A. 電化學基礎知識點總結歸納
電化學是高中化學的重要部分,那麼電化學有哪些知識點呢?我整理了一些電化學的重要知識點。
1、概念:化學能轉化為電能的裝置叫做原電池。
2、組成條件:
①兩個活潑性不同的電極;
②電解質溶液;
③電極用導線相連並插入電解液構成閉合迴路;
3、電子流向:外電路:負極——導線——正極內電路:鹽橋中陰離子移向負極的電解質溶液,鹽橋中陽離子移向正極的電解質溶液。
4、電極反應:以鋅銅原電池為例:負極:氧化反應:Zn-2e=Zn2+(較活潑金屬)正極:還原反應:2H++2e=H2↑(較不活潑金屬)總反應式:Zn+2H+=Zn
2++H2↑
5、正、負極的判斷:
(1)從電極材料:一般較活潑金屬為負極;或金屬為負極,非金屬為正極;
(2)從電子的流動方向負極流入正極;
(3)從電流方向正極流入負極;
(4)根據電解質溶液內離子的移動方向陽離子流向正極,陰離子流向負極;
(5)根據實驗現象
①溶解的一極為負極;②增重或有氣泡一極為正極
1、把電能轉化為化學能的裝置,也叫電解槽。
2、電解:電流(外加直流電)通過電解質溶液而在陰陽兩極引起氧化還原反應(被動的不是自發的)的過程。
3、放電:當離子到達電極時,失去或獲得電子,發生氧化還原反應的過程。
4、電子流向:(電源)負極—(電解池)陰極—(離子定向運動)電解質溶液—(電解池)陽極—(電源)正極
1、定義:金屬的腐蝕是指金屬與周圍的氣體或液體物質發生氧化還原反應而引起損耗的現象。
2、分類:由於金屬接觸的介質不同,發生腐蝕的情況也不同,一般可分為化學腐蝕和電化學腐蝕。
①化學腐蝕:金屬跟接觸到的物質直接發生反應而引起的腐蝕叫做化學腐蝕。化學腐蝕過程中發生的化學反應是普通的氧化還原反應,而不是原電池反應,無電流產生。
②電化學腐蝕:不純的金屬與電解質溶液接觸時,會發生原電池反應。比較活潑的金屬失去電子而被氧化,這種腐蝕叫做電化學腐蝕。
3、電化學腐蝕
電化學腐蝕,實際上是由大量的微小的電池構成微電池群自發放電的結果。
①析氫腐蝕
鋼鐵在潮濕的空氣中表面會形成一薄層水膜,在鋼鐵表面形成了一層電解質溶液的薄膜,與鋼鐵里的鐵和少量的碳恰好形成了原電池。這無數個微小的原電池遍布鋼鐵表面,在這些原電池裡,鐵是負極,碳是正極。若電解質溶液酸性較強則發生析氫腐蝕。
②吸氧腐蝕
金屬表面酸性較弱或呈中性時,溶解在溶液中的氧氣與水結合,生成OH-,消耗了氧氣,從而使得溶液不斷吸收空氣中的氧氣而發生吸氧腐蝕。
金屬防護的目的就是防止金屬的腐蝕。金屬的防護要解決的主要問題就是使金屬不被氧化。
(1)犧牲陽極的陰極保護法
將被保護的金屬與更活潑的金屬連接,構成原電池,使活潑金屬作陽極被氧化,被保護的金屬作陰極。
(2)外加電源的陰極保護法
利用外加直流電,負極接在被保護金屬上成為陰極,正極接其他金屬。
以上是我整理的電化學的知識點,希望能幫到你。
B. 高考必刷題化學反應原理對應哪本書
應該是對應高中化學選修4。可以比對一下目錄確認一下。
反應原理目錄主要包括
緒言
第一章化學反應與能量
第一節化學反應與能量的變化
第二節燃燒熱能源
第三節化學反應熱的計算
歸納與整理
第二章化學反應速率和化學平衡
第一節化學反應速率
第二節影響化學反應速率的因素
第三節化學平衡
第四節化學反應進行的方向
歸納與整理
第三章水溶液中的離子平衡
第一節弱電解質的電離
第二節水的電離和溶液的酸鹼性
第三節鹽類的水解
第四節難溶電解質的溶解平衡
歸納與整理
第四章電化學基礎
第一節原電池
第二節化學電源
第三節電解池
第四節金屬的電化學腐蝕與防護
歸納與整理
附錄
C. 電化學基礎是在蘇教版的哪一本書里學到
電化學基礎是大學普通化學課程啊,電化學入門知識在《選修 化學反應原理》第一章。
D. .. 化學反應原理的細節知識與重點知識。。。
高二化學選修4復習提綱
第一章 化學反應與能量
一、焓變(ΔH) : 反應熱
1.反應熱:一定條件下,一定物質的量的反應物之間完全反應所放出或吸收的熱量
2.焓變(ΔH)的意義:在恆壓條件下進行的化學反應的熱效應(1).符號: △H(2).單位:kJ/mol
3.產生原因:化學鍵斷裂——吸熱 化學鍵形成——放熱
放出熱量的化學反應。(放熱>吸熱) △H 為「-」或△H <0
吸收熱量的化學反應。(吸熱>放熱)△H 為「+」或△H >0
☆ 常見的放熱反應: ① 所有的燃燒反應 ② 酸鹼中和反應
③ 大多數的化合反應 ④ 金屬與酸的反應
⑤ 生石灰和水反應 ⑥ 濃硫酸稀釋、氫氧化鈉固體溶解等
☆ 常見的吸熱反應:① 晶體Ba(OH)2•8H2O與NH4Cl ② 大多數的分解反應
③ 以H2、CO、C為還原劑的氧化還原反應 ④ 銨鹽溶解等
二、熱化學方程式
書寫化學方程式注意要點:
①熱化學方程式必須標出能量變化。
②熱化學方程式中必須標明反應物和生成物的聚集狀態(g,l,s分別表示固態,液態,氣態,水溶液中溶質用aq表示)
③熱化學反應方程式要指明反應時的溫度和壓強。
④熱化學方程式中的化學計量數可以是整數,也可以是分數
⑤各物質系數加倍,△H加倍;反應逆向進行,△H改變符號,數值不變
三、燃燒熱
1.概念:25 ℃,101 kPa時,1 mol純物質完全燃燒生成穩定的化合物時所放出的熱量。燃燒熱的單位用kJ/mol表示。
※注意以下幾點: ①研究條件:101 kPa ②反應程度:完全燃燒,產物是穩定的氧化物。
③燃燒物的物質的量:1 mol ④研究內容:放出的熱量。(ΔH<0,單位kJ/mol)
四、中和熱
1.概念:在稀溶液中,酸跟鹼發生中和反應而生成1mol H2O,這時的反應熱叫中和熱。
2.強酸與強鹼的中和反應其實質是H+和OH-反應,其熱化學方程式為:
H+(aq) +OH-(aq) =H2O(l) ΔH=-57.3kJ/mol
3.弱酸或弱鹼電離要吸收熱量,所以它們參加中和反應時的中和熱小於57.3kJ/mol。
4.中和熱的測定實驗
五、蓋斯定律
1.內容:化學反應的反應熱只與反應的始態(各反應物)和終態(各生成物)有關,而與具體反應進行的途徑無關,如果一個反應可以分幾步進行,則各分步反應的反應熱之和與該反應一步完成的反應熱是相同的。
2、運用:根據蓋斯定律,可以設計反應求出另一個反應的反應熱。
第二章 化學反應速率和化學平衡
一、化學反應速率
1. 化學反應速率(v)
⑴ 定義:用來衡量化學反應的快慢,單位時間內反應物或生成物的物質的量的變化
⑵ 表示方法:單位時間內反應濃度的減少或生成物濃度的增加來表示
⑶ 計算公式:v=Δc/Δt(υ:平均速率,Δc:濃度變化,Δt:時間)單位:mol/(L•s)
⑷ 影響因素: ① 決定因素(內因):反應物的性質(決定因素)
② 條件因素(外因):反應所處的條件
2.
