導航:首頁 > 文檔加密 > 藍牙傳輸是加密的嗎

藍牙傳輸是加密的嗎

發布時間:2022-09-01 04:29:19

『壹』 藍牙的技術信息

主要文章:藍牙協議棧和藍牙協議


藍牙被定義為協議層架構,包括核心協議、電纜替代協議、電話傳送控制協議、選用協議。所有藍牙堆棧的強制性協議包括:LMP、L2CAP和SDP。此外,與藍牙通信的設備基本普遍都能使用HCI和 RFCOMM這些協議。
1 LMP:
鏈路管理協議(LMP)用於兩個設備之間無線鏈路的建立和控制。應用於控制器上。
2 L2CAP
邏輯鏈路控制與適配協議(L2CAP)常用來建立兩個使用不同高級協議的設備之間的多路邏輯連接傳輸。提供無線數據包的分割和重新組裝。
在基本模式下,L2CAP能最大提供64kb的有效數據包,並且有672位元組作為默認MTU(最大傳輸單元),以及最小48位元組的指令傳輸單元。
在重復傳輸和流控制模式下,L2CAP可以通過執行重復傳輸和CRC校驗(循環冗餘校驗)來檢驗每個通道數據是否正確或者是否同步。
藍牙核心規格附錄1 在核心規格中添加了兩個附加的L2CAP模式。這些模式有效的否決了原始的重傳和流控模式。 增強型重傳模式(Enhanced Retransmission Mode,簡稱ERTM):該模式是原始重傳模式的改進版,提供可靠的L2CAP 通道。 流模式(Streaming Mode,簡稱SM):這是一個非常簡單的模式,沒有重傳或流控。該模式提供不可靠的L2CAP 通道。 其中任何一種模式的可靠性都是可選擇的,並/或由底層藍牙BDR/EDR空中介面通過配置重傳數量和刷新超時而額外保障的。順序排序是是由底層保障的。
只有ERTM 和 SM中配置的 L2CAP通道才有可能在AMP邏輯鏈路上運作。
3 SDP
服務發現協議(SDP)允許一個設備發現其他設備支持的服務,和與這些服務相關的參數。比如當用手機去連接藍牙耳機(其中包含耳機的配置信息、設備狀態信息,以及高級音頻分類信息(A2DP)等等)。並且這些眾多協議的切換需要被每個連接他們的設備設置。每個服務都會被全局獨立性識別號(UUID)所識別。根據官方藍牙配置文檔給出了一個UUID的簡短格式(16位)。
4 RFCOMM
射頻通信(RFCOMM)常用於建立虛擬的串列數據流。RFCOMM提供了基於藍牙帶寬層的二進制數據轉換和模擬EIA-232(即早前的的RS-232)串列控制信號,也就是說,它是串口模擬。
RFCOMM向用戶提供了簡單而且可靠的串列數據流。類似TCP。它可作為AT指令的載體直接用於許多電話相關的協議,以及通過藍牙作為OBEX的傳輸層。
許多藍牙應用都使用RFCOMM由於串列數據的廣泛應用和大多數操作系統都提供了可用的API。所以使用串列介面通訊的程序可以很快的移植到RFCOMM上面。
5 BNEP
網路封裝協議(BNEP)用於通過L2CAP傳輸另一協議棧的數據。主要目的是傳輸個人區域網路配置文件中的IP 封包。BNEP在無線區域網中的功能與SNAP類似。
6AVCTP
音頻/視頻控制傳輸協議(AVCTP)被遠程式控制制協議用來通過L2CAP傳輸AV/C指令。立體聲耳機上的音樂控制按鈕可通過這一協議控制音樂播放器。
7 AVDTP
音視頻分發傳輸協議(AVDTP)被高級音頻分發協議用來通過L2CAP向立體聲耳機傳輸音樂文件。適用於藍牙傳輸中的視頻分發協議。
8 TCS
電話控制協議–二進制(TCS BIN)是面向位元組協議,為藍牙設備之間的語音和數據通話的建立定義了呼叫控制信令。此外,TCS BIN 還為藍牙TCS設備的的群組管理定義了移動管理規程。
TCS-BIN僅用於無繩電話協議,因此並未引起廣泛關注。
9採用的協議
採用的協議是由其他標准制定組織定義、並包含在藍牙協議棧中,僅在必要時才允許藍牙對協議進行編碼。採用的協議包括: 點對點協議(PPP):通過點對點鏈接傳輸IP數據報的互聯網標准協議 TCP/IP/UDP:TCP/IP 協議組的基礎協議 對象交換協議(OBEX):用於對象交換的會話層協議,為對象與操作表達提供模型 無線應用環境/無線應用協議(WAE/WAP):WAE明確了無線設備的應用框架,WAP是向移動用戶提供電話和信息服務接入的開放標准。
根據不同的封包類型,每個封包可能受到糾錯功能的保護,或許是1/3速率的前向糾錯(FEC) ,或者是2/3速率。此外,出現CRC錯誤的封包將會被重發,直至被自動重傳請求(ARQ)承認。 任何可發現模式下的藍牙設備都可按需傳輸以下信息: 設備名稱 設備類別 服務列表 技術信息(例如設備特性、製造商、所使用的藍牙版本、時鍾偏移等) 任何設備都可以對其他設備發出連接請求,任何設備也都可能添加可回應請求的配置。但如果試圖發出連接請求的設備知道對方設備的地址,它就總會回應直接連接請求,且如果有必要會發送上述列表中的信息。設備服務的使用也許會要求配對或設備持有者的接受,但連接本身可由任何設備發起,持續至設備走出連接范圍。有些設備在與一台設備建立連接之後,就無法再與其他設備同時建立連接,直至最初的連接斷開,才能再被查詢到。
每個設備都有一個唯一的48-位的地址。然而這些地址並不會顯示於連接請求中。但是用戶可自行為他的藍牙設備命名(藍牙設備名稱),這一名稱即可顯示在其他設備的掃描結果和配對設備列表中。
