導航:首頁 > 文檔加密 > 現實中加密的例子

現實中加密的例子

發布時間:2022-12-22 10:55:22

A. 求常用加密法,現實中可行的

專業的,高強度的加密演算法基本上都有開源實現,而且「成本」大多不高。
想搞趣味性的加密,建議去看看尼古拉斯凱奇演的國家寶藏1,裡面有很多古代加密思想都很有趣,計算機上也能實現。
名字:DES3 RSA MD5等等,,,,
如果你不求原理,java, .net win32都提供了這些加密服務的。直接調用即可

B. 加密在現實中的應用有哪些,請舉例說明。

電子商務中的應用以及在現實生活中應用非常廣。比如:我們在全世界的范圍內進行政治、軍事、經濟、社會交往、文化等各個領域的信息交換、信息傳輸、信息共享和信息使用。目前,我們的信息交換和共享越來越依賴於互聯網,計算機網路已成為我們社會生活的一個基本組成部分。然而,現代計算機系統有太多的組件和連接,計算機操作系統本身存在安全隱患;另外,網路協議中都或多或少存在漏洞;加上資料庫管理系統的不安全性和網路管理的不規范,這使得數據信息在計算機網路之間的傳輸存在各種安全風險。

C. 實例如何講解無線路由器加密

很多使用無線路由器的用戶都還不知道怎樣將自己的路由加密,設置密碼是非常重要的,於是我研究了一下無線路由器的主要加密方式和方法,在這里拿出來和大家分享一下,希望對大家有用。

1、在無線路由器上啟用WEP加密

首先,讓我們舉一個例子來說明實施128位WEP加密。現在讓我們來看一下如何使用這個WEP密鑰來設置無線路由器。

註:配置這一部分的時候,最好也使用有線來連接到無線路由器,因為如果你一旦輸錯了無線密鑰的話,你將不能使用正確的密鑰連接到無線路由器上。如前面的無線路由器設置一樣,使用你的Web瀏覽器來訪問無線路由器,並點擊無線參數標簽。點擊基本設置,如下圖。先開啟安全設置,在標有安全類型的一行,選擇WEP。

在密鑰格式中選擇16進制,輸入密鑰,點擊保存。記下這個密鑰。在你點了保存設置後,此前連接到該無線路由器的任何計算機將失去連接。這是正常的,因為你已經修改他們與無線路由器之間的通信方式,但是你還沒有告訴它們要使用什麼安全密鑰來訪問無線路由器。

2、在無線路由器上啟用WPA加密

為了和啟用WEP加密做個對比,我們再以一個例子來介紹如何啟用WPA加密,啟用WPA加密與啟用WEP加密很相似,不過有一點不同,在啟用WPA加密之前,你必須要先決定這個加密密鑰多長時間有效,舉例來說,假若你設置成1800秒,也就30分鍾,那麼該密鑰在被使用了30分鍾後,無線路由器和無線網卡將產生一個新的密鑰。如果一個黑客在30分鍾內破解了該密鑰,那麼這個密鑰有價值的時間也就不足30分鍾了,因為30分鍾後它就已經變成另一個全新的密鑰了,黑客將不得不重新開始破解。下面是一個在無線路由器上設置WPA的例子。

在無線參數中,選擇開啟安全設置,選擇WPA-PSK,選擇安全選項WPA-PSK,選擇加密方法,輸入PSK密碼。在標有WPA共享密鑰的地方,輸入預共享密鑰,在標有組密鑰更新的地方,輸入多長時間該密鑰將更新。我們在本例中選擇1800秒。點擊保存設置。

註:密鑰更新時間我們應該設置多長合適?沒有一個好的答案,假若你將它設置的過於短的話,例如1-2分鍾,的確安全性是提高了,但是對於某些網卡來說,這樣有可能導致發生一些連接問題。我們推薦根據廠家的默認值就可以。對於啟用WPA加密,我們還需要把超級密碼告訴每一個無線網卡,這樣他們才會知道如何解碼與無線路由器的通話。依次設置無線家庭網路中的'每一台機器,記住每次都要核對一下是否已經連接到無線路由器。

排障小技巧:無線加密

假若有的計算機不能重新建立會話的話,需要檢查的項目如下:確認無線路由器和無線網卡的加密方法一致。確認無線路由器和無線網卡中,用於生成WEP密鑰(或WPA密鑰)的密碼短語相同。這個密碼短語是大小寫敏感的,例如,「p」和「P」是不一樣的。所以在設置的時候要細心輸入,注意大小寫字母的區別。如果還是不行的話,那麼在無線路由器和無線網卡中都禁用加密,確認一下不啟用加密是否可以建立連接。

D. 加密基礎知識二 非對稱加密RSA演算法和對稱加密

上述過程中,出現了公鑰(3233,17)和私鑰(3233,2753),這兩組數字是怎麼找出來的呢?參考 RSA演算法原理(二)
首字母縮寫說明:E是加密(Encryption)D是解密(Decryption)N是數字(Number)。

1.隨機選擇兩個不相等的質數p和q。
alice選擇了61和53。(實際應用中,這兩個質數越大,就越難破解。)

2.計算p和q的乘積n。
n = 61×53 = 3233
n的長度就是密鑰長度。3233寫成二進制是110010100001,一共有12位,所以這個密鑰就是12位。實際應用中,RSA密鑰一般是1024位,重要場合則為2048位。

3.計算n的歐拉函數φ(n)。稱作L
根據公式φ(n) = (p-1)(q-1)
alice算出φ(3233)等於60×52,即3120。

4.隨機選擇一個整數e,也就是公鑰當中用來加密的那個數字
條件是1< e < φ(n),且e與φ(n) 互質。
alice就在1到3120之間,隨機選擇了17。(實際應用中,常常選擇65537。)

5.計算e對於φ(n)的模反元素d。也就是密鑰當中用來解密的那個數字
所謂"模反元素"就是指有一個整數d,可以使得ed被φ(n)除的余數為1。ed ≡ 1 (mod φ(n))
alice找到了2753,即17*2753 mode 3120 = 1

6.將n和e封裝成公鑰,n和d封裝成私鑰。
在alice的例子中,n=3233,e=17,d=2753,所以公鑰就是 (3233,17),私鑰就是(3233, 2753)。

上述故事中,blob為了偷偷地傳輸移動位數6,使用了公鑰做加密,即6^17 mode 3233 = 824。alice收到824之後,進行解密,即824^2753 mod 3233 = 6。也就是說,alice成功收到了blob使用的移動位數。

再來復習一下整個流程:
p=17,q=19
n = 17 19 = 323
L = 16 18 = 144
E = 5(E需要滿足以下兩個條件:1<E<144,E和144互質)
D = 29(D要滿足兩個條件,1<D<144,D mode 144 = 1)
假設某個需要傳遞123,則加密後:123^5 mode 323 = 225
接收者收到225後,進行解密,225^ 29 mode 323 = 123