※注意:
(1)、參加反應的物質為固體和液體,由於壓強的變化對濃度幾乎無影響,可以認為反應速率不變。
(2)、惰性氣體對於速率的影響
①恆溫恆容時:充入惰性氣體→總壓增大,但是各分壓不變,各物質濃度不變→反應速率不變
②恆溫恆體時:充入惰性氣體→體積增大→各反應物濃度減小→反應速率減慢
二、化學平衡
(一)1.定義:
化學平衡狀態:一定條件下,當一個可逆反應進行到正逆反應速率相等時,更組成成分濃度不再改變,達到表面上靜止的一種「平衡」,這就是這個反應所能達到的限度即化學平衡狀態。
2、化學平衡的特徵: 逆(研究前提是可逆反應) 等(同一物質的正逆反應速率相等)
動(動態平衡) 定(各物質的濃度與質量分數恆定)
變(條件改變,平衡發生變化)
3、判斷平衡的依據
判斷可逆反應達到平衡狀態的方法和依據
例舉反應 mA(g)+nB(g) pC(g)+qD(g)
混合物體系中
各成分的含量 ①各物質的物質的量或各物質的物質的量的分數一定 平衡
②各物質的質量或各物質質量分數一定 平衡
③各氣體的體積或體積分數一定 平衡
④總體積、總壓力、總物質的量一定 不一定平衡
正、逆反應
速率的關系 ①在單位時間內消耗了m molA同時生成m molA,即V(正)=V(逆) 平衡
②在單位時間內消耗了n molB同時消耗了p molC,則V(正)=V(逆) 平衡
③V(A):V(B):V(C):V(D)=m:n:p:q,V(正)不一定等於V(逆) 不一定平衡
④在單位時間內生成n molB,同時消耗了q molD,因均指V(逆) 不一定平衡
壓強 ①m+n≠p+q時,總壓力一定(其他條件一定) 平衡
②m+n=p+q時,總壓力一定(其他條件一定) 不一定平衡
混合氣體平均相對分子質量Mr ①Mr一定時,只有當m+n≠p+q時 平衡
②Mr一定時,但m+n=p+q時 不一定平衡
溫度 任何反應都伴隨著能量變化,當體系溫度一定時(其他不變) 平衡
體系的密度 密度一定 不一定平衡
其他 如體系顏色不再變化等 平衡
(二)影響化學平衡移動的因素
1、濃度對化學平衡移動的影響
(1)影響規律:在其他條件不變的情況下,增大反應物的濃度或減少生成物的濃度,都可以使平衡向正方向移 動;增大生成物的濃度或減小反應物的濃度,都可以使平衡向逆方向移動
(2)增加固體或純液體的量,由於濃度不變,所以平衡不移動
(3)在溶液中進行的反應,如果稀釋溶液,反應物濃度減小,生成物濃度也減小, V正減小,V逆也減小,但是減小的程度不同,總的結果是化學平衡向反應方程式中化學計量數之和大的方向移動。
2、溫度對化學平衡移動的影響
影響規律:在其他條件不變的情況下,溫度升高會使化學平衡向著吸熱反應方向移動,溫度降低會使化學平衡向著放熱反應方向移動。
3、壓強對化學平衡移動的影響
影響規律:其他條件不變時,增大壓強,會使平衡向著體積縮小方向移動;減小壓強,會使平衡向著體積增大方向移動。
注意:(1)改變壓強不能使無氣態物質存在的化學平衡發生移動
(2)氣體減壓或增壓與溶液稀釋或濃縮的化學平衡移動規律相似
4、催化劑對化學平衡的影響:由於使用催化劑對正反應速率和逆反應速率影響的程度是等同的,所以平衡不移動。但是使用催化劑可以影響可逆反應達到平衡所需的時間。
5、勒夏特列原理(平衡移動原理):如果改變影響平衡的條件之一(如溫度,壓強,濃度),平衡向著能夠減弱這種改變的方向移動。
三、化學平衡常數
(一)定義:在一定溫度下,當一個反應達到化學平衡時,生成物濃度冪之積與反應物濃度冪之積的比值是一個常數比值。 符號:K
(二)使用化學平衡常數K應注意的問題:
1、表達式中各物質的濃度是變化的濃度,不是起始濃度也不是物質的量。
2、K只與溫度(T)有關,與反應物或生成物的濃度無關。
3、反應物或生產物中有固體或純液體存在時,由於其濃度是固定不變的,可以看做是「1」而不代入公式。
4、稀溶液中進行的反應,如有水參加,水的濃度不必寫在平衡關系式中。
(三)化學平衡常數K的應用:
1、化學平衡常數值的大小是可逆反應進行程度的標志。K值越大,說明平衡時生成物的濃度越大,它的正向反應進行的程度越大,即該反應進行得越完全,反應物轉化率越高。反之,則相反。 一般地,K>105時,該反應就進行得基本完全了。
2、可以利用K值做標准,判斷正在進行的可逆反應是否平衡及不平衡時向何方進行建立平衡。(Q:濃度積)
Q〈 K:反應向正反應方向進行; Q = K:反應處於平衡狀態 ; Q 〉K:反應向逆反應方向進行
3、利用K值可判斷反應的熱效應
若溫度升高,K值增大,則正反應為吸熱反應
若溫度升高,K值減小,則正反應為放熱反應
*四、等效平衡
1、概念:在一定條件下(定溫、定容或定溫、定壓),只是起始加入情況不同的同一可逆反應達到平衡後,任何相同組分的百分含量均相同,這樣的化學平衡互稱為等效平衡。
2、分類
(1)定溫,定容條件下的等效平衡
第一類:對於反應前後氣體分子數改變的可逆反應:必須要保證化學計量數之比與原來相同;同時必須保證平衡式左右兩邊同一邊的物質的量與原來相同。
第二類:對於反應前後氣體分子數不變的可逆反應:只要反應物的物質的量的比例與原來相同即可視為二者等效。
(2)定溫,定壓的等效平衡: 只要保證可逆反應化學計量數之比相同即可視為等效平衡。
五、化學反應進行的方向
1、反應熵變與反應方向:
(1)熵:物質的一個狀態函數,用來描述體系的混亂度,符號為S. 單位:J•mol-1•K-1
(2) 體系趨向於有序轉變為無序,導致體系的熵增加,這叫做熵增加原理,也是反應方向判斷的依據。.
(3)同一物質,在氣態時熵值最大,液態時次之,固態時最小。即S(g)〉S(l)〉S(s)
2、反應方向判斷依據
在溫度、壓強一定的條件下,化學反應的判讀依據為:
ΔH-TΔS〈 0 反應能自發進行
ΔH-TΔS = 0 反應達到平衡狀態
ΔH-TΔS 〉0 反應不能自發進行
注意:(1)ΔH為負,ΔS為正時,任何溫度反應都能自發進行
(2)ΔH為正,ΔS為負時,任何溫度反應都不能自發進行
第三章 水溶液中的離子平衡
一、弱電解質的電離
1、定義:電解質:在水溶液中或熔化狀態下能導電的化合物,叫電解質。
非電解質 :在水溶液中或熔化狀態下都不能導電的化合物。
強電解質 :在水溶液里全部電離成離子的電解質 。
弱電解質: 在水溶液里只有一部分分子電離成離子的電解質 。
2、電解質與非電解質本質區別:
電解質——離子化合物或共價化合物 非電解質——共價化合物
注意:①電解質、非電解質都是化合物 ②SO2、NH3、CO2等屬於非電解質
③強電解質不等於易溶於水的化合物(如BaSO4不溶於水,但溶於水的BaSO4全部電離,故BaSO4為強電解質)——電解質的強弱與導電性、溶解性無關。
3、電離平衡:在一定的條件下,當電解質分子電離成離子的速率和離子結合成分子的速率相同時,電離過程就達到了平衡狀態,這叫電離平衡。
4、影響電離平衡的因素:
A、溫度:電離一般吸熱,升溫有利於電離。
B、濃度:濃度越大,電離程度越小;溶液稀釋時,電離平衡向著電離的方向移動。
C、同離子效應:在弱電解質溶液里加入與弱電解質具有相同離子的電解質,會 減弱 電離。
D、其他外加試劑:加入能與弱電解質的電離產生的某種離子反應的物質時,有利於電離。
5、電離方程式的書寫:用可逆符號 弱酸的電離要分布寫(第一步為主)
6、電離常數:在一定條件下,弱電解質在達到電離平衡時,溶液中電離所生成的各種離子濃度的乘積,跟溶液中未電離的分子濃度的比是一個常數。叫做電離平衡常數,(一般用Ka表示酸,Kb表示鹼)表示方法:AB A++B- Ki=[ A+][ B-]/[AB]
7、影響因素:
a、電離常數的大小主要由物質的本性決定。
b、電離常數受溫度變化影響,不受濃度變化影響,在室溫下一般變化不大。
c、同一溫度下,不同弱酸,電離常數越大,其電離程度越大,酸性越強。如:H2SO3>H3PO4>HF>CH3COOH>H2CO3>H2S>HClO
二、水的電離和溶液的酸鹼性
1、水電離平衡: 水的離子積:KW =c[H+]•c[OH-]
25℃時, [H+]=[OH-] =10-7 mol/L ; KW = [H+]•[OH-] = 1*10-14
注意:KW只與溫度有關,溫度一定,則KW值一定; KW不僅適用於純水,適用於任何溶液(酸、鹼、鹽)
2、水電離特點:(1)可逆 (2)吸熱 (3)極弱
3、影響水電離平衡的外界因素: ①酸、鹼 :抑制水的電離 KW〈1*10-14
②溫度:促進水的電離(水的電離是吸熱的)
③易水解的鹽:促進水的電離 KW 〉 1*10-14
4、溶液的酸鹼性和pH: (1)pH=-lgc[H+]
(2)pH的測定方法:
酸鹼指示劑—— 甲基橙 、 石蕊 、 酚酞 。
變色范圍:甲基橙 3.1~4.4(橙色) 石蕊5.0~8.0(紫色) 酚酞8.2~10.0(淺紅色)
pH試紙 —操作玻璃棒蘸取未知液體在試紙上,然後與標准比色卡對比即可。
注意:①事先不能用水濕潤PH試紙;②廣泛pH試紙只能讀取整數值或范圍
三 、混合液的pH值計算方法公式
1、強酸與強酸的混合:
(先求[H+]混:將兩種酸中的H+離子物質的量相加除以總體積,再求其它)
[H+]混 =([H+]1V1+[H+]2V2)/(V1+V2)
2、強鹼與強鹼的混合:(先求[OH-]混:將兩種酸中的OH 離子物質的量相加除以總體積,再求其它)
[OH-]混=([OH-]1V1+[OH-]2V2)/(V1+V2) (注意 :不能直接計算[H+]混)