多數手機都有藍牙設備名稱(Bluetooth name),通常默認為製造商名稱和手機型號。多數手機和手提電腦都會只顯示藍牙設備名稱,想要獲得遠程設備的更多信息則需要有特定的程序。當某一范圍內有多個相同型號的手機(比如 Sony Ericsson T610)時,也許會讓人分辨哪個才是它的目標設備。(詳見Bluejacking) 1 動機
藍牙所能提供多很多服務都可能顯示個人數據或受控於相連的設備。出於安全上的考量,有必要識別特定的設備,以確保能夠控制哪些設備能與藍牙設備相連的。同時,藍牙設備也有必要讓藍牙設備能夠無需用戶干預即可建立連接(比如在進入連接范圍的同時).
未解決該矛盾,藍牙可使用一種叫bonding(連接) 的過程。Bond是通過配對(paring)過程生成的。配對過程通過或被自用戶的特定請求引發而生成bond(比如用戶明確要求「添加藍牙設備」),或是當連接到一個出於安全考量要求需要提供設備ID的服務時自動引發。這兩種情況分別稱為dedicated bonding和general bonding。
配對通常包括一定程度上的用戶互動,已確認設備ID。成功完成配對後,兩個設備之間會形成Bond,日後再再相連時則無需為了確認設備ID而重復配對過程。用戶也可以按需移除連接關系。
2 實施
配對過程中,兩個設備可通過一種創建一種稱為鏈路字的共享密鑰建立關系。如果兩個設備都存有相同的鏈路字,他們就可以實現paring或bonding。一個只想與已經bonding的設備通信的設備可以使用密碼驗證對方設備的身份,以確保這是之前配對的設備。一旦鏈路字生成,兩個設備間也許會加密一個認證的非同步無連接(Asynchronous Connection-Less,簡稱ACL) 鏈路,以防止交換的數據被竊取。用戶可刪除任何一方設備上的鏈路字,即可移除兩設備之間的bond,也就是說一個設備可能存有一個已經不在與其配對的設備的鏈路字。
藍牙服務通常要求加密或認證,因此要求在允許設備遠程連接之前先配對。一些服務,比如對象推送模式,選擇不明確要求認證或加密,因此配對不會影響服務用例相關的用戶體驗。
3 配對機制
在藍牙2.1版本推出安全簡易配對(Secure Simple Pairing) 之後,配對機制有了很大的改變。以下是關於配對機制的簡要總結: 舊有配對:這是藍牙2.0版及其早前版本配對的唯一方法。每個設備必須輸入PIN碼;只有當兩個設備都輸入相同的PIN碼方能配對成功。任何16-比特的 UTF-8字元串都能用作PIN碼。然而並非所有的設備都能夠輸入所有可能的PIN碼。 有限的輸入設備: 顯而易見的例子是藍牙免提耳機,它幾乎沒有輸入界面。這些設備通常有固定的PIN,如0000或1234,是設備硬編碼的。 數字輸入設備: 比如行動電話就是經典的這類設備。用戶可輸入長達16位的數值。 字母數字輸入設備: 比如個人電腦和智能電話。用戶可輸入完整的UTF-8 字元作為PIN碼。如果是與一個輸入能力有限的設備配對,就必須考慮到對方設備的輸入限制,並沒有可行的機制能夠讓一個具有足夠輸入能力的設備去決定應該如何限制用戶可能使用的輸入。 安全簡易配對(SSP):這是藍牙2.1版本要求的,盡管藍牙2.1版本的也許設備只能使用舊有配對方式和早前版本的設備互操作。 安全簡易配對使用一種公鑰密碼學(public key cryptography),某些類型還能防禦中間人(man in the middle,簡稱MITM)攻擊。SSP 有以下特點: 即刻運行(Just works):正如其字面含義,這一方法可直接運行,無需用戶互動。但是設備也許會提示用戶確認配對過程。此方法的典型應用見於輸入輸出功能受限的耳機,且較固定PIN機制更為安全。此方法不提供中間人(MITM) 保護。 數值比較(Numeric comparison):如果兩個設備都有顯示屏,且至少一個能接受二進制的「是/否」用戶輸入,他們就能使用數值比較。此方法可在雙方設備上顯示6位數的數字代碼,用戶需比較並確認數字的一致性。如果比較成功,用戶應在可接受輸入的設備上確認配對。此方法可提供中間人(MITM) 保護,但需要用戶在兩個設備上都確認,並正確的完成比較。 萬能鑰匙進入(Passkey Entry):此方法可用於一個有顯示屏的設備和一個有數字鍵盤輸入的設備(如計算機鍵盤),或兩個有數字鍵盤輸入的設備。第一種情況下,顯示屏上顯示6位數字代碼,用戶可在另一設備的鍵盤上輸入該代碼。第二種情況下,兩個設備需同時在鍵盤上輸入相同的6位數字代碼。兩種方式都能提供中間人(MITM) 保護。 非藍牙傳輸方式(OOB):此方法使用外部通信方式,如近場通信(NFC),交換在配對過程中使用的一些信息。配對通過藍牙射頻完成,但是還要求非藍牙傳輸機制提供信息。這種方式僅提供OOB機制中所體現的MITM保護水平。 SSP被認為簡單的原因如下: 多數情況下無需用戶生成萬能鑰匙。 用於無需MITM保護和用戶互動的用例。 用於數值比較,MITM 保護可通過用戶簡單的等式比較來獲得。 使用NFC等OOB,當設備靠近時進行配對,而非需要一個漫長的發現過程。 4 安全性擔憂

