『壹』 凱撒密碼對應表內容是什麼
根據蘇維托尼烏斯的記載,愷撒曾用此方法對重要的軍事信息進行加密: 如果需要保密,信中便用暗號,也即是改變字母順序,使局外人無法組成一個單詞。如果想要讀懂和理解它們的意思,得用第4個字母置換第一個字母,即以D代A,余此類推。
同樣,奧古斯都也使用過類似方式,只不過他是把字母向右移動一位,而且末尾不折回。每當他用密語寫作時,他都用B代表A,C代表B,其餘的字母也依同樣的規則;用A代表Z。
(1)凱撒加密最常用的攻擊方法擴展閱讀:
密碼的使用最早可以追溯到古羅馬時期,《高盧戰記》有描述愷撒曾經使用密碼來傳遞信息,即所謂的「愷撒密碼」,它是一種替代密碼,通過將字母按順序推後起3位起到加密作用,如將字母A換作字母D,將字母B換作字母E。因據說愷撒是率先使用加密函的古代將領之一,因此這種加密方法被稱為愷撒密碼。這是一種簡單的加密方法,這種密碼的密度是很低的,只需簡單地統計字頻就可以破譯。 現今又叫「移位密碼」,只不過移動的為數不一定是3位而已。
『貳』 愷撒密碼的凱撒密表
古羅馬隨筆作家修托尼厄斯在他的作品中披露,凱撒常用一種「密表」給他的朋友寫信。這里所說的密表,在密碼學上稱為「凱撒密表」。用現代的眼光看,凱撒密表是一種相當簡單的加密變換,就是把明文中的每一個字母用它在字母表上位置後面的第三個字母代替。古羅馬文字就是現在所稱的拉丁文,其字母就是我們從英語中熟知的那26個拉丁字母。因此,凱撒密表就是用D代a,用E代b,……,用z代w,(注意!)用A代x,用B代y,C代z。這些代替規則也可用一張表格來表示(所以叫「密表」)。
例如,有這樣一個拉丁文例子
OmniaGalliaest
divisainPartestres
(高盧全境分為三部分)
用凱撒密表加密後,就成為密文
RPQLDJDOOLDHVW
GLYLVDLQSDUWHVWUHV
你看,不掌握其中奧妙,不知道凱撒密表,簡直不如所雲。那麼,在公元前54年,凱撒就是用這種密碼給西塞羅寫信的嗎?有趣的是,密碼界對這—點卻持否定態度,因為密碼學歷史上還記載著凱撒使用的另一種加密方法:把明文的拉丁字母逐個代之以相應的希臘字母,這種方法看來更貼近凱撒在《高盧戰記》中的記敘。顯然,哪一個拉丁字母應該代之以哪—個希臘字母,事先都有約定,凱撒知道,西塞羅也知道,不然的話,西塞羅收到密信後,也會不知所雲。當阿里巴巴站在那四十一名大盜的山洞大門口,准備打開大門時,他必須知道一個咒語:「芝麻開門」。當我們站在密碼學的大門,准備邁入時,必須要知道的則是—些基本概念。為此,讓我們先把密碼通信的幾個要素總結如下。
在軍事通信上,必須考慮要傳送的秘密信息在傳送的途中被除發信者和收信者以外的第三者(特別是敵人)截獲的可能性使載送信息的載體(如文本、無線電被等)即使在被截獲的情況下也不會讓截獲者得知其中信息內容的通信方法或技術,稱為保密通信。密碼通信就是一種保密通信,它是把表達信息的意思明確的文字元號,用通信雙方事先所約定的變換規則,變換為另一串莫名其妙的符號,以此作為通信的文本發送給收信者,當這樣的文本傳送到收信者手中時,收信者—時也不能識別其中所代表的意思,這時就要根據事先約定的變換規則,把它恢復成原來的意思明確的文字,然後閱讀。這樣,如果這個文本在通信途中被第三者截獲,由於第三者—般不知道那變換規則,因此他就不能得知在這一串符號背後所隱藏的信息。當然,為了戰爭的目的,他會千方百計地努力弄到這個變換規則。一種努力就是對已經截獲的密文進行分析,有時結合從其他途徑獲得的有關信息,試圖找出這個變換規則。
在密碼學中,我們要傳送的以通用語言明確表達的文字內容稱為明文,由明文經變換而形成的用於密碼通信的那一串符號稱為密文,把明文按約定的變換規則變換為密文的過程稱為加密,收信者用約定的變換規則把密文恢復為明文的過程稱為解密。敵方主要圍繞所截獲密文進行分析以找出密碼變換規則的過程,稱為破譯。
如在上一部分中,
就是一段明文,凱撒密表就是—種變換規則。這段明文經凱撒密表加密後,
就變成了密文
。
收信者收到這段密文後,就要進行解密,解密也是用凱撒密表。在這個例子中,加密和解密都在用凱撒密表,但嚴格地說,加密時所用的變換與解密時所用的變換是兩個變換。這兩個變換間的關系是它們互為逆變換。也就是說,明文用其中一個變換進行加密產生密文後,若再用另一個變