3、強酸與強鹼的混合:(先據H+ + OH- ==H2O計算餘下的H+或OH-,①H+有餘,則用餘下的H+數除以溶液總體積求[H+]混;OH-有餘,則用餘下的OH-數除以溶液總體積求[OH-]混,再求其它)
四、稀釋過程溶液pH值的變化規律:
1、強酸溶液:稀釋10n倍時,pH稀 = pH原+ n (但始終不能大於或等於7)
2、弱酸溶液:稀釋10n倍時,pH稀 〈 pH原+n (但始終不能大於或等於7)
3、強鹼溶液:稀釋10n倍時,pH稀 = pH原-n (但始終不能小於或等於7)
4、弱鹼溶液:稀釋10n倍時,pH稀 〉 pH原-n (但始終不能小於或等於7)
5、不論任何溶液,稀釋時pH均是向7靠近(即向中性靠近);任何溶液無限稀釋後pH均接近7
6、稀釋時,弱酸、弱鹼和水解的鹽溶液的pH變化得慢,強酸、強鹼變化得快。
五、強酸(pH1)強鹼(pH2)混和計算規律w.w.w.k.s.5.u.c.o.m
1、若等體積混合: pH1+pH2=14 則溶液顯中性pH=7
pH1+pH2≥15 則溶液顯鹼性pH=pH2-0.3
pH1+pH2≤13 則溶液顯酸性pH=pH1+0.3
2、若混合後顯中性
pH1+pH2=14 V酸:V鹼=1:1
pH1+pH2≠14 V酸:V鹼=1:1014-(pH1+pH2)
六、酸鹼中和滴定:
1、中和滴定的原理:實質:H++OH—=H2O 即酸能提供的H+和鹼能提供的OH-物質的量相等。
2、中和滴定的操作過程:
(1)儀②滴定管的刻度,O刻度在上,往下刻度標數越來越大,全部容積大於它的最大刻度值,因為下端有一部分沒有刻度。滴定時,所用溶液不得超過最低刻度,不得一次滴定使用兩滴定管酸(或鹼),也不得中途向滴定管中添加。②滴定管可以讀到小數點後一位。
(2)葯品:標准液;待測液;指示劑。
(3)准備過程:准備:檢漏、洗滌、潤洗、裝液、趕氣泡、調液面。
(洗滌:用洗液洗→檢漏:滴定管是否漏水→用水洗→用標准液洗(或待測液洗)→裝溶液→排氣泡→調液面→記數據V(始)
(4)試驗過程
3、酸鹼中和滴定的誤差分析
誤差分析:利用n酸c酸V酸=n鹼c鹼V鹼進行分析
式中:n——酸或鹼中氫原子或氫氧根離子數;c——酸或鹼的物質的量濃度;
V——酸或鹼溶液的體積。當用酸去滴定鹼確定鹼的濃度時,則:c鹼=
上述公式在求算濃度時很方便,而在分析誤差時起主要作用的是分子上的V酸的變化,因為在滴定過程中c酸為標准酸,其數值在理論上是不變的,若稀釋了雖實際值變小,但體現的卻是V酸的增大,導致c酸偏高;V鹼同樣也是一個定值,它是用標準的量器量好後注入錐形瓶中的,當在實際操作中鹼液外濺,其實際值減小,但引起變化的卻是標准酸用量的減少,即V酸減小,則c鹼降低了;對於觀察中出現的誤差亦同樣如此。綜上所述,當用標准酸來測定鹼的濃度時,c鹼的誤差與V酸的變化成正比,即當V酸的實測值大於理論值時,c鹼偏高,反之偏低。
同理,用標准鹼來滴定未知濃度的酸時亦然。
七、鹽類的水解(只有可溶於水的鹽才水解)
1、鹽類水解:在水溶液中鹽電離出來的離子跟水電離出來的H+或OH-結合生成弱電解質的反應。
2、水解的實質: 水溶液中鹽電離出來的離子跟水電離出來的H+或OH-結合,破壞水的電離,是平衡向右移動,促進水的電離。
3、鹽類水解規律:
①有 弱 才水解,無弱不水解,越弱越水解;誰 強顯誰性,兩弱都水解,同強顯中性。
②多元弱酸根,濃度相同時正酸根比酸式酸根水解程度大,鹼性更強。 (如:Na2CO3 >NaHCO3)
4、鹽類水解的特點:(1)可逆(與中和反應互逆) (2)程度小 (3)吸熱
5、影響鹽類水解的外界因素:
①溫度:溫度越 高 水解程度越大 (水解吸熱,越熱越水解)
②濃度:濃度越小,水解程度越 大 (越稀越水解)
③酸鹼:促進或抑制鹽的水解(H+促進 陰離子 水解而 抑制 陽離子水解;OH -促進陽離子水解而抑制陰離子水解)
6、酸式鹽溶液的酸鹼性:
①只電離不水解:如HSO4- 顯 酸 性
②電離程度>水解程度,顯 酸 性 (如: HSO3- 、H2PO4-)
③水解程度>電離程度,顯 鹼 性 (如:HCO3- 、HS- 、HPO42-)
7、雙水解反應:
(1)構成鹽的陰陽離子均能發生水解的反應。雙水解反應相互促進,水解程度較大,有的甚至水解完全。使得平衡向右移。
(2)常見的雙水解反應完全的為:Fe3+、Al3+與AlO2-、CO32-(HCO3-)、S2-(HS-)、SO32-(HSO3-);S2-與NH4+;CO32-(HCO3-)與NH4+其特點是相互水解成沉澱或氣體。雙水解完全的離子方程式配平依據是兩邊電荷平衡,
如:2Al3+ + 3S2- + 6H2O == 2Al(OH)3↓+ 3H2S↑
8、鹽類水解的應用:
水解的應用 實例 原理
1、凈水 明礬凈水 Al3++3H2O Al(OH)3(膠體)+3H+
2、去油污 用熱鹼水冼油污物品 CO32-+H2O HCO3-+OH-
3、葯品的保存 ①配製FeCl3溶液時常加入少量鹽酸 Fe3++3H2O Fe(OH)3+3H+
②配製Na2CO3溶液時常加入少量NaOH CO32-+H2O HCO3-+OH-
4、制備無水鹽 由MgCl2•6H2O制無水MgCl2 在HCl氣流中加熱 若不然,則:
MgCl2•6H2O Mg(OH)2+2HCl+4H2O
Mg(OH)2 MgO+H2O
5、泡沫滅火器 用Al2(SO4)3與NaHCO3溶液混合 Al3++3HCO3-=Al(OH)3↓+3CO2↑
6、比較鹽溶液中離子濃度的大小 比較NH4Cl溶液中離子濃度的大小 NH4++H2O NH3•H2O+H+
c(Cl-)>c(NH4+)>c(H+)>c(OH)-
9、水解平衡常數 (Kh)
對於強鹼弱酸鹽:Kh =Kw/Ka(Kw為該溫度下水的離子積,Ka為該條件下該弱酸根形成的弱酸的電離平衡常數)
對於強酸弱鹼鹽:Kh =Kw/Kb(Kw為該溫度下水的離子積,Kb為該條件下該弱鹼根形成的弱鹼的電離平衡常數)
八、電離、水解方程式的書寫原則
1、多元弱酸(多元弱酸鹽)的電離(水解)的書寫原則:分步書寫
注意:不管是水解還是電離,都決定於第一步,第二步一般相當微弱。
2、多元弱鹼(多元弱鹼鹽)的電離(水解)書寫原則:一步書寫
九、溶液中微粒濃度的大小比較
基本原則:抓住溶液中微粒濃度必須滿足的三種守恆關系:
①電荷守恆:任何溶液均顯電 中 性,各陽離子濃度與其所帶電荷數的乘積之和=各陰離子濃度與其所帶電荷數的乘積之和
②物料守恆: (即原子個數守恆或質量守恆)某原子的總量(或總濃度)=其以各種形式存在的所有微粒的量(或濃度)之和
③質子守恆:即水電離出的H+濃度與OH-濃度相等。
十、難溶電解質的溶解平衡
1、難溶電解質的溶解平衡的一些常見知識
(1)溶解度 小於 0.01g的電解質稱難溶電解質。
(2)反應後離子濃度降至1*10-5以下的反應為完全反應。如酸鹼中和時[H+]降至10-7mol/L<10-5mol/L,故為完全反應,用「=」,常見的難溶物在水中的離子濃度均遠低於10-5mol/L,故均用「=」。
(3)難溶並非不溶,任何難溶物在水中均存在溶解平衡。
(4)掌握三種微溶物質:CaSO4、Ca(OH)2、Ag2SO4
(5)溶解平衡常為吸熱,但Ca(OH)2為放熱,升溫其溶解度減少。
(6)溶解平衡存在的前提是:必須存在沉澱,否則不存在平衡。
2、溶解平衡方程式的書寫
注意在沉澱後用(s)標明狀態,並用「 」。如:Ag2S(s) 2Ag+(aq)+ S2-(aq)
3、沉澱生成的三種主要方式
(1)加沉澱劑法:Ksp越小(即沉澱越難溶),沉澱越完全;沉澱劑過量能使沉澱更完全。
(2)調pH值除某些易水解的金屬陽離子:如加MgO除去MgCl2溶液中FeCl3。
(3)氧化還原沉澱法:
(4)同離子效應法
4、沉澱的溶解:
沉澱的溶解就是使溶解平衡正向移動。常採用的方法有:①酸鹼;②氧化還原;③ 沉澱轉化 。
5、沉澱的轉化:
溶解度大的生成溶解度小的,溶解度小的生成溶解度 更小 的。
如:AgNO3 AgCl(白色沉澱) AgBr(淡黃色) AgI (黃色) Ag2S(黑色)
6、溶度積(KSP)
(1)定義:在一定條件下,難溶電解質電解質溶解成離子的速率等於離子重新結合成沉澱的速率,溶液中各離子的濃度保持不變的狀態。
(2)表達式:AmBn(s) mAn+(aq)+nBm-(aq) KSP= [c(An+)]m •[c(Bm-)]n
(3)影響因素: 外因:①濃度:加水,平衡向溶解方向移動。
②溫度:升溫,多數平衡向溶解方向移動。
(4)溶度積規則:QC為離子積
QC〉KSP 有沉澱析出 QC= KSP 平衡狀態 QC 〈KSP 未飽和,繼續溶解
第四章 電化學基礎
第一節 原電池
1、概念:化學能轉化為電能的裝置叫做原電池
2、組成條件:①兩個活潑性不同的電極② 電解質溶液③ 電極用導線相連並插入電解液構成閉合迴路
3、電子流向:外電路: 負 極——導線—— 正 極
內電路:鹽橋中 陰 離子移向負極的電解質溶液,鹽橋中 陽 離子移向正極的電解質溶液。
4、電極反應:以鋅銅原電池為例:
負極:氧化反應:Zn-2e=Zn2+ (較活潑金屬)
正極:還原反應:2H++2e=H2↑(較不活潑金屬)
總反應式:Zn+2H+=Zn2++H2↑
5、正、負極的判斷:
(1)從電極材料:一般較活潑金屬為負極;或金屬為負極,非金屬為正極。
(2)從電子的流動方向 負極流入正極
(3)從電流方向 正極流入負極
(4)根據電解質溶液內離子的移動方向陽離子流向正極,陰離子流向負極