藍牙2.1之前版本是不要求加密的,可隨時關閉。而且,密鑰的有效時限也僅有約23.5 小時。單一密鑰的使用如超出此時限,則簡單的XOR攻擊有可能竊取密鑰。 一些常規操作要求關閉加密,如果加密因合理的理由或安全考量而被關閉,就會給設備探測帶來問題。 藍牙2.1版本從一些幾個方面進行了說明: 加密是所有非-SDP(服務發現協議)連接所必需的。 新的加密暫停和繼續功能用於所有要求關閉加密的常規操作,更容易辨認是常規操作還是安全攻擊。 加密必須在過期之前再刷新。 鏈路字可能儲存於設備文件系統,而不是在藍牙晶元本身。許多藍牙晶元製造商將鏈路字儲存於設備—然而,如果設備是可移動的,就意味著鏈路字也可能隨設備移動。 另請參見:基於通信網路的移動安全和攻擊
藍牙擁有機密性、完整性和基於SAFER+分組密碼的定製演算法的密鑰導出。藍牙密鑰生成通常基於藍牙PIN,這是雙方設備都必須輸入的。如果一方設備(如耳機、或類似用戶界面受限的設備)有固定PIN,這一過程也可能被修改。配對過程中,初始密鑰或主密鑰通過E22演算法生成。 E0流密碼也用於加密數據包、授權機密性,它是基於公共加密的、也就是之前生成的鏈路字或主密鑰。這些密鑰可用於對通過空中介面傳輸的數據進行後續加密,密鑰有賴於雙方或一方設備中輸入的PIN。
Andreas Becher於2008年發表了藍牙漏洞信息的利用概況。
2008年9月,美國國家標准與技術研究院(National Institute of Standards and Technology,NIST)發布了藍牙安全指南(Guide to Bluetooth Security),供相關機構參考。該指南描述了藍牙的安全功能,以及如何有效的保護藍牙技術。藍牙技術有它的優勢,但它易受拒絕服務攻擊、竊聽、中間人攻擊、消息修改及資源濫用。用戶和機構都必須評估自己所能接受的風險等級,並在藍牙設備的生命周期中增添安全功能。為減輕損失,NIST文件中還包括安全檢查列表,其內包含對藍牙微微網、耳機和智能讀卡器的創建和安全維護的指南和建議。
藍牙2.1發布於2007年,相應的消費設備最早出現於2009年,為藍牙安全(包括配對)帶來了顯著的改觀。更多關於這一改變的信息,請參見「配對機制」部分。 主要文章:Bluejacking