回顧上面的密鑰生成步驟,一共出現六個數字:
p
q
n
L即φ(n)
e
d
這六個數字之中,公鑰用到了兩個(n和e),其餘四個數字都是不公開的。其中最關鍵的是d,因為n和d組成了私鑰,一旦d泄漏,就等於私鑰泄漏。那麼,有無可能在已知n和e的情況下,推導出d?
(1)ed≡1 (mod φ(n))。只有知道e和φ(n),才能算出d。
(2)φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。
(3)n=pq。只有將n因數分解,才能算出p和q。
結論:如果n可以被因數分解,d就可以算出,也就意味著私鑰被破解。
可是,大整數的因數分解,是一件非常困難的事情。目前,除了暴力破解,還沒有發現別的有效方法。維基網路這樣寫道:"對極大整數做因數分解的難度決定了RSA演算法的可靠性。換言之,對一極大整數做因數分解愈困難,RSA演算法愈可靠。假如有人找到一種快速因數分解的演算法,那麼RSA的可靠性就會極度下降。但找到這樣的演算法的可能性是非常小的。今天只有短的RSA密鑰才可能被暴力破解。到2008年為止,世界上還沒有任何可靠的攻擊RSA演算法的方式。只要密鑰長度足夠長,用RSA加密的信息實際上是不能被解破的。"

然而,雖然RSA的安全性依賴於大數的因子分解,但並沒有從理論上證明破譯RSA的難度與大數分解難度等價。即RSA的重大缺陷是無法從理論上把握它的保密性能如何。此外,RSA的缺點還有:
A)產生密鑰很麻煩,受到素數產生技術的限制,因而難以做到一次一密。
B)分組長度太大,為保證安全性,n 至少也要 600bits以上,使運算代價很高,尤其是速度較慢,較對稱密碼演算法慢幾個數量級;且隨著大數分解技術的發展,這個長度還在增加,不利於數據格式的標准化。因此, 使用RSA只能加密少量數據,大量的數據加密還要靠對稱密碼演算法

加密和解密是自古就有技術了。經常看到偵探電影的橋段,勇敢又機智的主角,拿著一長串毫無意義的數字苦惱,忽然靈光一閃,翻出一本厚書,將第一個數字對應頁碼數,第二個數字對應行數,第三個數字對應那一行的某個詞。數字變成了一串非常有意義的話:
Eat the beancurd with the peanut. Taste like the ham.

這種加密方法是將原來的某種信息按照某個規律打亂。某種打亂的方式就叫做密鑰(cipher code)。發出信息的人根據密鑰來給信息加密,而接收信息的人利用相同的密鑰,來給信息解密。 就好像一個帶鎖的盒子。發送信息的人將信息放到盒子里,用鑰匙鎖上。而接受信息的人則用相同的鑰匙打開。加密和解密用的是同一個密鑰,這種加密稱為對稱加密(symmetric encryption)。

如果一對一的話,那麼兩人需要交換一個密鑰。一對多的話,比如總部和多個特工的通信,依然可以使用同一套密鑰。 但這種情況下,對手偷到一個密鑰的話,就知道所有交流的信息了。 二戰中盟軍的情報戰成果,很多都來自於破獲這種對稱加密的密鑰。

為了更安全,總部需要給每個特工都設計一個不同的密鑰。如果是FBI這樣龐大的機構,恐怕很難維護這么多的密鑰。在現代社會,每個人的信用卡信息都需要加密。一一設計密鑰的話,銀行怕是要跪了。

對稱加密的薄弱之處在於給了太多人的鑰匙。如果只給特工鎖,而總部保有鑰匙,那就容易了。特工將信息用鎖鎖到盒子里,誰也打不開,除非到總部用唯一的一把鑰匙打開。只是這樣的話,特工每次出門都要帶上許多鎖,太容易被識破身份了。總部老大想了想,乾脆就把造鎖的技術公開了。特工,或者任何其它人,可以就地取材,按照圖紙造鎖,但無法根據圖紙造出鑰匙。鑰匙只有總部的那一把。

上面的關鍵是鎖和鑰匙工藝不同。知道了鎖,並不能知道鑰匙。這樣,銀行可以將「造鎖」的方法公布給所有用戶。 每個用戶可以用鎖來加密自己的信用卡信息。即使被別人竊聽到,也不用擔心:只有銀行才有鑰匙呢!這樣一種加密演算法叫做非對稱加密(asymmetric encryption)。非對稱加密的經典演算法是RSA演算法。它來自於數論與計算機計數的奇妙結合。

1976年,兩位美國計算機學家Whitfield Diffie 和 Martin Hellman,提出了一種嶄新構思,可以在不直接傳遞密鑰的情況下,完成解密。這被稱為"Diffie-Hellman密鑰交換演算法"。這個演算法啟發了其他科學家。人們認識到,加密和解密可以使用不同的規則,只要這兩種規則之間存在某種對應關系即可,這樣就避免了直接傳遞密鑰。這種新的加密模式被稱為"非對稱加密演算法"。

1977年,三位數學家Rivest、Shamir 和 Adleman 設計了一種演算法,可以實現非對稱加密。這種演算法用他們三個人的名字命名,叫做RSA演算法。從那時直到現在,RSA演算法一直是最廣為使用的"非對稱加密演算法"。毫不誇張地說,只要有計算機網路的地方,就有RSA演算法。

1.能「撞」上的保險箱(非對稱/公鑰加密體制,Asymmetric / Public Key Encryption)

數據加密解密和門鎖很像。最開始的時候,人們只想到了那種只能用鑰匙「鎖」數據的鎖。如果在自己的電腦上自己加密數據,當然可以用最開始這種門鎖的形式啦,方便快捷,簡單易用有木有。

但是我們現在是通信時代啊,雙方都想做安全的通信怎麼辦呢?如果也用這種方法,通信就好像互相發送密碼保險箱一樣…而且雙方必須都有鑰匙才能進行加密和解密。也就是說,兩個人都拿著保險箱的鑰匙,你把數據放進去,用鑰匙鎖上發給我。我用同樣的鑰匙把保險箱打開,再把我的數據鎖進保險箱,發送給你。

這樣看起來好像沒什麼問題。但是,這裡面 最大的問題是:我們兩個怎麼弄到同一個保險箱的同一個鑰匙呢? 好像僅有的辦法就是我們兩個一起去買個保險箱,然後一人拿一把鑰匙,以後就用這個保險箱了。可是,現代通信社會,絕大多數情況下別說一起去買保險箱了,連見個面都難,這怎麼辦啊?