換對這密文進行解密,就會得到原來的明文。這種互逆的關系就如同我們所熟知的加法和減法互為逆運算的關系一樣:加上一個數後再減去同一個數,就等於不加也不減。
下面我們總結一下:
明密對照表:
明文:ABCDEFGHIJKLMNOPQRSTUVWXYZ
密文:TUVWXYZABCDEFGHIJKLMNOPQRS
註:廣義上的凱撒是位移的。
凱撒是沒有密匙的,即使沒有密匙也能將它破解出來,因為凱撒移位密碼只有25種密匙,最多就是將這25種可能性挨個檢測一下可以了,這就是我們所說的暴力破解法。也可在用軟體破解,不過我提倡用人工的。
推理的方法:
1,對於有空格的凱撒移位,單字母A和I是突破口,這無異相當於告訴了移動的位數,這樣很容易就被破解了。所以,如果我們要用凱撒密碼的話一定要去掉空格加大破解難度。
2,差數法。
有空格時,而又沒有單字母A和I時,這種方法很,如果我們令A=1,B=2,C=3......就是每個字母是字母的第幾個,經過移位後的單詞,每兩相鄰的字母之間的差值不變的。如the的差值為12,3(在這里我是用後面的一個字母減前面的一個字母,當然你也可以用後面的一個字母減前面的一個字母),移動後兩個相鄰字母的差值也將會是12,3。
對於沒有空格的愷撒破解起來就比有空格的難一些,對於沒有空格的我們還要對密文進行分析,找出重復出現的字母串,然後對字母串進行猜測,例,如果有3個字母串,出現的次數比較高,我們就可以假設它為the因為3個字母串出現次最多的就是the,當然這不是一成不變的,這時應該就被破解了。
我們看到一個密碼怎樣判斷是凱撒密碼呢?這又要扯到頻率分析去(在這里不介紹,在後面在說),沒有經過移位的明文和移過的密文是有區別的,這樣就可以區分凱撒密碼和柵欄密碼了(柵欄密碼參照下一章)。
沒有移位的柵欄密碼母音比較多,這是語言本身的性質絕定,像英語和漢語拼音的母音出現頻率就比較高。
『叄』 凱撒加密法
凱撒加密法的替換方法是通過排列明文和密文字母表,密文字母表示通過將明文字母表向左或向右移動一個固定數目的位置。例如,當偏移量是左移3的時候(解密時的密鑰就是3):
明文字母表:ABCDEFGHIJKLMNOPQRSTUVWXYZ
密文字母表:DEFGHIJKLMNOPQRSTUVWXYZABC
使用時,加密者查找明文字母表中需要加密的消息中的每一個字母所在位置,並且寫下密文字母表中對應的字母。需要解密的人則根據事先已知的密鑰反過來操作,得到原來的明文。例如:
明文:THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG
密文:WKH TXLFN EURZQ IRA MXPSV RYHU WKH ODCB GRJ
凱撒加密法的加密、解密方法還能夠通過同餘的數學方法進行計算。首先將字母用數字代替,A=0,B=1,...,Z=25。此時偏移量為n的加密方法即為:
En(x)=(x+n)mod26{\displaystyle E_{n}(x)=(x+n)\mod 26}
解密就是:
Dn(x)=(x−n)mod26{\displaystyle D_{n}(x)=(x-n)\mod 26}
『肆』 愷撒密碼表是什麼
愷撒密碼表是一種代換密碼。據說凱撒是率先使用加密函的古代將領之一,因此這種加密方法被稱為愷撒密碼。凱撒密碼作為一種最為古老的對稱加密體制,在古羅馬的時候都已經很流行,他的基本思想是:通過把字母移動一定的位數來實現加密和解密。明文中的所有字母都在字母表上向後(或向前)按照一個固定數目進行偏移後被替換成密文。
『伍』 愷撒密碼的概念
在密碼學中,凱撒密碼(或稱愷撒加密、愷撒變換、變換加密)是一種最簡單且最廣為人知的加密技術。它是一種替換加密的技術。這個加密方法是以愷撒的名字命名的,當年愷撒曾用此方法與其將軍們進行聯系。愷撒密碼通常被作為其他更復雜的加密方法中的一個步驟,例如維吉尼亞密碼。愷撒密碼還在現代的ROT13系統中被應用。但是和所有的利用字母表進行替換的加密技術一樣,愷撒密碼非常容易被破解,而且在實際應用中也無法保證通信安全。
『陸』 什麼是凱撒密碼謝謝!