Bluejacking是指用戶通過藍牙無線技術向對方不知情的用戶發送圖片或信息。常見的應用包括簡訊息,比如「你被Bluejack了」。Bluejacking不涉及設備上任何數據的刪除或更改。Bluejacking可能涉及取得對移動設備的無線控制和撥打屬於Bluejack發起者的付費電話。安全上的進展已經緩解了這一問題。 一、2001–2004
2001年,貝爾實驗室的Jakobsson和Wetzel from發現並指出了藍牙配對協議和加密方案的缺陷。2003年,A.L. Digital 公司的Ben和Adam Laurie發現藍牙安全實施上的一些重要缺陷有可能導致個人信息的泄露。隨後Trifinite Group的Martin Herfurt在德國漢諾威電腦展(CEBIT)的游樂場中進行了現場試驗,向世界展示了這一問題的重要性。 一種稱為BlueBug的新型攻擊被用於此次實驗。2004年,第一個生成通過藍牙在行動電話間傳播的病毒出現於塞班系統。卡巴斯基實驗室最早發現了該病毒,並要求用戶在病毒傳播之前確認未知軟體的安裝。病毒是由一群自稱「29A」的病毒開發者作為驗證概念編寫,並發送防病毒機構的。因此,它應被看作是對藍牙技術或塞班系統的潛在威脅,而非實際的威脅,原因是該病毒並未散播至塞班系統之外。2004年8月,一個世界紀錄級的實驗(另請參見Bluetooth sniping)證實,如果有定向天線和信號放大器,2類藍牙無線電的范圍可擴增至1.78km(1.11mi)。這就造成了潛在的安全威脅,因為攻擊者將能夠在相當程度的遠距離之外接入有缺陷的藍牙設備。攻擊者想要與目標設備建立連接,還必須能夠接受其發出的信息。如果攻擊者不知道藍牙地址和傳輸通道(盡管它們在設備使用狀態下幾分鍾之內就能推導出來),就不可能對藍牙設備進行攻擊。
二、2005年
2005年1月,一種稱為Lasco.A的移動惡意程序蠕蟲開始針對採用塞班系統(60系列平台)的行動電話,通過藍牙設備自我復制並傳播至其他設備。一旦移動用戶允許接收另一設備發送來的文件(velasco.sis),這一蠕蟲即可開始自動安裝。一旦安裝成功,蠕蟲變回開始尋找並感染其他的藍牙設備。此外,蠕蟲會感染設備上其他的.SIS文件,通過可移動的媒體文件(保全數位、CF卡等)復制到另一設備上。蠕蟲可導致行動電話的不穩定。
2005年4月,劍橋大學安全研究員發表了針對兩個商業藍牙設備間基於PIN配對的被動攻擊的研究結果。他們證實了實際攻擊之快,以及藍牙對稱密鑰建立方法的脆弱。為糾正爭議缺陷,他們通過實驗證實,對於某些類型的設備(如行動電話),非對稱密鑰建立更可靠且可行。
2005年6月,Yaniv Shaked和Avishai Wool發表文章,描述了藍牙鏈路獲得PIN的被動和主動方法。如果攻擊者出現在最初配對時,被動攻擊允許配有相應設備的攻擊者竊聽通信或冒名頂替。主動攻擊方法使用專門建立的、必須插入到協議中特定的點的信息,
讓主從設備不斷重復配對過程。然後再通過被動攻擊即可攻獲PIN碼。這一攻擊的主要弱點是它要求用戶在設備受攻擊時根據提示重新輸入PIN。主動攻擊可能要求定製硬體,因為大多數商業藍牙設備並不具備其所需的定時功能。
2005年8月,英國劍橋郡警方發布警告,稱有不法分子通過有藍牙功能的電話跟蹤放置於車中的其他設備。警方建議當用戶把手提電腦或其他設備放置於車中時,須確保任何移動網路連接均處於禁用狀態。
三、2006年
2006年4月, Secure Network和F-Secure的研究人員發布了一份報告,提醒人們注意可見狀態下的設備之多,並公布了有關藍牙服務的傳播、以及藍牙蠕蟲傳播進程緩解的相關數據。
四、2007年
2007年10月,在盧森堡黑客安全大會上,Kevin Finistere和Thierry Zoller展示並發布了一款課通過Mac OS X v10.3.9 和 v10.4上的藍牙進行通信的遠程跟外殼(root shell)。它們還展示了首個PIN 和 Linkkeys 破解器,這是基於Wool 和 Shaked的研究。

『貳』 手機的藍牙功能相互間傳遞信息是什麼原理

1.概念 :藍牙(BLUETOOTH),是1998年推出的一種新的無線傳輸方式,實際上就是取代數據電纜的短距離無線通信技術,通過低帶寬電波實現點對點,或點對多點連接之間的信息交流。這種網路模式也被稱為私人空間網路(PAN,PersonalAreaNetwork),是以多個微網路或精緻的藍牙主控器/附屬器構建的迷你網路為基礎的,每個微網路由8個主動裝置和255個附屬裝置構成,而多個微網路連接起來又形成了擴大網,從而方便、快速地實現各類設備之間的通信。它是實現語音和數據無線傳輸的開放性規范,是一種低成本、短距離的無線連接技術。