於是,人們想到了「撞門」的方法。我這有個可以「撞上」的保險箱,你那裡自己也買一個這樣的保險箱。通信最開始,我把保險箱打開,就這么開著把保險箱發給你。你把數據放進去以後,把保險箱「撞」上發給我。撞上以後,除了我以外,誰都打不開保險箱了。這就是RSA了,公開的保險箱就是公鑰,但是我有私鑰,我才能打開。

2.數字簽名
這種鎖看起來好像很不錯,但是鎖在運輸的過程中有這么一個嚴重的問題:你怎麼確定你收到的開著的保險箱就是我發來的呢?對於一個聰明人,他完全可以這么干:
(a)裝作運輸工人。我現在把我開著的保險箱運給對方。運輸工人自己也弄這么一個保險箱,運輸的時候把保險箱換成他做的。
(b)對方收到保險箱後,沒法知道這個保險箱是我最初發過去的,還是運輸工人替換的。對方把數據放進去,把保險箱撞上。
(c)運輸工人往回運的時候,用自己的鑰匙打開自己的保險箱,把數據拿走。然後復印也好,偽造也好,弄出一份數據,把這份數據放進我的保險箱,撞上,然後發給我。
從我的角度,從對方的角度,都會覺得這數據傳輸過程沒問題。但是,運輸工人成功拿到了數據,整個過程還是不安全的,大概的過程是這樣:

這怎麼辦啊?這個問題的本質原因是,人們沒辦法獲知,保險箱到底是「我」做的,還是運輸工人做的。那乾脆,我們都別做保險箱了,讓權威機構做保險箱,然後在每個保險箱上用特殊的工具刻上一個編號。對方收到保險箱的時候,在權威機構的「公告欄」上查一下編號,要是和保險箱上的編號一樣,我就知道這個保險箱是「我」的,就安心把數據放進去。大概過程是這樣的:

如何做出刻上編號,而且編號沒法修改的保險箱呢?這涉及到了公鑰體制中的另一個問題:數字簽名。
要知道,刻字這種事情吧,誰都能幹,所以想做出只能自己刻字,還沒法讓別人修改的保險箱確實有點難度。那麼怎麼辦呢?這其實困擾了人們很長的時間。直到有一天,人們發現:我們不一定非要在保險箱上刻規規矩矩的字,我們乾脆在保險箱上刻手寫名字好了。而且,刻字有點麻煩,乾脆我們在上面弄張紙,讓人直接在上面寫,簡單不費事。具體做法是,我們在保險箱上嵌進去一張紙,然後每個出產的保險箱都讓權威機構的CEO簽上自己的名字。然後,CEO把自己的簽名公開在權威機構的「公告欄」上面。比如這個CEO就叫「學酥」,那麼整個流程差不多是這個樣子:

這個方法的本質原理是,每個人都能夠通過筆跡看出保險箱上的字是不是學酥CEO簽的。但是呢,這個字體是學酥CEO唯一的字體。別人很難模仿。如果模仿我們就能自己分辨出來了。要是實在分辨不出來呢,我們就請一個筆跡專家來分辨。這不是很好嘛。這個在密碼學上就是數字簽名。

上面這個簽字的方法雖然好,但是還有一個比較蛋疼的問題。因為簽字的樣子是公開的,一個聰明人可以把公開的簽字影印一份,自己造個保險箱,然後把這個影印的字也嵌進去。這樣一來,這個聰明人也可以造一個相同簽字的保險箱了。解決這個問題一個非常簡單的方法就是在看保險箱上的簽名時,不光看字體本身,還要看字體是不是和公開的字體完全一樣。要是完全一樣,就可以考慮這個簽名可能是影印出來的。甚至,還要考察字體是不是和其他保險櫃上的字體一模一樣。因為聰明人為了欺騙大家,可能不影印公開的簽名,而影印其他保險箱上的簽名。這種解決方法雖然簡單,但是驗證簽名的時候麻煩了一些。麻煩的地方在於我不僅需要對比保險箱上的簽名是否與公開的筆跡一樣,還需要對比得到的簽名是否與公開的筆跡完全一樣,乃至是否和所有發布的保險箱上的簽名完全一樣。有沒有什麼更好的方法呢?

當然有,人們想到了一個比較好的方法。那就是,學酥CEO簽字的時候吧,不光把名字簽上,還得帶上簽字得日期,或者帶上這個保險箱的編號。這樣一來,每一個保險箱上的簽字就唯一了,這個簽字是學酥CEO的簽名+學酥CEO寫上的時間或者編號。這樣一來,就算有人偽造,也只能偽造用過的保險箱。這個問題就徹底解決了。這個過程大概是這么個樣子:

3 造價問題(密鑰封裝機制,Key Encapsulation Mechanism)
解決了上面的各種問題,我們要考慮考慮成本了… 這種能「撞」門的保險箱雖然好,但是這種鎖造價一般來說要比普通的鎖要高,而且鎖生產時間也會變長。在密碼學中,對於同樣「結實」的鎖,能「撞」門的鎖的造價一般來說是普通鎖的上千倍。同時,能「撞」門的鎖一般來說只能安裝在小的保險櫃裡面。畢竟,這么復雜的鎖,裝起來很費事啊!而普通鎖安裝在多大的保險櫃上面都可以呢。如果兩個人想傳輸大量數據的話,用一個大的保險櫃比用一堆小的保險櫃慢慢傳要好的多呀。怎麼解決這個問題呢?人們又想出了一個非常棒的方法:我們把兩種鎖結合起來。能「撞」上的保險櫃裡面放一個普通鎖的鑰匙。然後造一個用普通的保險櫃來鎖大量的數據。這樣一來,我們相當於用能「撞」上的保險櫃發一個鑰匙過去。對方收到兩個保險櫃後,先用自己的鑰匙把小保險櫃打開,取出鑰匙。然後在用這個鑰匙開大的保險櫃。這樣做更棒的一個地方在於,既然對方得到了一個鑰匙,後續再通信的時候,我們就不再需要能「撞」上的保險櫃了啊,在以後一定時間內就用普通保險櫃就好了,方便快捷嘛。

以下參考 數字簽名、數字證書、SSL、https是什麼關系?
4.數字簽名(Digital Signature)
數據在瀏覽器和伺服器之間傳輸時,有可能在傳輸過程中被冒充的盜賊把內容替換了,那麼如何保證數據是真實伺服器發送的而不被調包呢,同時如何保證傳輸的數據沒有被人篡改呢,要解決這兩個問題就必須用到數字簽名,數字簽名就如同日常生活的中的簽名一樣,一旦在合同書上落下了你的大名,從法律意義上就確定是你本人簽的字兒,這是任何人都沒法仿造的,因為這是你專有的手跡,任何人是造不出來的。那麼在計算機中的數字簽名怎麼回事呢?數字簽名就是用於驗證傳輸的內容是不是真實伺服器發送的數據,發送的數據有沒有被篡改過,它就干這兩件事,是非對稱加密的一種應用場景。不過他是反過來用私鑰來加密,通過與之配對的公鑰來解密。
第一步:服務端把報文經過Hash處理後生成摘要信息Digest,摘要信息使用私鑰private-key加密之後就生成簽名,伺服器把簽名連同報文一起發送給客戶端。
第二步:客戶端接收到數據後,把簽名提取出來用public-key解密,如果能正常的解密出來Digest2,那麼就能確認是對方發的。
第三步:客戶端把報文Text提取出來做同樣的Hash處理,得到的摘要信息Digest1,再與之前解密出來的Digist2對比,如果兩者相等,就表示內容沒有被篡改,否則內容就是被人改過了。因為只要文本內容哪怕有任何一點點改動都會Hash出一個完全不一樣的摘要信息出來。