(5)根據實驗現象①溶解的一極為負極②增重或有氣泡一極為正極
三、燃料電池
1、燃料電池: 是使燃料與氧化劑反應直接產生電流的一種原電池
2、電極反應:一般燃料電池發生的電化學反應的最終產物與燃燒產物相同,可根據燃燒反應寫出總的電池反應,但不註明反應的條件。,負極發生氧化反應,正極發生還原反應,不過要注意一般電解質溶液要參與電極反應。以氫氧燃料電池為例,鉑為正、負極,介質分為酸性、鹼性和中性。
當電解質溶液呈酸性時: 負極:2H2-4e =4H+ 正極:O2+4 e 4H+ =2H2O
當電解質溶液呈鹼性時: 負極:2H2+4OH-4e=4H2O 負極:O2+2H2O+4 e=4OH
另一種燃料電池是用金屬鉑片插入KOH溶液作電極,又在兩極上分別通甲烷燃料和氧氣氧化劑。
電極反應式為:負極:CH4+10OH--8e = 7H2O;
正極:4H2O+2O2+8e=8 OH-。
電池總反應式為:CH4+2O2+2KOH=K2CO3+3H2O
3、燃料電池的優點:能量轉換率高、廢棄物少、運行噪音低
四、廢棄電池的處理:回收利用
第三節 電解池
一、電解原理
1、電解池:把電能轉化為化學能的裝置也叫電解槽
2、電解:電流(外加直流電)通過電解質溶液而在陰陽兩極引起氧化還原反應(被動的不是自發的)的過程
3、放電:當離子到達電極時,失去或獲得電子,發生氧化還原反應的過程
4、電子流向:(電源)負極—(電解池)陰極—(離子定向運動)電解質溶液—(電解池)陽極—(電源)正極
5、電極名稱及反應:
陽極:與直流電源的 正極 相連的電極,發生 氧化 反應
陰極:與直流電源的 負極 相連的電極,發生 還原 反應
6、電解CuCl2溶液的電極反應: 陽極:2Cl- -2e=Cl2 (氧化) 陰極:Cu2++2e=Cu(還原)
總反應式:CuCl2 =Cu+Cl2 ↑
7、電解本質:電解質溶液的導電過程,就是電解質溶液的電解過程
☆規律總結:電解反應離子方程式書寫:
陽離子放電順序:Ag+>Hg2+>Fe3+>Cu2+>H+(指酸電離的)>Pb2+>Sn2+>Fe2+>Zn2+>Al3+>Mg2+>Na+>Ca2+>K+
陰離子放電順序:是惰性電極時:S2->I->Br->Cl->OH->NO3->SO42-(等含氧酸根離子)>F-(SO32-/MnO4->OH-)
是活性電極時:電極本身溶解放電
注意先要看電極材料,是惰性電極還是活性電極,若陽極材料為活性電極(Fe、Cu)等金屬,則陽極反應為電極材料失去電子,變成離子進入溶液;若為惰性材料,則根據陰陽離子的放電順序,依據陽氧陰還的規律來書寫電極反應式。
電解質水溶液點解產物的規律
類型 電極反應特點 實例 電解對象 電解質濃度 pH 電解質溶液復原
分解電解質型 電解質電離出的陰陽離子分別在兩極放電 HCl 電解質 減小 增大 HCl
CuCl2 --- CuCl2
放H2生成鹼型 陰極:水放H2生鹼
陽極:電解質陰離子放電 NaCl 電解質和水 生成新電解質 增大 HCl
放氧生酸型 陰極:電解質陽離子放電
陽極:水放O2生酸 CuSO4 電解質和水 生成新電解質 減小 氧化銅
電解水型 陰極:4H+ + 4e- == 2H2 ↑
陽極:4OH- - 4e-= O2↑+ 2H2O NaOH 水 增大 增大 水
H2SO4 減小
Na2SO4 不變
上述四種類型電解質分類:
(1)電解水型:含氧酸,強鹼,活潑金屬含氧酸鹽
(2)電解電解質型:無氧酸,不活潑金屬的無氧酸鹽(氟化物除外)
(3)放氫生鹼型:活潑金屬的無氧酸鹽
(4)放氧生酸型:不活潑金屬的含氧酸鹽
E. 化學電化學常識
1、原電池、電解池、電鍍池判定規律若無外接電源,可能是原電池,然後依據原電池的形成條件分析判定,主要思路是「三看」。先看電極:兩極為導體且活潑性不同;再看溶液:兩極插入電解質溶液中;後看迴路:形成閉合迴路或兩極接觸。若有外接電源,兩極插入電解質溶液中,則可能是電解池或電鍍池。當陽極金屬與電解質溶液中的金屬陽離子相同則為電鍍池,其餘情況為電解池。2、酸、鹼、鹽溶液電解規律(惰性電極)
3、關計算的方法規律有關電解的計算通常是求電解後某產物質量、氣體的體積、某元素的化合價以及溶液的pH、物質的量濃度等。解答此類題的方法有兩種:一是根據電解方程式或電極反應式列比例式求解;二是利用各電極、線路中轉移的電子數目守恆等式求解。以電子守恆較為簡便,注意運用。3、
電化學基礎知識的應用(1)析氫腐蝕與吸氧腐蝕(以鋼鐵為例):
(2)的防護,主要有下面幾種情況:改變金屬的內部結構,例如把Ni、Cr等加入普通鋼里製成不銹鋼;覆蓋保護層,例如塗油層、油漆、搪瓷、熟料等,另外還有電鍍耐腐蝕的金屬(Zn、Sn、Cr、Ni等);電化學保護法,多採用犧牲陽極保護法,如在船隻的螺旋槳附近的船體上鑲嵌活潑金屬鋅塊,另外可採用與電源負極相連接的保護方法,例如大型水壩船閘的保護就是讓鐵閘門和電源負極相連。(3)電解原理的應用氯鹼工業(電解飽和食鹽水):2NaCl
+
2H2O
==(電解)
2NaOH
+
H2↑
+
Cl2↑;活潑金屬Na、Mg、Al的製取,例如,電解熔融的NaOH制金屬Na,4NaOH
==(電解)
4Na
+2H2O
+
O2↑(其中Na為陰極區產物而
H2O和
O2則為陽極區產物);金屬的精煉,例如銅的精煉,以粗銅為陽極,精銅為陰極,含銅離子的溶液作電解質溶液;電鍍,待鍍金屬製品作陰極,鍍層金屬作陽極,含有鍍層金屬離子的溶液作電鍍液,陽極反應:M
–
ne-
==
Mn+(進入溶液),陰極反應Mn+
+
ne-
==
M(在鍍件上沉積)。
F. 鉛酸蓄電池電化學基礎及製造工藝
一、常用的蓄電池分類及特點
目前,我們常用的蓄電池主要分為三類,分別為普通蓄電池、干荷蓄電池和免維護蓄電池三種。
1)普通蓄電池;普通蓄電池的極板是由鉛和鉛的氧化物構成,電解液是硫酸的水溶液。它的主要優點是電壓穩定、價格便宜;缺點是比能低(即每公斤蓄電池存儲的電能)、使用壽命短和日常維護頻繁。
2)干荷蓄電池:它的全稱是乾式荷電鉛酸蓄電池,它的主要特點是負極板有較高的儲電能力,在完全乾燥狀態下,能在兩年內保存所得到的電量,使用時,只需加入電解液,等過20—30分鍾就可使用。
3)免維護蓄電池:免維護蓄電池由於自身結構上的優勢,電解液的消耗量非常小,在使用壽命內基本不需要補充蒸餾水。它還具有耐震、耐高溫、體積小、自放電小的特點。使用壽命一般為普通蓄電池的兩倍。市場上的免維護蓄電池也有兩種:第一種在購買時一次性加電解液以後使用中不需要維護(添加補充液);另一種是電池本身出廠時就已經加好電解液並封死,用戶根本就不能加補充液。
二、蓄電池的結構
一般的蓄電池鉛酸蓄電池是由正負極板、隔板、殼體、電解液和接線樁頭等組成,其放電的化學反應是依靠正極板活性物質(二氧化鉛和鉛)和負極板活性物質(海綿狀純鉛)在電解液(稀硫酸溶液)的作用下進行,其中極板的柵架,傳統蓄電池用鉛銻合金製造,免維護蓄電池是用鉛鈣合金製造,前者用銻,後者用鈣,這是兩者的根本區別點。不同的材料就會產生不同的現象:傳統蓄電池在使用過程中會發生減液現象,這是因為柵架上的銻會污染負極板上的海綿狀純鉛,減弱了完全充電後蓄電池內的反電動勢,造成水的過度分解,大量氧氣和氫氣分別從正負極板上逸出,使電解液減少。用鈣代替銻,就可以改變完全充電後的蓄電池的反電動勢,減少過充電流,液體氣化速度減低,從而減低了電解液的損失。
由於免維護蓄電池採用鉛鈣合金柵架,充電時產生的水分解量少,水份蒸發量低,加上外殼採用密封結構,釋放出來的硫酸氣體也很少,所以它與傳統蓄電池相比,具有不需添加任何液體,對接線樁頭、電線腐蝕少,抗過充電能力強,起動電流大,電量儲存時間長等優點。
免維護蓄電池因其在正常充電電壓下,電解液僅產生少量的氣體,極板有很強的抗過充電能力,而且具有內阻小、低溫起動性能好、比常規蓄電池使用壽命長等特點,因而在整個使用期間不需添加蒸餾水,在充電系正常情況下,不需從拆下進行補充充電。但在保養時應對其電解液的比重進行檢查。
大多數免維護蓄電池在蓋上設有一個孔形液體(溫度補償型)比重計,它會根據電解液比重的變化而改變顏色。可以指示蓄電池的存放電狀態和電解液液位的高度。當比重計的指示眼呈綠色時,表明充電已足,蓄電池正常;當指示眼綠點很少或為黑色,表明蓄電池需要充電;當指示眼顯示淡黃色,表明蓄電池內部有故障,需要修理或進行更換。
免維護蓄電池也可以進行補充充電,充電方式與普通蓄電池的充電方法基本一樣。充電時每單格電壓應限制在2.3-2.4V間。注意使用常規充電方法充電會消耗較多的水,充電時充電電流應稍小些(5A以下)。不能進行快速充電,否則,蓄電池可能會發生爆炸,導致傷人。當免維護蓄電池的比重計,顯示為淡黃色或紅色時,說明該蓄電池已接近報廢,即使再充電,使用壽命也不長。此時的充電只能做為救急的權宜之計。
有條件時,對免維護蓄電池可用具有電流-電壓特性的充電設備進行充電。該設備即可保證充足電,又可避免過充電而消耗較多的水。
一般這類免維護電池從出廠到使用可以存放10個月,其電壓與電容保持不變,質量差的在出廠後的3個月左右電壓和電容就會下降。在購買時選離生產日期有3個月的,當場就可以檢查電池的電壓和電容是否達到說明書上的要求,若電壓和電容都有下降的情況則說明它裡面的材質不好,那麼電池的質量肯定也不行,有可能是加水電池經過經銷商充電後偽裝而成的。
三、蓄電池的正確使用和維護