2.技術特點:藍牙技術的特點包括:採用跳頻技術,抗信號衰落;採用快跳頻和短分組技術,減少同頻干擾,保證傳輸的可靠性;採用前向糾錯編碼技術,減少遠距離傳輸時的隨機雜訊影響;使用2.4GHz的ISM頻段,無須申請許可證;採用FM調制方式,降低設備的復雜性。該技術的傳輸速率設計為1MHz,以時分方式進行全雙工通信,其基帶協議是電路交換和分組交換的組合。一個跳頻頻率發送一個同步分組,每個分組佔用一個時隙,也可擴展到5個時隙。藍牙技術支持1個非同步數據通道或3個並發的同步話音通道,或1個同時傳送非同步數據和同步話音的通道。每一個話音通道支持64kb/s的同步話音;非同步通道支持最大速率為721kb/s、反向應答速率為57.6kb/s的非對稱連接,或者是432.6kb/s的對稱連接。

3.協議:

(1)建立連接
在微微網建立之前,所有設備都處於就緒狀態。在該狀態下,未連接的設備每隔1.28s監聽一次消息,設備一旦被喚醒,就在預先設定的32個跳頻頻率上監聽信息。跳頻數目因地區而異,但32個跳頻頻率為絕大多數國家所採用。連接進程由主設備初始化。如果一個設備的地址已知,就採用頁信息(Page message)建立連接;如果地址未知,就採用緊隨頁信息的查詢信息(Inquiry message)建立連接。在微微網中,無數據傳輸的設備轉入節能工作狀態。主設備可將從設備設置為保持方式,此時,只有內部定時器工作;從設備也可以要求轉入保持方式。設備由保持方式轉出後,可以立即恢復數據傳輸。連接幾個微微網或管理低功耗器件時,常使用保持方式。監聽方式和休眠方式是另外兩種低功耗工作方式。藍牙基帶技術支持兩種連接方式:面向連接(SCO)方式,主要用於語音傳輸;無連接(ACL)方式,主要用於分組數據傳輸。

(2)差錯控制
基帶控制器採用3種檢錯糾錯方式:1/3前向糾錯編碼(FEC);2/3前向糾錯編碼;自動請求重傳(ARQ)。

(3)認證與加密
認證與加密服務由物理層提供。認證採用口令-應答方式,在連接過程中,可能需要一次或兩次認證,或者無需認證。認證對任何一個藍牙系統都是重要的組成部分,它允許用戶自行添加可信任的藍牙設備,例如,只有用戶自己的筆記本電腦才可以通過用戶自己的手機進行通信。藍牙安全機制的目的在於提供適當級別的保護,如果用戶有更高級別的保密要求,可以使用有效的傳輸層和應用層安全機制。

(4)軟體結構
藍牙設備應具有互操作性,對於某些設備,從無線電兼容模塊和空中介面,直到應用層協議和對象交換格式,都要實現互操作性;對另外一些設備(如頭戴式設備等)的要求則寬松得多。藍牙計劃的目標就是要確保任何帶有藍牙標記的設備都能進行互換性操作。軟體的互操作性始於鏈路級協議的多路傳輸、設備和服務的發現,以及分組的分段和重組。藍牙設備必須能夠彼此識別,並通過安裝合適的軟體識別出彼此支持的高層功能。互操作性要求採用相同的應用層協議棧。不同類型的藍牙設備對兼容性有不同的要求,用戶不能奢望頭戴式設備內含有地址簿。藍牙的兼容性是指它具有無線電兼容性,有語音收發能力及發現其它藍牙設備的能力,更多的功能則要由手機、手持設備及筆記本電腦來完成。為實現這些功能,藍牙軟體構架將利用現有的規范,如OBEX、vCard/vCalendar、HID(人性化介面設備)及TCP/IP等,而不是再去開發新的規范。設備的兼容性要求能夠適應藍牙規范和現有的協議。

4.優點:藍牙傳輸是通過RF(2.4GHZ)載波進行的,因此它具有電磁波的基本特徵,有較大的功率,可以增加傳送距離,而且沒有角度及方向性限制,具有穿牆性,可在物體之間反射、鏡設、繞射。藍牙主要用於短距離傳輸(最多10米)數據和語音(1Mbps),功耗非常低能,同時能連接許多元件,傳輸速度快。

5.劣勢:藍牙成本很高;RF技術容易受頻率干擾;穿牆特點對資料安全性的保護設定問題;藍牙起步比較晚,目前還沒有一個明確、統一的標准,相容性問題尚未能解決。

藍牙的名字來源於10世紀丹麥國王Harald Blatand-英譯為Harold Bluetooth(因為他十分喜歡吃藍梅,所以牙齒每天都帶著藍色)。在行業協會籌備階段,需要一個極具有表現力的名字來命名這項高新技術。行業組織人員,在經過一夜關於歐洲歷史和未來無限技術發展的討論後,有些人認為用Blatand國王的名字命名再合適不過了。Blatand國王將現在的挪威,瑞典和丹麥統一起來;他的口齒伶俐,善於交際,就如同這項即將面世的技術,技術將被定義為允許不同工業領域之間的協調工作,保持著個各系統領域之間的良好交流,例如計算,手機和汽車行業之間的工作。名字於是就這么定下來了。