5.數字證書(Certificate Authority)
數字證書簡稱CA,它由權威機構給某網站頒發的一種認可憑證,這個憑證是被大家(瀏覽器)所認可的,為什麼需要用數字證書呢,難道有了數字簽名還不夠安全嗎?有這樣一種情況,就是瀏覽器無法確定所有的真實伺服器是不是真的是真實的,舉一個簡單的例子:A廠家給你們家安裝鎖,同時把鑰匙也交給你,只要鑰匙能打開鎖,你就可以確定鑰匙和鎖是配對的,如果有人把鑰匙換了或者把鎖換了,你是打不開門的,你就知道肯定被竊取了,但是如果有人把鎖和鑰匙替換成另一套表面看起來差不多的,但質量差很多的,雖然鑰匙和鎖配套,但是你卻不能確定這是否真的是A廠家給你的,那麼這時候,你可以找質檢部門來檢驗一下,這套鎖是不是真的來自於A廠家,質檢部門是權威機構,他說的話是可以被公眾認可的(呵呵)。
同樣的, 因為如果有人(張三)用自己的公鑰把真實伺服器發送給瀏覽器的公鑰替換了,於是張三用自己的私鑰執行相同的步驟對文本Hash、數字簽名,最後得到的結果都沒什麼問題,但事實上瀏覽器看到的東西卻不是真實伺服器給的,而是被張三從里到外(公鑰到私鑰)換了一通。那麼如何保證你現在使用的公鑰就是真實伺服器發給你的呢?我們就用數字證書來解決這個問題。數字證書一般由數字證書認證機構(Certificate Authority)頒發,證書裡麵包含了真實伺服器的公鑰和網站的一些其他信息,數字證書機構用自己的私鑰加密後發給瀏覽器,瀏覽器使用數字證書機構的公鑰解密後得到真實伺服器的公鑰。這個過程是建立在被大家所認可的證書機構之上得到的公鑰,所以這是一種安全的方式。

常見的對稱加密演算法有DES、3DES、AES、RC5、RC6。非對稱加密演算法應用非常廣泛,如SSH,
HTTPS, TLS,電子證書,電子簽名,電子身份證等等。
參考 DES/3DES/AES區別

E. 關於加密、解密演算法、密鑰,哪位能給我舉個形象的例子

加密就像你鑰匙深進鑰匙孔,逆時針轉一下
解密就像你鑰匙深進鑰匙孔,順時針轉一下
密鑰就像你那把鑰匙上面的齒
暴力破解就像做了世界上所有可能的齒的鑰匙,一把一把試。不可以理解為直接砸開。
就像商場裡衣服上有個鎖,如果沒有鑰匙,就算怎麼弄開,那件衣服都沒法穿了。所以就一定要有鑰匙。
所以密鑰叫作key(鑰匙)

應該很形象了吧。

加密從數學角度就是一個像函數c=E(m,k)
輸入:m是消息明文,k是密鑰,
輸出:c是消息密文

D是E的反函數,m'=D(c',k')
輸入:c'是消息密文,k'是密鑰,
輸出:m'是消息明文

當c=c', k=k'時,一定有m=m'

c,m,k可以看成一個個大整數,比如c=394783579347293479382。
最簡單的一個加密就是
E(m,k)=m+k
D(c,k)=c-k

F. 生活中關於密碼和加密相關的事件有哪些

商用密碼與我們日常生活息息相關。不經意間,密碼已經深入到了我們的生活。打開手機、電腦需要密碼,取款、轉賬也需要密碼,甚至登QQ、刷微信也需要密碼……生活中到處都需要密碼。

我們日常生活中常說的用戶名「密碼」只是「口令」,並不是密碼法中的「密碼」。「進不來」「拿不走」「看不懂」「改不了」「走不脫」。

是密碼在保障信息安全中發揮的身份認證、訪問控制、機密性、完整性、不可抵賴性等作用的通俗表述。網路連到哪,數據跑到哪,安全需求在哪,密碼保障到哪。

密碼學:

首先加密的產生要追溯到二戰時期,在戰爭中己方的軍隊之間在傳遞戰爭信息的時候如果被敵方截獲或者掉包,會發生十分慘重的後果。於是軍方想出了一個主意,各部隊負責接收和發送信息的士兵都保留一個密碼本。

面記載著一些字和詞彙對應被寫成另一個字和詞彙的對應關系,每次發送信息的時候按照密碼本把真實信息對應翻譯成語義不連貫的加密信息,對方接收到之後再按照相同的密碼本翻譯過來應用。

密碼學就是由此衍生出的一門學科,隨著一些相關的學科的發展,比如數學、通信,加密技術也愈加復雜。我們將被我們進行加密活動的原始內容稱為消息,但是消息和信息還是有一些區別的,有些消息可能是沒有信息量的,有些消息可能包含很多有效信息。

但是無論消息用途有多大,在加密活動中都是有意義的。我們可以通過對消息的一些處理得到明文,比如提煉、概括、翻譯為另一種語言,等等,明文就是我們進行加密的主體。

明文經過一定的加密演算法和加密密鑰的翻譯就會得到密文,如果對相關概念有了解的人應該能很好的理解這句話,如果不太了解演算法和密鑰是什麼的話,就看一看小編下面的解釋:我們可以把加密演算法理解為一個數學公式。

可以把密鑰理解為公式裡面的參數,比如我們設計一個演算法叫做W=ax,W是我們加密得到的密文,a就是密鑰,x是我們需要加密的明文,發送明文的人把明文x代入公式W=ax計算出密文W,接收明文的人想要解開明文就用x=W/a計算。

雖然在實際加密中我們面對的消息是各種格式的,不能用一個數學公式一概而論,而且對於加密雙密鑰的情況參數a並不會被雙方使用,但是大概意思是可以通過這樣一個拿著參數計算和求解數學公式的原理來理解的。總之我們對原始的消息進行一定的處理(也可以不處理)得到了明文。

明文通過加密之後得到了密文,這時的消息已經不能夠通過簡單的觀察被分析出來了,只有掌握一些關於密鑰的信息或者應用解密演算法才能夠進行分析活動,而且往往不能夠分析出完整的加密活動。

G. 非對稱加密的代表例子有哪些

非對稱加密主要演算法:RSA、Elgamal、背包演算法、Rabin、D-H、ECC(橢圓曲線加密演算法)。
使用最廣泛的是RSA演算法,Elgamal是另一種常用的非對稱加密演算法。
經典的非對稱加密演算法如RSA演算法等安全性都相當高.
非對稱加密的典型應用是數字簽名。

H. 加密解密字元串的演算法原理

我們經常需要一種措施來保護我們的數據,防止被一些懷有不良用心的人所看到或者破壞。在信息時代,信息可以幫助團體或個人,使他們受益,同樣,信息也可以用來對他們構成威脅,造成破壞。在競爭激烈的大公司中,工業間諜經常會獲取對方的情報。因此,在客觀上就需要一種強有力的安全措施來保護機密數據不被竊取或篡改。數據加密與解密從宏觀上講是非常簡單的,很容易理解。加密與解密的一些方法是非常直接的,很容易掌握,可以很方便的對機密數據進行加密和解密。