凱撒密碼作為一種最為古老的對稱加密體制,在古羅馬的時候都已經很流行,他的基本思想是:通過把字母移動一定的位數來實現加密和解密。例如,如果密匙是把明文字母的位數向後移動三位,那麼明文字母B就變成了密文的E,依次類推,X將變成A,Y變成B,Z變成C,由此可見,位數就是凱撒密碼加密和解密的密鑰。 它是一種代換密碼。據說愷撒是率先使用加密函的古代將領之一,因此這種加密方法被稱為愷撒密碼。 在密碼學中,愷撒密碼(或稱愷撒加密、愷撒變換、變換加密)是一種最簡單且最廣為人知的加密技術。它是一種替換加密的技術,明文中的所有字母都在字母表上向後(或向前)按照一個固定數目進行偏移後被替換成密文。例如,當偏移量是3的時候,所有的字母A將被替換成D,B變成E,以此類推。這個加密方法是以愷撒的名字命名的,當年愷撒曾用此方法與其將軍們進行聯系。愷撒密碼通常被作為其他更復雜的加密方法中的一個步驟,例如維吉尼亞密碼。愷撒密碼還在現代的ROT13系統中被應用。但是和所有的利用字母表進行替換的加密技術一樣,愷撒密碼非常容易被破解,而且在實際應用中也無法保證通信安全。
『柒』 密碼技術
密碼演算法的特性
1、是否需要事先配送私鑰:對稱密碼需要考慮
2、是否會遭到中間人攻擊:非對稱密碼分發公鑰時需要考慮
3、不可抵賴(可被雙方 和 第三方 用原理證明):非對稱密碼分發公鑰時需要考慮
4、能否保證消息的機密性:即不可破譯
5、能否保證消息的完整性(一致性):即不可篡改
6、不可冒充(偽造)
總結:對稱密碼(解決456)--非對稱密碼之單向通信--> 混合密碼(解決1) --非對稱密碼之數字簽名--> 公鑰證書(解決23)
概念
密碼演算法:加密演算法 + 密鑰 + 解密演算法,簡稱密碼
密鑰空間:密鑰的所有取值
隱蔽式安全性:以密碼演算法不為人所知,來保證機密性
分組密碼:對明文進行分組加密,而非以全文作為輸入
流密碼:不分組,整體加密
破解密文的方法
1、竊聽 + 破譯
2、社會工程學
破解密鑰的方法
1、暴力破解(密鑰窮舉),例如破譯凱撒密碼
2、頻率分析,例如破譯簡單替換密碼
3、選擇明文攻擊(對分組進行明文窮舉)
加密系統的可選技術
隱寫術:將消息藏在更大的數據中,例如藏頭詩
偽隨機數生成器
散列值(摘要,哈希值,指紋):原文經過散列函數(摘要函數,哈希函數,雜湊函數,單向加密)計算出來的值
對稱密碼(共享密鑰密碼):加密和解密用同一個私鑰
非對稱密碼(公鑰密碼):公鑰加密,私鑰解密
消息認證碼
數字簽名
公鑰證書
碰撞:兩個消息的散列值相同
弱抗碰撞性:給定一條消息,很難找到另一條消息與其散列值相同。防止以下情形,Bob持有一個消息A,計算其摘要;Alice找到與A散列值相同的另一條消息B,用B將A調包;由於摘要不變,不被Bob發覺
強抗碰撞性:很難找到兩條散列值相同的消息。防止以下情形,Alice拿兩個摘要相同的消息A和B,將A發給Bob;Bob計算其摘要;Alice再用B將A調包;由於摘要不變,不被Bob發覺
MD5(Message Digest 5)
歷史:1991年Ronald Rivest 設計出MD5
現狀:2004年王小雲提出了MD5碰撞攻擊演算法
SHA
歷史:1993年NIST發布SHA,1995年發布SHA-1,2002年發布SHA-2
現狀:2004年王小雲提出了SHA-0的碰撞攻擊演算法;2005年王小雲提出了SHA-1的碰撞攻擊演算法
SHA-3
歷史:2007年NIST發起選拔SHA-3,2012年Joan Daemen等人設計的Keccak演算法被選定為SHA-3
弱偽隨機數:隨機性
強偽隨機數:不可預測性
真隨機數:不可重現性
隨機數生成器:硬體可以通過熱雜訊實現真隨機數
偽隨機數生成器:軟體只能生成偽隨機數,需要一種子seed來初始化
偽隨機數演算法:線性同餘法、散列法、密碼法等
好的對稱密碼解決:不可破譯
缺點:需要事先配送密鑰
凱撒密碼