因此,顧名思義藍牙的概念是:具體地說,藍牙是一種採用RF射頻(RadioFrequency)技術的短距離、單點對多點的語音與數據信息傳輸交換標准。其數據傳輸率為1Mbps,該技術的通信距離為10cm~10m,如果增加信號放大裝置,其通信的距離可以擴展到100m,並且可以繞過非金屬障礙物體。藍牙工作在2.4GHz的工業/科學/醫學用無線電波段,該波段不受各個國家無線電管理部門的限制,因此,它具有全球推廣價值。同目前在筆記本電腦等設備中採用紅外無線傳輸IrDA技術相比,藍牙具有傳輸距離長、沒有傳輸角度、不受障礙物干擾等特點.
藍牙歷史簡介
藍牙是一種支持設備短距離通信(一般是10m之內)的無線電技術。能在包括行動電話、PDA、無線耳機、筆記本電腦、相關外設等眾多設備之間進行無線信息交換。藍牙的標準是IEEE802.15,工作在2.4GHz 頻帶,帶寬為1Mb/s。

「藍牙」(Bluetooth)原是一位在10世紀統一丹麥的國王,他將當時的瑞典、芬蘭與丹麥統一起來。用他的名字來命名這種新的技術標准,含有將四分五裂的局面統一起來的意思。藍牙技術使用高速跳頻(FH,Frequency Hopping)和時分多址(TDMA,Time DivesionMuli—access)等先進技術,在近距離內最廉價地將幾台數字化設備(各種移動設備、固定通信設備、計算機及其終端設備、各種數字數據系統,如數字照相機、數字攝像機等,甚至各種家用電器、自動化設備)呈網狀鏈接起來。藍牙技術將是網路中各種外圍設備介面的統一橋梁,它消除了設備之間的連線,取而代之以無線連接。

藍牙是一種短距的無線通訊技術,電子裝置彼此可以透過藍牙而連接起來,省去了傳統的電線。透過晶元上的無線接收器,配有藍牙技術的電子產品能夠在十公尺的距離內彼此相通,傳輸速度可以達到每秒鍾1兆位元組。以往紅外線介面的傳輸技術需要電子裝置在視線之內的距離,而現在有了藍牙技術,這樣的麻煩也可以免除了。

藍牙(Bluetooth)是由東芝、愛立信、IBM、Intel和諾基亞於1998年5月共同提出的近距離無線數字通信的技術標准。 其目標是實現最高數據傳輸速度1Mb/s(有效傳輸速度為721kb/s)、最大傳輸距離為10米,用戶不必經過申請便可利用2.4GHz的ISM(工業、科學、醫學)頻帶,在其上設立79個帶寬為1MHz的信道,用每秒鍾切換1600次的頻率、滾齒方式的頻譜擴散技術來實現電波的收發。

藍牙技術的優勢:支持語音和數據傳輸;採用無線電技術,傳輸范圍大,可穿透不同物質以及在物質間擴散;採用跳頻展頻技術,抗干擾性強,不易竊聽;使用在各國都不受限制的頻譜,理論上說,不存在干擾問題;功耗低;成本低。藍牙的劣勢:傳輸速度慢。 藍牙的技術性能參數:有效傳輸距離為10cm~10m,增加發射功率可達到100米,甚至更遠。收發器工作頻率為2.45GHz ,覆蓋范圍是相隔1MHz的79個通道(從2.402GHz到2.480GHz )。數據傳輸技術使用短封包,跳頻展頻技術,1600次/秒,防止偷聽和避免干擾;每次傳送一個封包,封包的大小從126~287bit;封包的內容可以是包含數據或者語音等不同服務的資料。數據傳輸帶寬為同步連接可達到每個方向32.6Kbps,接近於10倍典型的56kb/s Modem的模擬連接速率,非同步連接允許一個方向的數據傳輸速率達到721kb/s,用於上載或下載,這時相反方向的速率是57.6kb/s;數據傳輸通道為留出3條並發的同步語音通道,每條帶寬64kb/s;語音與數據也可以混合在一個通道內,提供一個64kb/s同步語音連接和一個非同步數據連接。網路連接使用加密技術,同時採用口令驗證連接設備,可同時與其他7個以內的設備構成藍牙微網(Piconet ),1個藍牙設備可以同時加入8個不同的微網,每個微網分別有1Mb/s的傳輸頻寬,當2個以上的設備共享一個Channel時,就可以構成一個藍牙微網,並由其中的一個裝置主導傳輸量,當設備尚未加入藍牙微網時,它先進入待機狀態。