一:數據加密方法

在傳統上,我們有幾種方法來加密數據流。所有這些方法都可以用軟體很容易的實現,但是當我們只知道密文的時候,是不容易破譯這些加密演算法的(當同時有原文和密文時,破譯加密演算法雖然也不是很容易,但已經是可能的了)。最好的加密演算法對系統性能幾乎沒有影響,並且還可以帶來其他內在的優點。例如,大家都知道的pkzip,它既壓縮數據又加密數據。又如,dbms的一些軟體包總是包含一些加密方法以使復制文件這一功能對一些敏感數據是無效的,或者需要用戶的密碼。所有這些加密演算法都要有高效的加密和解密能力。

幸運的是,在所有的加密演算法中最簡單的一種就是「置換表」演算法,這種演算法也能很好達到加密的需要。每一個數據段(總是一個位元組)對應著「置換表」中的一個偏移量,偏移量所對應的值就輸出成為加密後的文件。加密程序和解密程序都需要一個這樣的「置換表」。事實上,80x86 cpu系列就有一個指令『xlat』在硬體級來完成這樣的工作。這種加密演算法比較簡單,加密解密速度都很快,但是一旦這個「置換表」被對方獲得,那這個加密方案就完全被識破了。更進一步講,這種加密演算法對於黑客破譯來講是相當直接的,只要找到一個「置換表」就可以了。這種方法在計算機出現之前就已經被廣泛的使用。

對這種「置換表」方式的一個改進就是使用2個或者更多的「置換表」,這些表都是基於數據流中位元組的位置的,或者基於數據流本身。這時,破譯變的更加困難,因為黑客必須正確的做幾次變換。通過使用更多的「置換表」,並且按偽隨機的方式使用每個表,這種改進的加密方法已經變的很難破譯。比如,我們可以對所有的偶數位置的數據使用a表,對所有的奇數位置使用b表,即使黑客獲得了明文和密文,他想破譯這個加密方案也是非常困難的,除非黑客確切的知道用了兩張表。

與使用「置換表」相類似,「變換數據位置」也在計算機加密中使用。但是,這需要更多的執行時間。從輸入中讀入明文放到一個buffer中,再在buffer中對他們重排序,然後按這個順序再輸出。解密程序按相反的順序還原數據。這種方法總是和一些別的加密演算法混合使用,這就使得破譯變的特別的困難,幾乎有些不可能了。例如,有這樣一個詞,變換起字母的順序,slient 可以變為listen,但所有的字母都沒有變化,沒有增加也沒有減少,但是字母之間的順序已經變化了。

但是,還有一種更好的加密演算法,只有計算機可以做,就是字/位元組循環移位和xor操作。如果我們把一個字或位元組在一個數據流內做循環移位,使用多個或變化的方向(左移或右移),就可以迅速的產生一個加密的數據流。這種方法是很好的,破譯它就更加困難!而且,更進一步的是,如果再使用xor操作,按位做異或操作,就就使破譯密碼更加困難了。如果再使用偽隨機的方法,這涉及到要產生一系列的數字,我們可以使用fibbonaci數列。對數列所產生的數做模運算(例如模3),得到一個結果,然後循環移位這個結果的次數,將使破譯次密碼變的幾乎不可能!但是,使用fibbonaci數列這種偽隨機的方式所產生的密碼對我們的解密程序來講是非常容易的。

在一些情況下,我們想能夠知道數據是否已經被篡改了或被破壞了,這時就需要產生一些校驗碼,並且把這些校驗碼插入到數據流中。這樣做對數據的防偽與程序本身都是有好處的。但是感染計算機程序的病毒才不會在意這些數據或程序是否加過密,是否有數字簽名。所以,加密程序在每次load到內存要開始執行時,都要檢查一下本身是否被病毒感染,對與需要加、解密的文件都要做這種檢查!很自然,這樣一種方法體制應該保密的,因為病毒程序的編寫者將會利用這些來破壞別人的程序或數據。因此,在一些反病毒或殺病毒軟體中一定要使用加密技術。

循環冗餘校驗是一種典型的校驗數據的方法。對於每一個數據塊,它使用位循環移位和xor操作來產生一個16位或32位的校驗和 ,這使得丟失一位或兩個位的錯誤一定會導致校驗和出錯。這種方式很久以來就應用於文件的傳輸,例如 xmodem-crc。 這是方法已經成為標准,而且有詳細的文檔。但是,基於標准crc演算法的一種修改演算法對於發現加密數據塊中的錯誤和文件是否被病毒感染是很有效的。

二.基於公鑰的加密演算法

一個好的加密演算法的重要特點之一是具有這種能力:可以指定一個密碼或密鑰,並用它來加密明文,不同的密碼或密鑰產生不同的密文。這又分為兩種方式:對稱密鑰演算法和非對稱密鑰演算法。所謂對稱密鑰演算法就是加密解密都使用相同的密鑰,非對稱密鑰演算法就是加密解密使用不同的密鑰。非常著名的pgp公鑰加密以及rsa加密方法都是非對稱加密演算法。加密密鑰,即公鑰,與解密密鑰,即私鑰,是非常的不同的。從數學理論上講,幾乎沒有真正不可逆的演算法存在。例如,對於一個輸入『a』執行一個操作得到結果『b』,那麼我們可以基於『b』,做一個相對應的操作,導出輸入『a』。在一些情況下,對於每一種操作,我們可以得到一個確定的值,或者該操作沒有定義(比如,除數為0)。對於一個沒有定義的操作來講,基於加密演算法,可以成功地防止把一個公鑰變換成為私鑰。因此,要想破譯非對稱加密演算法,找到那個唯一的密鑰,唯一的方法只能是反復的試驗,而這需要大量的處理時間。

rsa加密演算法使用了兩個非常大的素數來產生公鑰和私鑰。即使從一個公鑰中通過因數分解可以得到私鑰,但這個運算所包含的計算量是非常巨大的,以至於在現實上是不可行的。加密演算法本身也是很慢的,這使得使用rsa演算法加密大量的數據變的有些不可行。這就使得一些現實中加密演算法都基於rsa加密演算法。pgp演算法(以及大多數基於rsa演算法的加密方法)使用公鑰來加密一個對稱加密演算法的密鑰,然後再利用一個快速的對稱加密演算法來加密數據。這個對稱演算法的密鑰是隨機產生的,是保密的,因此,得到這個密鑰的唯一方法就是使用私鑰來解密。

我們舉一個例子:假定現在要加密一些數據使用密鑰『12345』。利用rsa公鑰,使用rsa演算法加密這個密鑰『12345』,並把它放在要加密的數據的前面(可能後面跟著一個分割符或文件長度,以區分數據和密鑰),然後,使用對稱加密演算法加密正文,使用的密鑰就是『12345』。當對方收到時,解密程序找到加密過的密鑰,並利用rsa私鑰解密出來,然後再確定出數據的開始位置,利用密鑰『12345』來解密數據。這樣就使得一個可靠的經過高效加密的數據安全地傳輸和解密。