加密演算法:字母平移
密鑰:平移位數
解密演算法:逆向平移
破解密鑰:窮舉可能的密鑰
簡單替換密碼
加密演算法:一個字母替換成另一個字母
密鑰:替換表
解密演算法:逆向替換
破解密鑰:對密文的字母 和 字母組合進行頻率分析,與通用頻率表對比;用破譯出來的明文字母,代入密文,循環分析
Enigma密碼
發明者:德國人Arthur Sherbius
加密演算法:雙重加密,每日密鑰作為密鑰1,想一個密鑰2;用密鑰1加密密鑰2,得到密鑰2密文;用密鑰2加密消息;將密鑰2密文和消息密文一起發出
密鑰:密鑰冊子記錄的每天不同的密鑰
解密演算法:用每日密鑰解密密鑰2密文,得到密鑰2;用密鑰2解密消息密文
破譯者:Alan Turing 圖靈
DES密碼(Data Encryption Standard)
歷史:1974年IBM公司的Horst Feistel開發出了Lucifer密碼,1977年被美國國家標准學會(American National Standards Institute,ANSI)確定為DES標准
加密演算法:以64比特為一組,進行16輪運算。在一輪中,把一組分為左側和右側,並從密鑰中提取子密鑰;輪函數用一側和子密鑰生成一個比特序列,用這個比特序列對另一側進行異或運算(XOR)
密鑰:長度56位
破譯:可在現實時間內被暴力破解
三重DES密碼(triple-DES,TDEA,3DES)
加密演算法:將DES重復三次
密鑰:長度 56 * 3
AES密碼(Advanced Encryption Standard)
歷史:1997年,美國國家標准與技術研究院(National Institute of Standards and Technology,NIST)公開募集AES,2000年比利時密碼學家Joan Daemen 和 Vincent Rijmen提交的Rijndael方案,被選為標准
加密演算法:以128比特為一組,進行多輪的替換、平移、矩陣運算
密鑰:有128,192,256三種長度
分組密碼的迭代模式
ECB模式:Electronic CodeBook mode,電子密碼本模式;明文分組 和 密文分組 順序對應。主動攻擊者可以改變密文分組的順序,復制 或 刪除密文分組,使得接受者解密後得到錯誤的明文
CBC模式:Cipher Block Chaining mode,密碼分組鏈接模式;將本組明文 和 上組密文 進行異或運算後,在進行加密;如果被篡改,則不能正常解密
CFB模式:Cipher Feedback mode,密文反饋模式;將本組明文 和 上組密文 進行異或運算後,就得到本組的密文
OFB模式:Output Feedback mode,輸出反饋模式;用隨機比特序列作為初始化組(初始化向量);用初始化組的密文和 明文分組 異或運算,得到密文分組;再次對初始化組密文進行加密運算,得到新的初始化組密文,跟下組明文進行異或運算,以此類推
CTR模式:CounTeR mode,計數器模式;用隨機比特序列作為計數器的初始值,加密後與明文分組進行異或操作,得到密文分組;計數器加一,對下組明文進行加密
對稱密碼中,發送方發送密文時,帶上消息的MAC值A;接收方用相同方法計算出MAC值B;對比A和B,確保消息不被篡改
Encrypt-then-MAC:MAC值為消息密文的散列值
Encrypt-and-MAC:MAC值為消息明文的散列值
MAC-then-Encrypt:MAC值為明文散列值的密文
重放攻擊:攻擊者竊聽到Alice給Bob發送的消息後,重復給Bob發送,Bob以為都是Alice發的
預防重放攻擊:消息里帶有一個id
比對稱密碼:不可篡改、不可偽造
缺點:需要實現配送私鑰
基於口令的密碼:Password Based Encryption,PBE
解決:密鑰(會話密鑰)保存問題
CEK:會話密鑰
KEK:用來加密CEK的密鑰
方案