『叄』 什麼是藍牙它是通過什麼介質來傳輸數據的

藍牙是一個標準的無線通訊協議,基於設備低成本的收發器晶元,傳輸距離近、低功耗。它是通過無線電介質來傳輸數據的。
藍牙( Bluetooth® ):是一種無線技術標准,可實現固定設備、移動設備和樓宇個人域網之間的短距離數據交換(使用2.4—2.485GHz的ISM波段的UHF無線電波)。藍牙技術最初由電信巨頭愛立信公司於1994年創制,當時是作為RS232數據線的替代方案。藍牙可連接多個設備,克服了數據同步的難題。
如今藍牙由藍牙技術聯盟(Bluetooth Special Interest Group,簡稱SIG)管理。藍牙技術聯盟在全球擁有超過25,000家成員公司,它們分布在電信、計算機、網路、和消費電子等多重領域。IEEE將藍牙技術列為IEEE 802.15.1,但如今已不再維持該標准。藍牙技術聯盟負責監督藍牙規范的開發,管理認證項目,並維護商標權益。製造商的設備必須符合藍牙技術聯盟的標准才能以「藍牙設備」的名義進入市場。藍牙技術擁有一套專利網路,可發放給符合標準的設備。

『肆』 連著別人的藍牙,然後熱點上下載的東西會被泄露嗎

不會。
藍牙共享文件一般不會被泄露,藍牙傳輸距離很短。傳輸距離一般不超過10米,這么近的距離一般沒中間人竊取。但是隱私都有可能會泄漏,例如簡訊記錄,聯系人照片,文件等。針對手機隱私泄露,可下載手機管家進行保護。可對重要隱私信息進行加密,確保個人隱私不被泄露,實現全面的隱私保護。

『伍』 藍牙技術的原理是什麼

藍牙技術的工作原理:藍牙設備使用無線電波(而非電線或電纜)連接手機和電腦。當藍牙設備之間想要相互交流時,它們需要進行配對,當網路環境創建成功,一台設備作為主設備,而所有其它設備作為從設備。微微網在藍牙設備加入和離開無線電短程感測時動態、自動建立。

藍牙用於在不同的設備之間進行無線連接,例如連接計算機和外圍設備,如:列印機、鍵盤等,又或讓個人數碼助理(PDA)與其它附近的PDA或計算機進行通信。

市面上具備藍牙技術的手機選擇非常豐富,可以連接到計算機、PDA甚至連接到免提聽筒。

事實上,根據已訂立的標准,藍牙可以支持功能更強的長距離通訊,用以構成無線區域網。每個Bluetooth設備可同時維護7個連接。可以將每個設備配置為不斷向附近的設備聲明其存在以便建立連接。另外也可以對二個設備之間的連接進行密碼保護,以防止被其他設備接收。

(5)藍牙傳輸是加密的嗎擴展閱讀

藍牙存在的問題主要有以下幾個:

(1)藍牙的功耗問題。藍牙傳輸數據的頻率不高,在傳輸數據的過程中耗能較少,但是,為了及時響應連接請求,在等待過程中的輪詢訪問卻是十分耗能的。

(2)藍牙的連接過程煩瑣。藍牙的連接過程中涉及多次的信息傳遞與驗證過程,表面上來看似乎並不能讓使用者感受到復雜的連接程序,但是,反復的數據加解密過程和每次連接都需進行的身份驗證過程卻是對於設備計算資源的一種極大的浪費。

(3)藍牙的安全性問題。藍牙的首次配對需要用戶通過PIN碼驗證,PIN碼一般僅由數字構成,且位數很少,一般為4~6位。

PIN碼在生成之後,設備會自動使用藍牙自帶的E2或者E3加密演算法來對PIN碼進行加密,然後傳輸進行身份認證。在這個過程中,黑客很有可能通過攔截數據包,偽裝成目標藍牙設備進行連接或者採用「暴力攻擊」的方式來破解PIN碼。

『陸』 藍牙連接手機加密嗎

可加可不加

『柒』 手機上的藍牙有什麼用打開藍牙安全嗎

手機上面的藍牙功能是用來連接藍牙耳機使用的,最主要的功能是用來通電話。
一般來說打開藍牙是安全的,只要不使用藍牙連接不知道的設備或者傳輸信息等。
如果沒有在使用藍牙耳機的話,手機的藍牙功能最好是關掉,開著手機耗電大。

『捌』 桂花網藍牙網關與AC之間的通訊是加密的嗎是否可以使用自己的安全證書

桂花網藍牙網關與AC之間的通訊始終是加密的,通訊協議可以採用MQTT或CAPWAP。在使用MQTT通訊協議時,默認使用桂花網的SSL證書。如有需要,用戶也可以使用自己的SSL證書。採用CAPWAP通訊協議時,使用桂花網的SSL證書。

『玖』 藍牙的安全機制有哪些

藍牙採取的安全機制適用於對等通信的情況,即雙方以相同的方式實現認證與加密規程。主要的安全機制為使用密鑰。它的鏈路層使用4個實體提供安全性,一個公開的藍牙設備地址,長度為48比特;認證密鑰,長度為128比特;加密密鑰,長度為8~128比特;隨機數,長為128比特。藍牙安全管理器存貯著有關設備和服務的安全信息,安全管理器將決定是否接收數據,斷開連接或是否需要加密和身份認證,它還初始化一個可信任的關系以及從用戶那裡得到一個PIN碼。