免維護蓄電池也可以進行補充充電,充電方式與普通蓄電池的充電方法基本一樣。充電時每單格電壓應限制在2.3-2.4V間。注意使用常規充電方法充電會消耗較多的水,充電時充電電流應稍小些(5A以下)。不能進行快速充電,否則,蓄電池可能會發生爆炸,導致傷人。當免維護蓄電池的比重計,顯示為淡黃色或紅色時,說明該蓄電池已接近報廢,即使再充電,使用壽命也不長。此時的充電只能做為救急的權宜之計。
有條件時,對免維護蓄電池可用具有電流-電壓特性的充電設備進行充電。該設備即可保證充足電,又可避免過充電而消耗較多的水。
蓄電池的正確使用和維護主要有以下7點:
1、檢查蓄電池在支架上的固定螺栓是否擰緊,安裝不牢靠會因行車震動而引起殼體損壞。另外不要將金屬物放在蓄電池上以防短路。
2、時常查看極柱和接線頭連接得是否可靠。為防止接線柱氧化可以塗抹凡士林等保護劑。
3、不可用直接打火(短路試驗)的方法檢查蓄電池的電量這樣會對蓄電池造成損害。
4、普通鉛酸蓄電池要注意定期添加蒸餾水。干荷蓄電池在使用之前最好適當充電。至於可加水的免維護蓄電池並不是不能維護適當查看必要時補充蒸餾水有助於延長使用壽命。
5、蓄電池蓋上的氣孔應通暢。蓄電池在充電時會產生大量氣泡若通氣孔被堵塞使氣體不能逸出當壓力增大到一定的程度後就會造成蓄電池殼體炸裂。
6、在蓄電池極柱和蓋的周圍常會有黃白色的糊狀物,這是因為硫酸腐蝕了根柱、線卡、固定架等造成的。這些物質的電阻很大,要及時清除。
7、當需要用兩塊蓄電池串聯使用時蓄電池的容量最好相等。否則會影響蓄電池的使用壽命。
一般這類免維護電池從出廠到使用可以存放10個月,其電壓與電容保持不變,質量差的在出廠後的3個月左右電壓和電容就會下降。在購買時選離生產日期有3個月的,當場就可以檢查電池的電壓和電容是否達到說明書上的要求,若電壓和電容都有下降的情況則說明它裡面的材質不好,那麼電池的質量肯定也不行,有可能是加水電池經過經銷商充電後偽裝而成的。
閥控式鉛酸蓄電池的基本原理
· 閥控式鉛酸蓄電池的電化學反應原理
閥控式鉛酸蓄電池的電化學反應原理就是充電時將電能轉化為化學能在電池內儲存起來,放電時將化學能轉化為電能供給外系統。其充電和放電過程是通過電化學反應完成的,電化學反應式如下:
從上面反應式可看出,充電過程中存在水分解反應,當正極充電到70%時,開始析出氧氣,負極充電到90%時開始析出氫氣,由於氫氧氣的析出,如果反應產生的氣體不能重新復合得用,電池就會失水乾涸;對於早期的傳統式鉛酸蓄電池,由於氫氧氣的析出及從電池內部逸出,不能進行氣體的再復合,是需經常加酸加水維護的重要原因;而閥控式鉛酸蓄電池能在電池內部對氧氣再復合利用,同時抑制氫氣的析出,克服了傳統式鉛酸蓄電池的主要缺點。
· 閥控式鉛酸蓄電池的氧循環原理
閥控式鉛酸蓄電池採用負極活性物質過量設計,AG或GEL電解液吸附系統,正極在充電後期產生的氧氣通過AGM或GEL空隙擴散到負極,與負極海綿狀鉛發生反應變成水,使負極處於去極化狀態或充電不足狀態,達不到析氫過電位,所以負極不會由於充電而析出氫氣,電池失水量很小,故使用期間不需加酸加水維護。閥控式鉛酸蓄電池氧循環圖示如下:
可以看出,在閥控式鉛酸蓄電池中,負極起著雙重作用,即在充電末期或過充電時,一方面極板中的海綿狀鉛與正極產生的O2反應而被氧化成一氧化鉛,另一方面是極板中的硫酸鉛又要接受外電路傳輸來的電子進行還原反應,由硫酸鉛反應成海綿狀鉛。 在電池內部,若要使氧的復合反應能夠進行,必須使氧氣從正極擴散到負極。氧的移動過程越容易,氧循環就越容易建立。 在閥控式蓄電池內部,氧以兩種方式傳輸:一是溶解在電解液中的方式,即通過在液相中的擴散,到達負極表面;二是以氣相的形式擴散到負極表面。傳統富液式電池中,氧的傳輸只能依賴於氧在正極區H2S04溶液中溶解,然後依靠在液相中擴散到負極。 如果氧呈氣相在電極間直接通過開放的通道移動,那麼氧的遷移速率就比單靠液相中擴散大得多。充電末期正極析出氧氣,在正極附近有輕微的過壓,而負極化合了氧,產生一輕微的真空,於是正、負間的壓差將推動氣相氧經過電極間的氣體通道向負極移動。閥控式鉛蓄電池的設計提供了這種通道,從而使閥控式電池在浮充所要求的電壓范圍下工作,而不損失水。 對於氧循環反應效率,AGM電池具有良好的密封反應效率,在貧液狀態下氧復合效率可達99%以上;膠體電池氧再復合效率相對小些,在乾裂狀態下,可達70-90%;富液式電池幾乎不建立氧再化合反應,其密封反應效率幾乎為零。返回頁首
閥控式鉛酸蓄電池的性能參數
· 開路電壓與工作電壓
1.1開路電壓
電池在開路狀態下的端電壓稱為開路電壓。電池的開路電壓等於電池的正極的電極電勢與負極電極電勢之差。
1.2工作電壓
工作電壓指電池接通負載後在放電過程中顯示的電壓,又稱放電電壓。在電池放電初始的工作電壓稱為初始電壓。
電池在接通負載後,由於歐姆電阻和極化過電位的存在,電池的工作電壓低於開路電壓。
2 容量
電池在一定放電條件下所能給出的電量稱為電池的容量,以符號C表示。常用的單位為安培小時,簡稱安時(Ah)或毫安時(mAh)。電池的容量可以分為理論容量,額定容量,實際容量。
理論容量是把活性物質的質量按法拉第定律計算而得的最高理論值。為了比較不同系列的電池,常用比容量的概念,即單位體積或單位質量電池所能給出的理論電量,單位為Ah/1或Ah/kg。
實際容量是指電池在一定條件下所能輸出的電量。它等於放電電流與放電時間的乘積,單位為Ah,其值小於理論容量。
額定容量也叫保證容量,是按國家或有關部門頒布的標准,保證電池在一定的放電條件下應該放出的最低限度的容量。
3 內阻
電池內阻包括歐姆內阻和極化內阻,極化內阻又包括電化學極化與濃差極化。內阻的存在,使電池放電時的端電壓低於電池電動勢和開路電壓,充電時端電壓高於電動勢和開路電壓。電池的內阻不是常數,在充放電過程中隨時間不斷變化,因為活性物質的組成、電解液濃度和不斷地改變。
歐姆電阻遵守歐姆定律;極化電阻隨電流密度增加而增大,但不是線性關系,常隨電流密度和溫度都在不斷地改變。
4 能量
電池的能量是指在一定放電制度下,蓄電池所能給出的電能,通常用瓦時(Wh)表示。
電池的能量分為理論能量和實際能量。理論能量W理可用理論容量和電動勢(E)的乘積表示,即
W理=C理E
電池的實際能量為一定放電條件下的實際容量C實與平均工作電壓U平的乘積,即
W實=C實U平
常用比能量來比較不同的電池系統。比能量是指電池單位質量或單位體積所能輸出的電能,單位分別是Wh/kg或Wh/l。
比能量有理論比能量和實際比能量之分。前者指lkg電池反應物質完全放電時理論上所能輸出的能量。實際比能量為lkg電池反應物質所能輸出的實際能量。
由於各種因素的影響,電池的實際比能量遠小於理論比能量。實際比能量和理論比能量的關系可表示如下:
W實:W理·KV·KR·Km
式中Kv-電壓效率; KR-反應效率; Km—質量效率。
電壓效率是指電池的工作電壓與電動勢的比值。電池放電時,由於電化學極化、濃差極化和歐姆壓降,工作電壓小於電動勢。
反應交通用性表示活性物質的利用率。
電池的比能量是綜合性指標,它反映了電池的質量水平,也表明生產廠家的技術和管理水平。
5 功率與比功率
電池的功率是指電池在一定放電制度下,於單位時間內所給出能量的大小,單位為W(瓦)或kW(千瓦)。單位質量電池所能給出的功率稱為比功率,單位為W/kg或kW/kg。比功率也是電池重要的性能指標之一。一個電池比功率大,表示它可以承受大電流放電。
蓄電池的比能量和比功率性能是電池選型時的重要參數。因為電池要與用電的儀器、儀表、電動機器等互相配套,為了滿足要求,首先要根據用電設備要求功率大小來選擇電池類型。當然,最終確定選用電池的類型還要考慮質量、體積,比能量、使用的溫度范圍和價格等因素。
5.6電池的使用壽命
在規定條件下,某電池的有效壽命期限稱為該電池的使用壽命。蓄電池發生內部短路或損壞而不能使用,以及容量達不到規范要求時蓄電池使用失效,這時電池的使用壽命終止。蓄電池的使用壽命包括使用期限和使用周期。使用期限是指蓄電池可供使用的時間,包括蓄電池的存放時間。使用周期是指蓄電池可供重復使用的次數。
返回頁首
閥控式鉛酸蓄電池的自放電
1 自放電的原因
電池的自放電是指電池在存儲期間容量降低的現象。電池開路時由於自放電使電池容量損失。
自放電通常主要在負極,因為負極活性物質為較活潑的海綿狀鉛電極,在電解液中其電勢比氫負,可發生置換反應。若在電極中存在著析氫過電位低的金屬雜質,這些雜質和負極活性物質能給成腐蝕微電池,結果負極金屬自溶解,並伴有氫氣析出,從而容量減少。在電解液中雜質起著同樣的有害作用。一般正極的自放電不大。正極為強氧化劑,若在電解液中或隔膜上存在易於被氧化的雜質,也會引起正極活性物質的還原,從而減少容量。
2 自放電率
自放電率用單位時間容量降低的百分數表示。
式中Ca--電池存貯前的容量(Ah)
Cb--電池存貯後的容量(Ah)
T一電池貯存的時間,常用天、月計算。
3 正極的自放電
正極的自放電是由於在放置期間,正極活性物質發生分解,形成硫酸鉛並伴隨著氧氣析出,發生下面一對軛反應:
同時正極的自放電也有可能由下述幾種局部電池形成引起:
在電極的上端和下端,以及電極的孔隙和電極的表面處酸的濃度不同,因而電極內外和上下形成了濃差電池。處在較稀硫酸區域的二氧化鉛為負極,進行氧化過程而析出氧氣;處在較濃硫酸區域的二氧化鉛為正極,進行還原過程,二氧化鉛還原為硫酸鉛。這種濃差電池在充電終了的正極和放電終了的正極都可形成,因此都有氧析出。但是在電解液濃度趨於均勻後,濃差消失,由此引起的自放電也就停止了。
正析自放電的速度受板柵合金組成和電解液濃度的影響,對應於硫酸濃度出現不同的極大值。