一些簡單的基於rsa演算法的加密演算法可在下面的站點找到:

ftp://ftp.funet.fi/pub/crypt/cryptography/asymmetric/rsa

三.一個嶄新的多步加密演算法

現在又出現了一種新的加密演算法,據說是幾乎不可能被破譯的。這個演算法在1998年6月1日才正式公布的。下面詳細的介紹這個演算法:

使用一系列的數字(比如說128位密鑰),來產生一個可重復的但高度隨機化的偽隨機的數字的序列。一次使用256個表項,使用隨機數序列來產生密碼轉表,如下所示:

把256個隨機數放在一個距陣中,然後對他們進行排序,使用這樣一種方式(我們要記住最初的位置)使用最初的位置來產生一個表,隨意排序的表,表中的數字在0到255之間。如果不是很明白如何來做,就可以不管它。但是,下面也提供了一些原碼(在下面)是我們明白是如何來做的。現在,產生了一個具體的256位元組的表。讓這個隨機數產生器接著來產生這個表中的其餘的數,以至於每個表是不同的。下一步,使用"shotgun technique"技術來產生解碼表。基本上說,如果 a映射到b,那麼b一定可以映射到a,所以b[a[n]] = n.(n是一個在0到255之間的數)。在一個循環中賦值,使用一個256位元組的解碼表它對應於我們剛才在上一步產生的256位元組的加密表。

使用這個方法,已經可以產生這樣的一個表,表的順序是隨機,所以產生這256個位元組的隨機數使用的是二次偽隨機,使用了兩個額外的16位的密碼.現在,已經有了兩張轉換表,基本的加密解密是如下這樣工作的。前一個位元組密文是這個256位元組的表的索引。或者,為了提高加密效果,可以使用多餘8位的值,甚至使用校驗和或者crc演算法來產生索引位元組。假定這個表是256*256的數組,將會是下面的樣子:

crypto1 = a[crypto0][value]

變數'crypto1'是加密後的數據,'crypto0'是前一個加密數據(或著是前面幾個加密數據的一個函數值)。很自然的,第一個數據需要一個「種子」,這個「種子」 是我們必須記住的。如果使用256*256的表,這樣做將會增加密文的長度。或者,可以使用你產生出隨機數序列所用的密碼,也可能是它的crc校驗和。順便提及的是曾作過這樣一個測試: 使用16個位元組來產生表的索引,以128位的密鑰作為這16個位元組的初始的"種子"。然後,在產生出這些隨機數的表之後,就可以用來加密數據,速度達到每秒鍾100k個位元組。一定要保證在加密與解密時都使用加密的值作為表的索引,而且這兩次一定要匹配。

加密時所產生的偽隨機序列是很隨意的,可以設計成想要的任何序列。沒有關於這個隨機序列的詳細的信息,解密密文是不現實的。例如:一些ascii碼的序列,如「eeeeeeee"可能被轉化成一些隨機的沒有任何意義的亂碼,每一個位元組都依賴於其前一個位元組的密文,而不是實際的值。對於任一個單個的字元的這種變換來說,隱藏了加密數據的有效的真正的長度。

如果確實不理解如何來產生一個隨機數序列,就考慮fibbonacci數列,使用2個雙字(64位)的數作為產生隨機數的種子,再加上第三個雙字來做xor操作。 這個演算法產生了一系列的隨機數。演算法如下:

unsigned long dw1, dw2, dw3, dwmask;

int i1;

unsigned long arandom[256];

dw1 = {seed #1};

dw2 = {seed #2};

dwmask = {seed #3};

// this gives you 3 32-bit "seeds", or 96 bits total

for(i1=0; i1 < 256; i1++)

{

dw3 = (dw1 + dw2) ^ dwmask;

arandom[i1] = dw3;

dw1 = dw2;

dw2 = dw3;

}

如果想產生一系列的隨機數字,比如說,在0和列表中所有的隨機數之間的一些數,就可以使用下面的方法:

int __cdecl mysortproc(void *p1, void *p2)

{

unsigned long **pp1 = (unsigned long **)p1;

unsigned long **pp2 = (unsigned long **)p2;

if(**pp1 < **pp2)

return(-1);

else if(**pp1 > *pp2)

return(1);

return(0);

}

...

int i1;

unsigned long *aprandom[256];

unsigned long arandom[256]; // same array as before, in this case

int aresult[256]; // results go here

for(i1=0; i1 < 256; i1++)

{

aprandom[i1] = arandom + i1;

}

// now sort it

qsort(aprandom, 256, sizeof(*aprandom), mysortproc);

// final step - offsets for pointers are placed into output array

for(i1=0; i1 < 256; i1++)

{

aresult[i1] = (int)(aprandom[i1] - arandom);

}

...

變數'aresult'中的值應該是一個排過序的唯一的一系列的整數的數組,整數的值的范圍均在0到255之間。這樣一個數組是非常有用的,例如:對一個位元組對位元組的轉換表,就可以很容易並且非常可靠的來產生一個短的密鑰(經常作為一些隨機數的種子)。這樣一個表還有其他的用處,比如說:來產生一個隨機的字元,計算機游戲中一個物體的隨機的位置等等。上面的例子就其本身而言並沒有構成一個加密演算法,只是加密演算法一個組成部分。

作為一個測試,開發了一個應用程序來測試上面所描述的加密演算法。程序本身都經過了幾次的優化和修改,來提高隨機數的真正的隨機性和防止會產生一些短的可重復的用於加密的隨機數。用這個程序來加密一個文件,破解這個文件可能會需要非常巨大的時間以至於在現實上是不可能的。

四.結論:

由於在現實生活中,我們要確保一些敏感的數據只能被有相應許可權的人看到,要確保信息在傳輸的過程中不會被篡改,截取,這就需要很多的安全系統大量的應用於政府、大公司以及個人系統。數據加密是肯定可以被破解的,但我們所想要的是一個特定時期的安全,也就是說,密文的破解應該是足夠的困難,在現實上是不可能的,尤其是短時間內。

I. 結合實例談談加密技術在電子商務中的應用

加密技術是電子商務採取的主要安全保密措施,是最常用的安全保密手段,利用技術手段把重要的數據變為亂碼(加密)傳送,到達目的地後再用相同或不同的手段還原(解密)。例如目前的b2b網站的產品發布就是最好的例子、

J. 【深度知識】區塊鏈之加密原理圖示(加密,簽名)

先放一張以太坊的架構圖:

在學習的過程中主要是採用單個模塊了學習了解的,包括P2P,密碼學,網路,協議等。直接開始總結:

秘鑰分配問題也就是秘鑰的傳輸問題,如果對稱秘鑰,那麼只能在線下進行秘鑰的交換。如果在線上傳輸秘鑰,那就有可能被攔截。所以採用非對稱加密,兩把鑰匙,一把私鑰自留,一把公鑰公開。公鑰可以在網上傳輸。不用線下交易。保證數據的安全性。