藍牙設備有兩種信任級別,即可信任和不可信任。可信任級別有一個固定的可信任關系,可以得到大多數服務。可信任設備是預先得到鑒別的。而不可信任設備所得到的服務是有限的,它也可以具有一個固定的關系,但不是可信任的。一個新連接的設備總是被認為是未知的,不可信任的。

對藍牙協議本身的攻擊可以分為兩類:主動攻擊和被動攻擊。主動攻擊是沒有被認證的第三方對傳輸過程中的數據流進行修改。主動攻擊包括偽裝、中繼、信息修改以及拒絕服務。被動攻擊可以是對傳輸內容進行竊聽,也可以是對通信模式進行監聽獲取相關信息。




2.1字管理機制

藍牙鏈字是長度為128位的隨機數,它是藍牙系統鑒權和加密的基礎。為了支持不同階段、模式的要求,藍牙系統在鏈路層上用了4種不同的字來保證系統的安全性。包括單元字KA組合字是KAB,臨時字Kmaster及初始化字Kinit。單元字KA與組合字KAB僅產生方式不同,執行的功能是完全相同的。也就是說,KAB是由兩個單元A,B共同產生的,而KA僅由一個單元A產生,因此KA在初始化階段產生後就基本不變了。系統的內存比較小時通常選擇KA,而系統對穩定性要求比較高時選擇KAB。臨時字Kmaster只是臨時取代原始字。例如,當主機想與多個子機通信時主機將用同一個加密字,因此把它存放在臨時字中,以便於使用。初始化字Kinit僅僅在初始化階段有效,也主是單元字KA,KAB產生的階段,它不僅僅是初始化階段的一個臨時字,其產生需要一個PIN。半永久性的鏈接字在特定的時間內被稱作當前鏈接字。當前鏈接字和其它

鏈接字一樣,用於鑒權和加密過程。

此外,還用到了加密字KC,加密字被LM的命令激活後將自動被改變。

另外,鑒權字和加密字在不同的階段執行不同的功能。例如:在兩個單元沒有建立連接的階段和已經建立連接的階段有很大的不同,前者必須首先產生加密字,而後者可以繼續使用上次通信的加密字。相應地不同的階段對字的管理是不一樣的。此外當主機想廣播消息,而不是一個一個地傳送消息時,需要特殊的字管理方法。正是藍牙系統有力的字管理機制,才使得系統具有很好的安全性,而且支持不同的應用模式。

2.2鏈接字的產生

初始化字Kunit的值以申請者的藍牙設備地址、一個PIN碼、PIN碼的長度和一個隨機數作為參數,通過E22演算法產生。而申請者相對校驗者而言是需要通過驗證的一方。因此,申請者需要正確的PIN碼和PIN碼的長度。一般來講,由HCI決定誰是申請者,誰是校驗者。當PIN的長度少於16個八進制數時,可以通過填充藍牙設備地址的數據使其增大,因此如果循環使用E22可以使鏈接字的長度增長為128位。初始化鏈接字Kint產生後,該單元將產生一個半永久字KA或KAB。如果產生的是一人KAB,則該單元將用一個隨機數LK_RAND周期性地加密藍牙設備地址,加密後的結果為LK_KA,而各自產生的LK_RAND與當前的鏈接字進行異或運算後,分別產生新值,永為CA和CA,然後互相交換,從而得到了對方的LK_RAND,並以對方的LK_RAND和藍牙設備地址作為參數,用E21函數產生新值LK_KB的異或運算得到組合字KAB。當KAB產生後,首先單向鑒權一次,看KAB變為當前鏈接字,而丟棄原先的鏈接字K。E22的工作原理與E21類似。

閱讀全文

與藍牙傳輸是加密的嗎相關的資料

熱點內容
把pdf導入iphone 瀏覽:508
米哈游租賃的雲伺服器是哪個 瀏覽:524
android直接打電話 瀏覽:1015
ubuntu停止命令 瀏覽:283
cnc攻絲編程 瀏覽:869
換個手機號碼app怎麼注冊 瀏覽:319
怎麼下載小猴口算app 瀏覽:115
輕鏈app的貨怎麼樣 瀏覽:625
電腦里的u盤如何加密 瀏覽:370
我的世界全部版本伺服器下載地址 瀏覽:49
交換原理pdf 瀏覽:228
菜鳥驛站app怎麼邀請新人 瀏覽:447
電腦里總是有一些1k的文件夾 瀏覽:44
drm加密絕對安全 瀏覽:512
android滅屏流程 瀏覽:496
如何更改站點文件夾名字 瀏覽:896
如何看伺服器幾核 瀏覽:276
找酒吧設計公司用什麼app 瀏覽:683
基本初等函數的導數公式及導數的運演算法則 瀏覽:917
為什麼小米app啟動廣告關不了 瀏覽:880