄密需求的企業提供了防泄密三重保護解決方案,基於加密、審計、授權形成三重保護措施。
5. "為什麼要使用數據加密技術 "
為了保護數據的安全性,現在互聯網時代數據被盜都是很常見的問題,加密了之後很大程度上能夠保證數據的安全性防止泄露
6. 加密的目的是什麼
隨著個人信息通信和電子商務在網際網路上的不斷發展,我們經常需要一種措施來保護我們的數據,防止被一些懷有不良用心的人竊聽或者破壞。在信息時代,信息可以幫助團體或個人,使他們受益,同樣,信息也可以用來對他們構成威脅,造成破壞。在競爭激烈的大公司中,工業間諜經常會獲取對方的情報。因此,在客觀上就需要一種強有力的安全措施來保護機密數據不被竊取或篡改。數據加密與解密從宏觀上講是非常簡單的,很容易理解。加密與解密的一些方法是非常直接的,很容易掌握,可以很方便的對機密數據進行加密和解密
7. 數據加密技術在未來網路安全技術中的作用和地位
數據加密技術在計算機網路安全中的應用價值
互聯網行業遍布人們日常生活的方方面面,但是在帶來便利的同時也帶來了很多潛在的危險,尤其是互聯網的系統安全和信息數據安全成為首要問題,在這種情況下,數據加密技術的發展為計算機網路安全注入新的活力,為網路用戶的信息安全帶來保障。本文介紹了計算機網路安全的主要問題,即系統內部漏洞,程序缺陷和外界攻擊,病毒感染和黑客的違法行為等。並且闡述了數據加密技術在計算機網路安全中的主要應用,比如保護系統安全,保護信息和個人隱私,以及其在電子商務中的廣泛應用,可見數據加密技術為互聯網網路行業的飛速發展有重要影響,並且隨著數據加密技術的發展,必然會在未來在互聯網網路安全中發揮更大的作用。
【關鍵詞】網路安全 數據加密 個人信息 互聯網
1 引言
伴隨著信息化時代的發展,互聯網行業像一股席捲全球的浪潮,給人們的生活帶來翻天覆地的變化,為傳統行業注入了新的活力。但是同時也帶來了潛在的危機,當利用互聯網處理數據成為一種常態後,數據的安全就成為不容忽視的問題。因此互聯網行業面臨著信息數據泄露或被篡改的危險,這也是互聯網行業最主要的問題。在這種形勢下,數據加密技術應運而生,成為現在互聯網數據安全保障最有效的方式,毋庸置疑,數據加密技術在解決信息保密的問題中起到了十分重要的作用,進而在全球很大范圍內得到了廣泛應用,為互聯網行業的發展貢獻了不可或缺的力量,有著十分重要的意義。
2 網路安全問題――數據加密技術應用背景
2.1 內部漏洞
計算機網路安全問題來自內部漏洞和外界入侵,內部漏洞是指伺服器本身的缺陷,網路運行是無數個程序運行實現的,但是程序極有可能存在一定的漏洞,尤其是現在的網路操作都是不同用戶,不同埠同時進行,一旦其中一個埠受到入侵,其他用戶也會受到影響,這樣就形成一個網路漏洞,造成整個系統無法正常運行。除此之外,如果程序中存在的漏洞沒有被及時發現和正確處理,很可能被不法分子所利用,進行網路入侵,損害信息數據安全,威脅計算機網路安全。
2.2 外界攻擊
外界攻擊就是指計算機網路安全被不法分子利用特殊的程序進行破壞,不僅會使計算機網路系統遭到難以估量的破壞,更使重要信息數據泄露,造成慘重損失。尤其是現在隨著互聯網的發展,人們對於自己的隱私和信息有很強的保護意識,但是社交網路應用和網址埠的追蹤技術讓這些信息數據的安全性有所降低。如果計算機網路被嚴重破壞,個人信息和重要數據很容易被盜取,甚至會對原本的程序進行惡意修改,使其無法正常運行,這個被破壞的程序就成為一個隱患,一旦有數據通過此程序進行處理,就會被盜取或者篡改。
3 數據加密技術應用於網路安全的優勢分析