1、隨機數作為鹽salt,口令 + 鹽 的散列值作為KEK
2、用KEK加密CEK,得到CEK密文
3、只保存鹽和CEK密文,人腦記住口令,丟棄KEK
字典攻擊:如果沒有鹽參與生成KEK,那麼口令決定了KEK,常用的口令對應一個常用KEK字典,攻擊者直接拿常用KEK去解密CEK密文
鹽的作用:KEK由鹽參與形成,不可能有KEK字典包含這樣的KEK
非對稱密碼單向通信,不能單獨用於通信,只用在混合密碼中
方案:Alice 給 Bob 分發加密密鑰(公鑰);Bob用公鑰加密消息,發送給Alice;Alice用解密密鑰(私鑰)解密
總結:消息接收者是密鑰對主人,即私鑰持有人;公鑰用於加密,私鑰用於解密
RSA密碼
歷史:1978年,Ron Rivest、Adi Shamir、Reonard Adleman共同發表了RSA
加密演算法:密文 = 明文 E mode N
公鑰:E 和 N的組合
解密演算法:明文 = 密文 D mode N
私鑰:D 和 N的組合
生成密鑰對
生成質數:用偽隨機數生成隨機數,通過Miller-Rabin測試法測試它是不是質數,直到得到質數
求最大公約數:歐幾里得的輾轉相除法
1、求N
生成兩個512位的質數p和q,N = p * q
2、求L
L是p-1 和 q-1 的最小公倍數
3、求E
用偽隨機數生成(1,L)范圍內的隨機數,直到滿足E和L的最大公約數為1
4、求D
用偽隨機數生成(1,L)范圍內的隨機數,直到滿足(E * D) mod L = 1
破解:對N進行質因數分解,得到p和q,從而求出D。但是對大數的質因數分解,未有快速有效的方法
首次通信為混合密碼,後續通信為對稱密碼
比消息認證碼:無需事先配送私鑰
總體思路:Bob 用會話密鑰加密消息,用Alice的公鑰加密會話密鑰,一起發給Alice;Alice用私鑰解密會話密鑰,用會話密鑰解密消息
會話密鑰:用來加密消息的 對稱密碼的密鑰
1、Alice 給 Bob 發送公鑰
2、Bob隨機生成會話密鑰,用會話密鑰加密消息,得到消息密文
3、Bob用公鑰加密會話密鑰,得到會話密鑰密文
4、Bob將會話密鑰密文和消息密文一起發給Alice
5、Alice用私鑰解密會話密鑰,再用會話密鑰解密消息
6、雙方都有了會話密鑰,從此以後,可以用對稱密碼通信了,帶上消息認證碼
缺點:分發公鑰時,可能遭受中間人攻擊;Alice可能對給Bob發送公鑰這件事進行抵賴
中間人攻擊:中間人從一開始Alice向Bob發放公鑰時,就攔截了消息,得到Alice的公鑰;然後偽裝成Alice,向Bob發送自己的公鑰;從而Bob打算發給Alice的消息,能被中間人解密
不能單獨用於通信,只用在公鑰證書中
明文簽名:Alice用簽名密鑰(私鑰)加密消息的摘要,把摘要密文和消息明文一起發給Bob;Bob解密摘要密文,得到摘要A;算出明文摘要B,對比A和B
總結:私鑰用於加密,公鑰用於解密,與 非對稱加密之單向通信,剛好反過來
公鑰證書:Public-Key Certificate,PKC,簡稱證書
認證機構:Certification Authority,CA
證書標准:國際電信聯盟ITU 和 國際標准化組織ISO指定的X.509標准
流程:
1、Alice在CA登記
2、CA生成Alice的證書明文,包含Alice登記的信息、Alice的公鑰、CA信息
3、CA用自己的私鑰加密證書明文部分,得到數字簽名
4、證書明文部分 和 數字簽名 組成PKC,頒發給Alice
5、Bob向Alice獲取這個PKC,拿本地已有的CA公鑰去驗證證書,就得到了可信的Alice的公鑰
6、從此Alice 和 Bob之間可以進行混合密碼通信
首次通信為從CA獲取PKC,後續通信為混合密碼
比混合密碼:防止了中間人攻擊;CA不能抵賴自己的證書
歷史:1994年網景公司設計出SSL,2014年SSL 3.0被發現安全漏洞,1999年IEIF發布TLS