一些可變價態的鹽類如鐵、鉻、錳鹽等,它們的低價態可以在正極被氧化,同時二氧化鉛被還原;被氧化的高價態可通過擴散到達負極,在負極上進行還原過程;同時負極活性物質鉛被氧化,還原態的離子又藉助於擴散、對流達到正極重新被氧化。如此反復循環。因此,可變價態的少量物質的存在可使正極和負極的自放電連續進行,舉例如下:
PbO2+3H++HSO4-+2Fe2+——PbSO4+2H2O+2Fe3+ (3-11)
Pb+HSO4-+2Fe3+——PbSO4+H++2Fe2+ (3-12)
在電解液中一定要防止這些鹽類的存在。
4.負極的自放電
蓄電池在開路狀態下,鉛的自溶解導致容量損失,與鉛溶解的共軛反應通常是溶液中H+的還原過程,即
Pb+H2SO4——PbSO4+H2 (3-13)
該過程的速度與硫酸的濃度、貯存溫度所含雜質和膨脹劑的類型有關。
溶解於硫酸中的氧也可以發生鉛自溶的共軛反應,即
Pb+1/2O2+ H2SO4——PbSO4 +H2O (3-14)
該過程受限於氧的溶解與擴散,在電池中一般以式(3-13)為主。
雜質對於鉛自溶有的共軛反應——析氫有很大影響,一般氫在鉛上析出的過電位很高,在式(3-13)中鉛的自溶速度完全受析氫過程式控制制,析氫過電信大小起著決定性作用。當雜質沉積在鉛電極表面上,與鉛組成微電池,在這個短路電池組中鉛進行溶解,而比氫過電位小的雜質析出,因而加速自放電。
返回頁首
閥控式鉛酸蓄電池的基本結構
構成閥控鉛酸蓄電池的主要部件是正負極板、電解液、隔膜、電池殼和蓋、安全閥,此外還一些零件如端子、連接條、極柱等。
返回頁首
閥控式鉛酸蓄電池的設計
1 板柵合金的選擇
參加電池反應的活性物質鉛和二氧化鉛是疏鬆的多孔體,需要固定在載體上。通常,用鉛或鉛基合金製成的柵欄片狀物為載體,使活性物質固定在其中,這種物體稱之為板柵。它的作用是支撐活性物質並傳輸電流。
1.1正板柵合金
閥控電池是一種新型電池,使用過程中不用加酸加水維護,要求正板柵合金耐腐蝕性好,自放電小,不同廠家採用的正板柵合金並不完全相同,主要有:鉛—鈣、鉛—鈣—錫,鉛—鈣—錫—鋁、鉛—銻—鎘等。不同合金性能不同,鉛—鈣。鉛—鈣—錫合金具有良好的浮充性能,但鉛鈣合金易形成緻密的硫酸鉛和硫酸鈣阻擋層使電池早期失效,合金抗蠕變性差,不適合循環使用。鉛-鈣-錫-鋁、鉛-銻-鎘各方面性能相對比較好,既適合浮充使用,又適合循環使用。
1.2負板柵合金
閥控電池負板柵合金一般採用鉛-鈣合金,盡量減少析氫量。
2板柵厚度
正極板厚度決定電池壽命,極板厚度與電池預計壽命的關系見下表:
正板柵厚度(mm)循環壽命(次)
[10h率80%放電深度,25℃]預計浮充壽命(年)
(正常浮充使用)
2.01502
3.02574
3.44006
4.580012
3 正負極活性物質比例
鉛酸蓄電池設計上正負極活性物質利用率一般按30—33%計算,正負極活性物質比例為1:1,實際應用中,負極活性物質利用率一般比正極高,對於閥控鉛酸蓄電池,考慮到氧再化合的需要,負極活性物質設計過量,一般宜為1:1.0—1.2。
4 隔膜的選擇
閥控鉛酸蓄電池中隔膜採用的是玻璃纖維棉,應該具有如下特徵:
①優良的耐酸性能和抗氧化能力; ②厚度均勻一致,外觀無針孔、無機械雜質;
③孔徑小且孔率大; ④優良的吸收和保留電解液能力;
⑤電阻小; ⑥具有一定的機械強度,以保證工藝操作要求;
⑦雜質含量低,尤其是鐵、銅的含量要低。
5 殼蓋結構和材料選擇
閥控電池殼蓋結構設計主要是強度設計,散熱設計和蓋上的極柱密封設計。強度設計要求電池外壁在緊裝配和承受內氣壓時外壁不應有明顯的氣脹變形,對於PP外殼,應加鋼殼加固,對於2V系列電池,ABS和PVC外殼,壁厚一般要達到8—10mm。散熱設計要求電池外殼散熱面積大、材料導熱性好且壁厚越薄越好。殼體結構相對比較簡單,只需考慮強度和蓋子封裝配合即可。
6 殼蓋密封和極柱密封結構
電池殼蓋密封分為熱封和膠封,熱封是最可靠的密封方式,PP材料採用熱封,ABS和PVC材料一般採用膠封,膠封關鍵是要採用合適的環氧樹脂。
極柱密封技術是閥控電池生產的一項關鍵技術,不同的廠家採用的方式不完全相同。
7 電解液
閥控電池電解液中硫酸含量一般按理論量的1.5倍設計,電解液比重一般為1.30g/m1左右。
8 安全閥
安全閥是閥控電池的一個關鍵部件,安全閥質量的好壞直接影響電池使用壽命,均勻性和安全性。根據有關標准和閥控電池的使用情況,安全閥應滿足如下技術條件:
①單向開閥;
②單向密封,可防止空氣進入電池內部;
③同一組電池各安全閥之間的開閉壓力之差不應超過平均值的20%;
④壽命不應低於15年;
⑤濾酸,可防止酸和酸霧從安全閥排氣口排出;
⑥隔爆,電池外部遇明火時電池內部不應引爆;
⑦抗震,在運輸和使用期間,安全閥不會因震動和多次開閉而松動失效;
⑧耐酸;
⑨耐高、低溫。
目前市場使用的安全閥主要有:柱式、帽式和傘形安全閥,其結構見下面示意圖。
返回頁首
閥控鉛酸蓄電池的充放電特性
鉛酸蓄電池以一定的電流充、放電時,其端電壓的變化如下圖:
1. 放電中電壓的變化
電池在放電之前活性物質微孔中的硫酸濃度與極板外主體溶液濃度相同,電池的開路電壓與此濃度相對應。放電一開始,活性物質表面處(包括孔內表面)的硫酸被消耗,酸濃度立即下降,而硫酸由主體溶液向電極表面的擴散是緩慢過程,不能立即補償所消耗的硫酸,故活性物質表面處的硫酸濃度繼續下降,而決定電極電勢數值的正是活性物質表面處的硫酸濃度,結果導致電池端電壓明顯下降,見曲線OE段。
隨著活性物質表面處硫酸濃度的繼續下降,與主體溶液之間的濃度差加大,促進了硫酸向電極表面的擴散過程,於是活性物質表面和微孔內的硫酸得到補棄。在一定的電流放電時,在某一段時間內,單位時間消耗的硫酸量大部分可由擴散的硫酸予以補充,所以活性物質表面處的硫酸濃度變化緩慢,電池端電壓比較穩定。但是由於硫酸被消耗,整體的硫酸濃度下降,又由於放電過程中活性物質的消耗,其作用面積不斷減少,真實電流密度不斷增加,過電位也不斷加大,故放電電壓隨著時間還是緩慢地下降,見曲經EFG段。
隨著放電繼續進行,正、負極活性物質逐漸轉變為硫酸鉛,並向活性物質深處擴展。硫酸鉛的生成使活化物質的孔隙率降低,加劇了硫酸向微孔內部擴散的困難,硫酸鉛的導電性不良,電池內阻增加,這些原因最後導致在放電曲線的G點後,電池端電壓急劇下降,達到所規定的放電終止電壓。
2 充電中的電壓變化
在充電開始時,由於硫酸鉛轉化為二氧化鉛和鉛,有硫酸生成,因而活性物質表面硫酸濃度迅速增大,電池端電壓沿著OA急劇上升。當達到A點後,由於擴散,活性物質表面及微孔內的硫酸濃度不再急劇上升,端電壓的上升就較為緩慢(ABC)。這樣活性物質逐漸從硫酸鉛轉化為二氧化鉛和鉛,活性物質的孔隙也逐漸擴大,孔隙率增加。隨著充電的進行,農漸接近電化學反應的終點,即充電曲線的C點。當極板上所存硫酸鉛不多,通過硫酸鉛的溶解提供電化學氧化和還原所需的Pb2+極度缺乏時,反應的難度增加,當這種難度相當於水分解的難度時,即在充入電量70%時開始析氧,即副反應2H2O一O2+4H+4e,充電曲線上端電壓明顯增加。當充入電量達90%以後,負極上的副反應,即析氫過程發生,這時電池的端電壓達到D點,兩極上大量析出氣體,進行水的電解過程,端電壓又達到一個新的穩定值,其數值取決於氫和氧的過電位,正常情況下該恆定值約為2.6V。
返回頁首
閥控式鉛酸蓄電池容量的影響因素
1 放電率對電池容量的影響
鉛蓄電池容量隨放電倍率增大而降低,在談到容量時,必須指明放電的時率或倍率。電池容量隨放電時率或倍率不同而不同。
1.1容量與放電時率的關系
對於一給定電池,在不同時率下放電,將有不同的容量,下表為bosfaGFMl000電池在常溫下不同放電時率放電時的額定容量。
放電率(hr)123458101224
容量(Ah)
1.2高倍率放電時容量下降的原因
放電倍率越高,放電電流密度越大,電流在電極上分布越不均勻,電流優先分布在離主體電解液最近的表面上,從而在電極的最外表面優先生成PbSO4。PbSO4的體積比PbO2和Pb大,於是放電產物硫酸鉛堵塞多孔電極的孔口,電解液則不能充分供應電極內部反應的需要,電極內部物質不能得到充分利用,因而高倍率放電時容量降低。
1.3放電電流與電極作用深度關系
在大電流放電時,活性物質沿厚度方向的作用深度有限,電流越大其作用深度越小,活性物質被利用的程度越低,
電池給出的容量也就越小。電極在低電流密度下放電,i≤100A/m²時,活性物質的作用深度為3×10-3m-5×10-3m,這時多孔電極內部表面可充分利用。而當電極在高電流密度下放電,i≥200A/m²時,活性物質的作用深度急劇下降,約為0.12X10-3m活性物質深處很少利用,這時擴散已成為限制容量的決定因素。
在大電流放電時,由於極化和內阻的存在,電池的端電壓低,電壓降損失增加,使電池端電 壓下降快,也影響容量。
2 溫度對電池容量的影響
環境溫度對電池的容量影響較大,隨著環境溫度的降低容量減小。環境溫度變化1℃時的電池容量變化稱為容量的溫度系數。
根據國家標准,如環境溫度不是25℃,則需將實測容量按以下公式換算成25℃基準溫度 時的實際容量Ce,其值應符合標准。
公式中:t是放電時的環境溫度
K是溫度系數,10hr的容量實驗時K=0.006/℃,3hr的容量實驗時K=0.008/℃,
1hr的容量實驗時K=0.01/℃
3 閥控鉛酸蓄電池容量的計算
閥控式鉛酸蓄電池的實際容量與放電制度(放電率、溫度、終止電壓)和電池的結構有關。如果電池是以恆定電流放電,放電至規定的終止電壓,電池的實際容量Ct=放電電流I×放電時間t,單位是Ah。
G. 無機化學基礎 曾莉 pdf
這本么?