如上圖,A節點發送數據到B節點,此時採用公鑰加密。A節點從自己的公鑰中獲取到B節點的公鑰對明文數據加密,得到密文發送給B節點。而B節點採用自己的私鑰解密。

2、無法解決消息篡改。

如上圖,A節點採用B的公鑰進行加密,然後將密文傳輸給B節點。B節點拿A節點的公鑰將密文解密。

1、由於A的公鑰是公開的,一旦網上黑客攔截消息,密文形同虛設。說白了,這種加密方式,只要攔截消息,就都能解開。

2、同樣存在無法確定消息來源的問題,和消息篡改的問題。

如上圖,A節點在發送數據前,先用B的公鑰加密,得到密文1,再用A的私鑰對密文1加密得到密文2。而B節點得到密文後,先用A的公鑰解密,得到密文1,之後用B的私鑰解密得到明文。

1、當網路上攔截到數據密文2時, 由於A的公鑰是公開的,故可以用A的公鑰對密文2解密,就得到了密文1。所以這樣看起來是雙重加密,其實最後一層的私鑰簽名是無效的。一般來講,我們都希望簽名是簽在最原始的數據上。如果簽名放在後面,由於公鑰是公開的,簽名就缺乏安全性。

2、存在性能問題,非對稱加密本身效率就很低下,還進行了兩次加密過程。

如上圖,A節點先用A的私鑰加密,之後用B的公鑰加密。B節點收到消息後,先採用B的私鑰解密,然後再利用A的公鑰解密。

1、當密文數據2被黑客攔截後,由於密文2隻能採用B的私鑰解密,而B的私鑰只有B節點有,其他人無法機密。故安全性最高。
2、當B節點解密得到密文1後, 只能採用A的公鑰來解密。而只有經過A的私鑰加密的數據才能用A的公鑰解密成功,A的私鑰只有A節點有,所以可以確定數據是由A節點傳輸過來的。

經兩次非對稱加密,性能問題比較嚴重。

基於以上篡改數據的問題,我們引入了消息認證。經過消息認證後的加密流程如下:

當A節點發送消息前,先對明文數據做一次散列計算。得到一個摘要, 之後將照耀與原始數據同時發送給B節點。當B節點接收到消息後,對消息解密。解析出其中的散列摘要和原始數據,然後再對原始數據進行一次同樣的散列計算得到摘要1, 比較摘要與摘要1。如果相同則未被篡改,如果不同則表示已經被篡改。

在傳輸過程中,密文2隻要被篡改,最後導致的hash與hash1就會產生不同。

無法解決簽名問題,也就是雙方相互攻擊。A對於自己發送的消息始終不承認。比如A對B發送了一條錯誤消息,導致B有損失。但A抵賴不是自己發送的。

在(三)的過程中,沒有辦法解決交互雙方相互攻擊。什麼意思呢? 有可能是因為A發送的消息,對A節點不利,後來A就抵賴這消息不是它發送的。

為了解決這個問題,故引入了簽名。這里我們將(二)-4中的加密方式,與消息簽名合並設計在一起。

在上圖中,我們利用A節點的私鑰對其發送的摘要信息進行簽名,然後將簽名+原文,再利用B的公鑰進行加密。而B得到密文後,先用B的私鑰解密,然後 對摘要再用A的公鑰解密,只有比較兩次摘要的內容是否相同。這既避免了防篡改問題,有規避了雙方攻擊問題。因為A對信息進行了簽名,故是無法抵賴的。

為了解決非對稱加密數據時的性能問題,故往往採用混合加密。這里就需要引入對稱加密,如下圖:

在對數據加密時,我們採用了雙方共享的對稱秘鑰來加密。而對稱秘鑰盡量不要在網路上傳輸,以免丟失。這里的共享對稱秘鑰是根據自己的私鑰和對方的公鑰計算出的,然後適用對稱秘鑰對數據加密。而對方接收到數據時,也計算出對稱秘鑰然後對密文解密。

以上這種對稱秘鑰是不安全的,因為A的私鑰和B的公鑰一般短期內固定,所以共享對稱秘鑰也是固定不變的。為了增強安全性,最好的方式是每次交互都生成一個臨時的共享對稱秘鑰。那麼如何才能在每次交互過程中生成一個隨機的對稱秘鑰,且不需要傳輸呢?

那麼如何生成隨機的共享秘鑰進行加密呢?

對於發送方A節點,在每次發送時,都生成一個臨時非對稱秘鑰對,然後根據B節點的公鑰 和 臨時的非對稱私鑰 可以計算出一個對稱秘鑰(KA演算法-Key Agreement)。然後利用該對稱秘鑰對數據進行加密,針對共享秘鑰這里的流程如下:

對於B節點,當接收到傳輸過來的數據時,解析出其中A節點的隨機公鑰,之後利用A節點的隨機公鑰 與 B節點自身的私鑰 計算出對稱秘鑰(KA演算法)。之後利用對稱秘鑰機密數據。

對於以上加密方式,其實仍然存在很多問題,比如如何避免重放攻擊(在消息中加入 Nonce ),再比如彩虹表(參考 KDF機制解決 )之類的問題。由於時間及能力有限,故暫時忽略。

那麼究竟應該採用何種加密呢?

主要還是基於要傳輸的數據的安全等級來考量。不重要的數據其實做好認證和簽名就可以,但是很重要的數據就需要採用安全等級比較高的加密方案了。

密碼套件 是一個網路協議的概念。其中主要包括身份認證、加密、消息認證(MAC)、秘鑰交換的演算法組成。

在整個網路的傳輸過程中,根據密碼套件主要分如下幾大類演算法:

秘鑰交換演算法:比如ECDHE、RSA。主要用於客戶端和服務端握手時如何進行身份驗證。

消息認證演算法:比如SHA1、SHA2、SHA3。主要用於消息摘要。

批量加密演算法:比如AES, 主要用於加密信息流。

偽隨機數演算法:例如TLS 1.2的偽隨機函數使用MAC演算法的散列函數來創建一個 主密鑰 ——連接雙方共享的一個48位元組的私鑰。主密鑰在創建會話密鑰(例如創建MAC)時作為一個熵來源。

在網路中,一次消息的傳輸一般需要在如下4個階段分別進行加密,才能保證消息安全、可靠的傳輸。

握手/網路協商階段:

在雙方進行握手階段,需要進行鏈接的協商。主要的加密演算法包括RSA、DH、ECDH等

身份認證階段:

身份認證階段,需要確定發送的消息的來源來源。主要採用的加密方式包括RSA、DSA、ECDSA(ECC加密,DSA簽名)等。

消息加密階段:

消息加密指對發送的信息流進行加密。主要採用的加密方式包括DES、RC4、AES等。

消息身份認證階段/防篡改階段:

主要是保證消息在傳輸過程中確保沒有被篡改過。主要的加密方式包括MD5、SHA1、SHA2、SHA3等。

ECC :Elliptic Curves Cryptography,橢圓曲線密碼編碼學。是一種根據橢圓上點倍積生成 公鑰、私鑰的演算法。用於生成公私秘鑰。

ECDSA :用於數字簽名,是一種數字簽名演算法。一種有效的數字簽名使接收者有理由相信消息是由已知的發送者創建的,從而發送者不能否認已經發送了消息(身份驗證和不可否認),並且消息在運輸過程中沒有改變。ECDSA簽名演算法是ECC與DSA的結合,整個簽名過程與DSA類似,所不一樣的是簽名中採取的演算法為ECC,最後簽名出來的值也是分為r,s。 主要用於身份認證階段