TLS(Transport Layer Security)是SSL(Secure Socket Layer)的後續版本,在tcp和http之間加一層TLS,就是https
OpenSSL:OpenSSL是實現SSL/TLS協議的工具包
以https為例
0、瀏覽器安裝時,存有幾個CA公鑰;伺服器在CA登記,拿到證書
1、瀏覽器訪問一個https地址,伺服器返回自己的證書
2、瀏覽器根據證書上的CA信息,拿對應的CA公鑰驗證證書,得到可信的伺服器公鑰
3、瀏覽器生成對稱密碼的密鑰(會話密鑰),用伺服器公鑰加密後發給伺服器
4、伺服器解密後得到會話密鑰,從此用對稱密碼通信,帶上消息認證碼
1、生成JKS證書:keytool -genkeypair -alias "別名" -keyalg "RSA" -keystore "D:app.jks"
2、將JKS轉換成PKCS12:keytool -importkeystore -srckeystore D:app.jks -destkeystore D:app.p12 -deststoretype pkcs12
3、將PKCS12轉成pem:openssl pkcs12 -in ./app.p12 -out app.pem
4、提取加密後的私鑰:將pem中 「—–BEGIN ENCRYPTED PRIVATE KEY—–」 至 「—–END ENCRYPTED PRIVATE KEY—–」 的內容拷貝出來,保存為ciphertext.key
5、將密文私鑰轉成明文私鑰:openssl rsa -in ciphertext.key -out plaintext.key
.jks(Java Key Storage):二進制格式,包含證書和私鑰,有密碼保護
.pfx 或 .p12(Predecessor of PKCS#12):二進制格式,包含證書和私鑰,有密碼保護
.pem(Privacy Enhanced Mail):文本格式,包含證書,可包含私鑰,私鑰有密碼保護
.der 或 .cer:二進制格式,只包含證書
.crt(Certificate):可以是der格式,也可以是pem格式,只包含證書
SSL證書:SSL證書必須綁定域名,不能綁定IP
加密服務、密鑰管理服務
『捌』 凱撒密碼 是什麼
愷撒移位密碼
密碼的使用最早可以追溯到古羅馬時期,《高盧戰記》有描述愷撒曾經使用密碼來傳遞信息,即所謂的「愷撒密碼」,它是一種替代密碼,通過將字母按順序推後起3位起到加密作用,如將字母A換作字母D,將字母B換作字母E。因據說愷撒是率先使用加密函的古代將領之一,因此這種加密方法被稱為愷撒密碼。這是一種簡單的加密方法,這種密碼的密度是很低的,只需簡單地統計字頻就可以破譯。 現今又叫「移位密碼」,只不過移動的為數不一定是3位而已。
密碼術可以大致別分為兩種,即易位和替換,當然也有兩者結合的更復雜的方法。在易位中字母不變,位置改變;替換中字母改變,位置不變。
將替換密碼用於軍事用途的第一個文件記載是愷撒著的《高盧記》。愷撒描述了他如何將密信送到正處在被圍困、瀕臨投降的西塞羅。其中羅馬字母被替換成希臘字母使得敵人根本無法看懂信息。
『玖』 什麼是凱撒加密法
簡單的說,就是位移加密。
比如你的密碼是ABCDE
然後設置凱撒密碼的偏移量為3的話
那加密之後的密碼就是DEFGH
『拾』 凱撒密碼怎麼解
它是一種代換密碼。據說愷撒是率先使用加密函的古代將領之一,因此這種加密方法被稱為愷撒密碼。
凱撒密碼作為一種最為古老的對稱加密體制,在古羅馬的時候都已經很流行,他的基本思想是:通過把字母移動一定的位數來實現加密和解密。明文中的所有字母都在字母表上向後(或向前)按照一個固定數目進行偏移後被替換成密文。例如,當偏移量是3的時候,所有的字母A將被替換成D,B變成E,以此類推X將變成A,Y變成B,Z變成C。由此可見,位數就是凱撒密碼加密和解密的密鑰。