【作者】曾莉,趙美麗主編
【形態項】 194
【出版項】 北京:化學工業出版社 , 2014.09
【ISBN號】978-7-122-20559-9
【中圖法分類號】O61
【原書定價】29.80
【參考文獻格式】 曾莉,趙美麗主編. 無機化學基礎. 北京:化學工業出版社, 2014.09.
內容提要:
本教材是根據中等職業教育工業分析與檢驗專業教學課程標准進行編寫的,以典型化學基本知識任務為線索設計編寫,內容包括:化學基本量和計算、原子結構和化學鍵、常見的非金屬元素及其化合物、常見的金屬元素及其化合物、化學反應速率與化學平衡、電解質溶液、配合物、氧化還原反應、電化學基礎。配有相應的化學實驗、綜合實驗及習題。
H. 電化學基礎知識
一、銅、銀、鋅電極的制備
-----------------------------------------------------------------------------
(1)銀電極的制備
將欲鍍之銀電極兩只用細砂紙輕輕打磨至露出新鮮的金屬光澤,再用蒸餾水洗凈。將欲用
的兩只Pt 電極浸入稀硝酸溶液片刻,取出用蒸餾水洗凈。將洗凈的電極分別插入盛有鍍銀
液(鍍液組成為100mL 水中加1.5g 硝酸銀和1.5g 氰化鈉)的小瓶中,按圖Ⅲ15 1 接好
線路 ,並將兩個小瓶串聯,控制電流為0.3mA,鍍1h,得白色緊密的鍍銀電極兩只。
(2)銅電極的制備
將銅電極在1∶3 的稀硝酸中浸泡片刻,取出洗凈,作為負極,以另一銅板作正極在鍍銅液
中電鍍(鍍銅液組成為:每升中含125gCuSO4�6�15H2O,25gH2SO4,50mL 乙醇)。控制電流為
20mA,電鍍20min 得表面呈紅色的Cu 電極,洗凈後放入0.1000mol�6�1kg-1CuSO4 中備用。
(3)鋅電極的制備
將鋅電極在稀硫酸溶液中浸泡片刻,取出洗凈,浸入汞或飽和硝酸亞汞溶液中約10s,表面
上即生成一層光亮的汞齊,用水沖洗晾乾後,插入0.1000mol�6�1kg-1ZnSO4 中待用。
二、鹽橋的制備
------------------------------------------------------------------------------
1、瓊酯-飽和KCl 鹽橋: 燒杯中加入瓊酯3 克和97ml 蒸餾水,在水浴上加熱至完全溶解。
然後加入30 克KCl 充分攪拌,KCl 完全溶解後趁熱用滴管或虹吸將此溶液加入已事先彎好
的玻璃管中,靜置待瓊酯凝結後便可使用。瓊酯-飽和KCl 鹽橋不能用於含Ag+、Hg2
2+等
與Cl-作用的例子或含有ClO4-等與K+作用的物質的溶液。
2、3%瓊酯-1mol�6�1dm-3 K2SO4鹽橋:適用於與作用的溶液,在該溶液中可使用Hg―Hg2SO4―
飽和K2SO4 電極。
3、3%瓊酯-1mol�6�1dm-3 NaCl 或LiCl 鹽橋:適用於含高濃度的ClO4-的溶液,在該溶液
中可使用汞-甘汞-飽和NaCl 或LiCl 電極。
4、NH4NO3 鹽橋和KNO3 鹽橋在許多溶液中都能使用,但它與通 常的各種電極無共同離子,
因而在共同使用時會改變參考電極的濃度和引入外來離子,從而可能改變參考電極的電勢 。
另外在含有高濃度的酸、氨的溶液中不能使用瓊酯鹽橋。
5、(1)簡易法
用滴管將飽和KNO3(或NH4NO3)溶液注入U型管中,加滿後用捻緊的濾紙塞緊U型管兩端
即 可,管中不能存有氣泡。
(2) 凝膠法
稱取瓊脂1g 放入50mL 飽和KNO3 溶液中,浸泡片刻,再緩慢加熱至沸騰,待瓊脂全部溶
解後 稍冷,將洗凈之鹽橋管插入瓊脂溶液中,從管的上口將溶液吸滿(管中不能有氣泡),
保持 此充滿狀態冷卻到室溫,即凝固成凍膠固定在管內。取出擦凈備用。
三、電鍍常識
-------------------------------------------------------------------------------
電鍍常識
表面處理的基本過程大致分為三個階段:前處理,中間處理和後處理。
1 前處理
零件在處理之前,程度不同地存在著毛刺和油污,有的嚴重腐蝕,給中間處理帶來很大困
難,給化學或電化學過程增加額外阻力,有時甚至使零件局部或整個表面不能獲得鍍層或
膜層,還會污染電解液,影響表面處理層的質量。包括除油、浸蝕,磨光、拋光、滾光、
吹砂、局部保護、裝掛、加輔助電極等。
2 中間處理
是賦予零件各種預期性能的主要階段,是表面處理的核心,表面處理質量的好壞主要取決
於這一階段的處理。
3 後處理
是對膜層和鍍層的輔助處理。
電鍍過程中的基本術語
------------------------------------------------------------------
1 分散能力
在特定條件下,一定溶液使電極(通常是陰極)鍍層分布比初次電流分布所獲得的結果更
為均勻的能力。亦稱均鍍能力。
2 覆蓋能力
鍍液在特定條件下凹槽或深孔處沉積金屬的能力。亦稱深鍍能力。
3 陽 極
能夠接受反應物所給出電子的電極,即發生氧化反應的電極。
4 不溶性陽極
在電流通過時,不發生陽極溶解反應的電極。
5 陰 極
反應於其上獲得電子的電極,即發生還原反應的電極。
6 電流密度
單位面積電極上通過的電流強度,通常以 A/dm2 表示。
7 電流密度范圍
能獲得合格鍍層的電流密度區間。
8 電流效率
電極上通過單位電量時,其一反應形成之產物的實際重量與其電化當量之比,通常以百分
數表示。
9 陰極性鍍層
電極電位的代數值比基體金屬大的金屬鍍層。
10 陽極性鍍層
電極電位的代數值比基體金屬小的金屬鍍層。
11 陽極泥
在電流作用下陽極溶解後的殘留物。
12 沉積速度
單位時間內零件表面沉積出金屬的厚度。
13 初次電流分布
在電極極化不存在時,電流在電極表面上的分布。
14 活 化
使金屬表面鈍化狀態消失的作用。
15 鈍 化
在一定環境下使金屬表面正常溶解反應受到嚴重阻礙,並在比較寬的電極電位范圍內使金
屬溶解反應速度降到很低的作用。
16 氫 脆
由於浸蝕,除油或電鍍等過程中金屬或合金吸收氫原子而引起的脆性。
17 PH 值
氫離子活度 aH+ 的常用對數的負值。
18 基體材料
能在其上沉積金屬或形成膜層的材料。
19 輔助陰極
為了消除被鍍製件上某些部位由於電力線過於集中而出現的毛刺和燒焦等毛病,在該部位
附近另加某種形狀的陰極,用以消耗部分電流,這種附加的陰極就是輔助陰極。
20 輔助陽極
除了在電鍍中正常需用的陽極以外,為了改善被鍍製件表面上的電流分布而使用的輔加陽
極。
21 電 解
使電流通過電解質溶液而在陽極,陰極引起氧化還原反應的過程。
22 極 化
當電流通過電極時,電極電位發生偏離平衡電位的現象。
23 皂化反應
油脂在鹼性條件下的水解反應。
24 陰極極化
直流電通過電極時,陰極電位偏離平衡電位向負的方向移動的現象。
25 槽電壓
電解時,電解槽兩極之間的總電位差。
鍍覆方法術語
--------------------------------------------------------------------
1 化學鈍化
將製件放在含有氧化劑的溶液中處理,使表面形成一層很薄的鈍態保護膜的過程。
2 化學氧化
通過化學處理使金屬表面形成氧化膜的過程。
3 電化學氧化
在一定電解液中以金屬製件為陽極,經電解,於製件表面形成一層具有防護性,裝飾性或
其它功能氧化膜的過程。
4 電 鍍
利用電解原理,使金屬或合金沉積在製件表面,形成均勻、緻密、結合力良好的金屬層的
過程。
5 轉 化 膜
對金屬進行化學或電化學處理所形成的含有該金屬之化合物的表面膜層。
6 鋼鐵發藍(鋼鐵化學氧化)
將鋼鐵製件在空氣中加熱或浸入氧化性的溶液中,使之於表面形成通常為藍(黑)色的薄氧
化膜的過程。
7 沖擊電流
電流過程中通過的瞬時大電流。
8 光亮電鍍
在適當條件下,從鍍槽中直接得到具有光澤鍍層的電鍍。
9 合金電鍍
在電流作用下,使兩種或兩種以上金屬(也包括非金屬元素)共沉積的過程。
10 多層電鍍
在同一基體上先後沉積上幾層性質或材料不同的金屬層的電鍍。
11 沖 擊 鍍
在特定的溶液中以高的電流密度,短時間電沉積出金屬薄層,以改善隨後沉積鍍層與基體
間結合力的方法。
12 磷 化
在鋼鐵製件表面上形成一層不溶解的磷酸鹽保護膜的處理過程。
13 熱抗散
加熱處理鍍件,使基體金屬和沉積金屬(一種或多種)擴散形成合金的過程。
電池充電的名詞解釋
------------------------------------------------------------------------------ --
充電率(C-rate)