3.1 巧妙處理數據
數據加密技術對數據進行保護和處理,使數據就成為一種看不懂的代碼,只有擁有密碼才能讀到原本的信息文本,從而達到保護數據的目的。而數據加密技術基本有兩種,一種是雙方交換彼此密碼,另一種是雙方共同協商保管同一個密碼,手段不同,但是都能有效地保護信息數據安全。
3.2 應用領域廣泛
數據加密技術廣泛於各個方面,保護了計算機系統和互聯網時代的個人信息,維護了重要數據,避免被黑客輕易攻擊盜取信息,同時也促進了電子商務等行業的發展,並且使人們對於網路生活有了更高的信任度。相信通過不斷提升,數據加密技術會得到更加廣泛深刻的應用。
4 數據加密技術在網路安全中的應用探索
4.1 更好維護網路系統
目前,計算機數據處理系統存在一定的漏洞,安全性有待提升,數據易受到盜取和損壞。利用數據加密技術對網路系統進行加密,從而實現對系統安全性的有效管理。同時,這種類型的加密也是十分常見而通用的,一般上網路用戶會通過許可權設置來對網路系統進行加密,比如我們的個人電腦開機密碼就屬於對網路系統進行加密,只有擁有密碼才可以運行電腦程序,很好地保護了個人數據安全。或者,通過將數據加密技術科學合理運用,對外界信息進行檢查和監測,對原本存在的信息實現了兩重保護,利用防火牆的設置,只有擁有解鎖每個文件的秘密,才能獲得原本信息。
4.2 有力保障數據安全
計算機網路安全最重要的部分就是信息數據安全,尤其是處於信息時代,個人隱私和信息得到了前所未有的重視,也存在著很大的危險,而有了數據加密技術,這個問題便可迎刃而解。一般上,數據加密技術包括對數據的加密,維護,以及軟體加密,設置相應許可權,實時實地監控等,因為對數據進行了一定的保護和處理,使之成為一種看不懂的代碼,只有擁有密碼才能讀到原本的信息文本,從而達到保護數據的目的。在這些基本操作的基礎上,數據加密技術還擁有強大的備份能力,對該技術的數據資源能夠嚴格控制,進行自我檢測和修補漏洞,在防止外界攻擊基礎上進一步進行自我系統實時保護,全方位地加強計算機網路數據安全,也進一步保護了用戶的個人信息。
4.3 促進電商等的發展
電商的崛起可以說是一個劃時代的奇跡,現在越來越多的人投入到網購大軍,使用移動終端進行繳費購物等大大便利了人們的日常生活,但是購物繳費就涉及到錢財交易,不少不法分子利用這一網路行為,不斷用各種方法進行網路盜竊,給人們的財產造成巨大威脅。數據加密技術利用密碼對用戶的個人賬戶財產信息進行嚴格保密,不僅能夠抵抗病毒和危險程序的破壞,而且也有效地防止了不法分子的違法行為,在很大程度上令人們在網路購物變得安全而放心,從而也促進了電商的發展,為我國經濟可持續發展貢獻力量。
5 數據加密技術前景展望
互聯網飛速發展,為人民帶來便利的同時也帶來了潛在的危機,當利用互聯網處理數據成為一種常態後,數??的安全就成為不容忽視的問題 ,計算機數據加密技術通過對網路系統和軟體等加密,使原本的信息變成一種看不懂的代碼,只用擁有密碼才能讀到原本信息,從而保護了計算機數據。這項技術已經廣泛於各個方面,應用價值很高,不僅為電商的發展帶來便利,更加保護了計算機系統和互聯網時代的個人信息,維護了重要數據,避免被黑客輕易攻擊盜取信息。相信通過不斷提升,數據加密技術會得到更加廣泛深刻的應用。
8. 什麼是數據加密
數據加密,最常見的就是對文件文檔進行加密處理,如最常見的如AES256,512,SM2、SM3等高強度加密演算法,或現在最常用的透明加密技術,一般分為驅動層及應用層透明加密,通過這些加密技術的結合,並開發出的透明加密軟體,如紅線防泄密系統,就完成了數據加密!