C 是Capacity 的第一個字母,用來表示電池充放電時電流的大小數值。例如:充電電池的額
定容量為1100mAh 時,即表示以1100mAh(1C)放電時間可持續1 小時, 如以200mA(0.2C)
放電時間可持續5 小時,充電也可按此對照計算。
終止電壓(Cut-off discharge voltage)
指電池放電時,電壓下降到電池不宜再繼續放電的最低工作電壓值。根據不同的電池類型及
不同的放電條件,對電池的容量和壽命的要求也不同,因此規定的電池放電的終止電壓也不
相同。
開路電壓(Open circuit voltage OCV)
電池不放電時,電池兩極之間的電位差被稱為開路電壓。 電池的開路電壓,會依電池正、 負
極與電解液的材料而異,如果電池正、負極的材料完全一樣,那麼不管電池的體積有多 大,
幾何結構如何變化,起開路電壓都一樣的。
放電深度(Depth of discharge DOD)
在電池使用過程中,電池放出的容量占其額定容量的百分比,稱為放電深度。放電深度的高
低和二次電池的充電壽命有很深的關系,當二次電池的放電深度越深,其充電壽命就越短,
因此在使用時應盡量避免深度放電。
過放電(Over discharge)
電池若是在放電過程中,超過電池放電的終止電壓值,還繼續放電時就可能會造成電池內壓
升高,正、負極活性物質的可逆性遭到損壞,使電池的容量產生明顯減少。
過充電(Over charge)
電池在充電時,在達到充滿狀態後,若還繼續充電,可能導致電池內壓升高、電池變形、漏
夜等情況發生,電池的性能也會顯著降低和損壞。
能量密度(Energy density)
電池的平均單位體積或質量所釋放出的電能。一般在相同體積下,鋰離子電池的能量密度是
鎳鎘電池的2.5 倍,是鎳氫電池的1.8 倍,因此在電池容量相等的情況下,鋰離子電池就會
比鎳鎘、鎳氫電池的體積更小,重量更輕。
自放電(Self discharge)
電池不管在有無被使用的狀態下,由於各種原因,都會引起其電量損失的現象。若是以一個
月為單位來計算的話,鋰離子電池自我放電約是1%-2%、鎳氫電池自我放電約3 %-5%。
充電循環壽命(Cycle life)
充電電池在反復充放電使用下,電池容量回逐漸下降到初期容量的60%-80%。
記憶效應(Memory effect)
在電池充放電過程中,會在電池極板上產生許多小氣泡,時間一久,這些氣泡會減少電池極
板的面積,也間接影響電池的容量。
半導體納米材料光電極的特性
------------------------------------------------------------------------------ --
在納米尺度范圍內,半導體納米材料顯示出與塊體不同的光學和電學性質:
1)表面效應
納米粒子表面原子數隨著納米粒子尺寸的減小而大幅度增加,無序度增加,鍵態嚴重失配,
出現許多活性中心,表面台階和粗糙度增加,表現出非化學平衡和非整數配位的化合價。這
就是導致納米體系的化學性質和化學平衡體系出現很多差別的原因。其次表面積要比幾何面
積大許多倍,光吸收系數大,可捕獲較多的太陽光能,從而提高光的利用效率。
2)量子尺寸效應
隨著粒徑減小到納米級時,單個納米粒子所擁有的原子數目就較少,因而這些原子所形成的
固體導帶或價帶能帶不再是連續的,具有高壁的勢井,成為分立的能級,便產生量子尺寸效
應,因而有效帶隙Eg 增大吸收光譜域值向短波方向移動,從而造成吸收藍移;在這種效應
的作用下,納米粒子的光生電子與塊體相比則具有更負的電位,相應的具有更強的還原性,
而光生空穴因具有更正的電位而具有更強的氧化性。
3)介電限域效應
由於納米粒子的尺寸小於載流子的自由程,因此可以降低光生載流子的復合。隨著粒徑的不
斷減小,微粒的性質將受到表面狀態的強烈影響。當在半導體超微粒表面上修飾某種介電常
數較小的材料時,他們的光學性質與裸露的超微粒相比發生了較大的變化。這是由於相對於
裸露粒子周圍的介質而言,被包圍的超微粒中電荷載體的電力線更易穿過這層包覆膜,因此
屏蔽效應減弱,帶電粒子間的庫侖力增強,結果增強了激子的結合能和振子強度。這就是介
電限域效應,反映到吸收光譜上就表現出明顯的紅移現象。
4)小尺寸效應
納米顆粒的尺寸與光波波長、傳導電子的德布羅意波長及超導態的相干波長或透射深度等物
理特徵尺寸相當或更小時,晶體周期性的邊界條件將被破壞,非晶態納米微粒表面層附近原
子密度減小,納米顆粒表現出新的光、電、聲、磁等體積效應。
鍍前處理和鍍後處理術語
------------------------------------------------------------------------------ --
4.1 化學除油
在鹼性溶液中藉助皂化作用和乳化作用清除製件表面油污的過程。
4.2 電解除油
在含鹼溶液中,以製件作為陽極或陰極,在電流作用下,清除製件表面油污的過程。
4.3 出 光
在溶液中短時間浸泡,使金屬形成光亮表面的過程。
4.4 機械拋光
藉助於高速旋轉的抹有拋光膏的拋光輪,以提高金屬製件表面光亮度的機械加工過程。
4.5 有機溶劑除油
利用有機溶劑清除製件表面油污的過程。
4.6 除 氫
將金屬製件在一定溫度下加熱處理或採用其它方法,以驅除在電鍍生產過程中金屬內部吸
收氫的過程。
4.7 退 鍍
將製件表面鍍層退除的過程。
4.8 弱 浸 蝕
電鍍前,在一定組成溶液中除去金屬製件表面極薄的氧化膜,並使表面活化的過程。
4.9 強 浸 蝕
將金屬製件浸在較高濃度和一定溫度的浸蝕溶液中,以除去金屬製件表面上氧化物和銹蝕
物的過程。
4.10 鍍前處理
為使製件材質暴露出真實表面,消除內應力及其它特殊目的所需,除去油污、氧化物及內
應力等種種前置技術處理。
4.11 鍍後處理
為使鍍件增強防護性能,提高裝飾性能及其它特殊目的而進行的(諸如鈍化、熱熔、封閉
和除氫等)處理。
電鍍材料和設備術語
--------------------------------------------------------------------------------
5.1 陽 極 袋
用棉布或化纖織物製成的套在陽極上,以防止陽極泥渣進入溶液用的袋子。
5.2 光 亮 劑
為獲得光亮鍍層在電解液中所使用的添加劑。
5.3 阻 化 劑
能夠減緩化學反應或電化學反應速度的物質。
5.4 表面活性劑
在添加量很低的情況下也能顯著降低界面張力的物質。
5.5 乳 化 劑
能降低互不相溶的液體間的界面張力,使之形成乳濁液的物質。
5.6 絡 合 劑
能與金屬離子或含有金屬離子的化合物結合而形成絡合物的物質。
5.7 絕 緣 層
塗於電極或掛具的某一部分,使該部位表面不導電的材料層。
5.8 掛具(夾具)
用來懸掛零件,以便於將零件放於槽中進行電鍍或其他處理的工具。
5.9 潤 濕 劑
能降低製件與溶液間的界面張力,使製件表面容易被潤濕的物質。
5.10 添 加 劑
在溶液中含有的能改進溶液電化學性能或改善鍍層質量的少量添加物。
5.11 緩 沖 劑
能夠使溶液PH 值在一定范圍內維持基本恆定的物質。
5.12 移動陰極
採用機械裝置使被鍍製件與極杠一起作周期性往復運動的陰極。
電鍍測試和檢驗相關術語
--------------------------------------------------------------------------------
6.1 不連續水膜
通常用於表面被污染所引起的不均勻潤濕性,使表面上的水膜變的不連續。
6.2 孔 隙 率
單位面積上針孔的個數。
6.3 針 孔
從鍍層表面直至底層覆蓋層或基體金屬的微小孔道,它是由於陰極表面上 的某些點 的電
沉積過程受到障礙,使該處不能沉積鍍層,而周圍的鍍層卻不斷加厚所造成。
6.4 變 色
由於腐蝕而引起的金屬或鍍層表面色澤的變化(如發暗、失色等)。
6.5 結 合 力
鍍層與基體材料結合的強度。
6.6 起 皮
鍍層成片狀脫離基體材料的現象。
6.7 剝 離
某些原因(例如不均勻的熱膨脹或收縮)引起的表面鍍層的破碎或脫落。
6.8 桔 皮
類似於桔皮波紋狀的表面處理層。
6.9 海綿狀鍍層
在電鍍過程中形成的與基體材料結合不牢固的疏鬆多孔的沉積物。
6.10 燒焦鍍層
在過高電流下形成的顏色黑暗、粗糙、鬆散等質量不佳的沉積物,其中常含有氧化物或其
他雜質。
6.11 麻點
在電鍍或腐蝕中,與金屬表面上形成的小坑或小孔。
6.12 粗糙
在電鍍過程中,由於種種原因造成的鍍層粗糙不光滑的現象。
6.13 鍍層釺焊性
鍍層表面被熔融焊料潤濕的能力。
I. 求…高中化學所有章節目錄!!!
第一章化學反應與能量 第二章化學反應速率和化學平衡 第三章水溶液中的離子平衡 第四章電化學基礎