ECDH :也是基於ECC演算法的霍夫曼樹秘鑰,通過ECDH,雙方可以在不共享任何秘密的前提下協商出一個共享秘密,並且是這種共享秘鑰是為當前的通信暫時性的隨機生成的,通信一旦中斷秘鑰就消失。 主要用於握手磋商階段。

ECIES: 是一種集成加密方案,也可稱為一種混合加密方案,它提供了對所選擇的明文和選擇的密碼文本攻擊的語義安全性。ECIES可以使用不同類型的函數:秘鑰協商函數(KA),秘鑰推導函數(KDF),對稱加密方案(ENC),哈希函數(HASH), H-MAC函數(MAC)。

ECC 是橢圓加密演算法,主要講述了按照公私鑰怎麼在橢圓上產生,並且不可逆。 ECDSA 則主要是採用ECC演算法怎麼來做簽名, ECDH 則是採用ECC演算法怎麼生成對稱秘鑰。以上三者都是對ECC加密演算法的應用。而現實場景中,我們往往會採用混合加密(對稱加密,非對稱加密結合使用,簽名技術等一起使用)。 ECIES 就是底層利用ECC演算法提供的一套集成(混合)加密方案。其中包括了非對稱加密,對稱加密和簽名的功能。

<meta charset="utf-8">

這個先訂條件是為了保證曲線不包含奇點。

所以,隨著曲線參數a和b的不斷變化,曲線也呈現出了不同的形狀。比如:

所有的非對稱加密的基本原理基本都是基於一個公式 K = k G。其中K代表公鑰,k代表私鑰,G代表某一個選取的基點。非對稱加密的演算法 就是要保證 該公式 不可進行逆運算( 也就是說G/K是無法計算的 )。 *

ECC是如何計算出公私鑰呢?這里我按照我自己的理解來描述。

我理解,ECC的核心思想就是:選擇曲線上的一個基點G,之後隨機在ECC曲線上取一個點k(作為私鑰),然後根據k G計算出我們的公鑰K。並且保證公鑰K也要在曲線上。*

那麼k G怎麼計算呢?如何計算k G才能保證最後的結果不可逆呢?這就是ECC演算法要解決的。

首先,我們先隨便選擇一條ECC曲線,a = -3, b = 7 得到如下曲線:

在這個曲線上,我隨機選取兩個點,這兩個點的乘法怎麼算呢?我們可以簡化下問題,乘法是都可以用加法表示的,比如2 2 = 2+2,3 5 = 5+5+5。 那麼我們只要能在曲線上計算出加法,理論上就能算乘法。所以,只要能在這個曲線上進行加法計算,理論上就可以來計算乘法,理論上也就可以計算k*G這種表達式的值。

曲線上兩點的加法又怎麼算呢?這里ECC為了保證不可逆性,在曲線上自定義了加法體系。

現實中,1+1=2,2+2=4,但在ECC演算法里,我們理解的這種加法體系是不可能。故需要自定義一套適用於該曲線的加法體系。

ECC定義,在圖形中隨機找一條直線,與ECC曲線相交於三個點(也有可能是兩個點),這三點分別是P、Q、R。

那麼P+Q+R = 0。其中0 不是坐標軸上的0點,而是ECC中的無窮遠點。也就是說定義了無窮遠點為0點。

同樣,我們就能得出 P+Q = -R。 由於R 與-R是關於X軸對稱的,所以我們就能在曲線上找到其坐標。

P+R+Q = 0, 故P+R = -Q , 如上圖。

以上就描述了ECC曲線的世界裡是如何進行加法運算的。

從上圖可看出,直線與曲線只有兩個交點,也就是說 直線是曲線的切線。此時P,R 重合了。

也就是P = R, 根據上述ECC的加法體系,P+R+Q = 0, 就可以得出 P+R+Q = 2P+Q = 2R+Q=0

於是乎得到 2 P = -Q (是不是與我們非對稱演算法的公式 K = k G 越來越近了)。

於是我們得出一個結論,可以算乘法,不過只有在切點的時候才能算乘法,而且只能算2的乘法。

假若 2 可以變成任意個數進行想乘,那麼就能代表在ECC曲線里可以進行乘法運算,那麼ECC演算法就能滿足非對稱加密演算法的要求了。

那麼我們是不是可以隨機任何一個數的乘法都可以算呢? 答案是肯定的。 也就是點倍積 計算方式。

選一個隨機數 k, 那麼k * P等於多少呢?

我們知道在計算機的世界裡,所有的都是二進制的,ECC既然能算2的乘法,那麼我們可以將隨機數k描 述成二進制然後計算。假若k = 151 = 10010111

由於2 P = -Q 所以 這樣就計算出了k P。 這就是點倍積演算法 。所以在ECC的曲線體系下是可以來計算乘法,那麼以為這非對稱加密的方式是可行的。

至於為什麼這樣計算 是不可逆的。這需要大量的推演,我也不了解。但是我覺得可以這樣理解:

我們的手錶上,一般都有時間刻度。現在如果把1990年01月01日0點0分0秒作為起始點,如果告訴你至起始點為止時間流逝了 整1年,那麼我們是可以計算出現在的時間的,也就是能在手錶上將時分秒指針應該指向00:00:00。但是反過來,我說現在手錶上的時分秒指針指向了00:00:00,你能告訴我至起始點算過了有幾年了么?

ECDSA簽名演算法和其他DSA、RSA基本相似,都是採用私鑰簽名,公鑰驗證。只不過演算法體系採用的是ECC的演算法。交互的雙方要採用同一套參數體系。簽名原理如下:

在曲線上選取一個無窮遠點為基點 G = (x,y)。隨機在曲線上取一點k 作為私鑰, K = k*G 計算出公鑰。

簽名過程:

生成隨機數R, 計算出RG.

根據隨機數R,消息M的HASH值H,以及私鑰k, 計算出簽名S = (H+kx)/R.

將消息M,RG,S發送給接收方。

簽名驗證過程:

接收到消息M, RG,S

根據消息計算出HASH值H

根據發送方的公鑰K,計算 HG/S + xK/S, 將計算的結果與 RG比較。如果相等則驗證成功。

公式推論:

HG/S + xK/S = HG/S + x(kG)/S = (H+xk)/GS = RG

在介紹原理前,說明一下ECC是滿足結合律和交換律的,也就是說A+B+C = A+C+B = (A+C)+B。

這里舉一個WIKI上的例子說明如何生成共享秘鑰,也可以參考 Alice And Bob 的例子。

Alice 與Bob 要進行通信,雙方前提都是基於 同一參數體系的ECC生成的 公鑰和私鑰。所以有ECC有共同的基點G。

生成秘鑰階段:

Alice 採用公鑰演算法 KA = ka * G ,生成了公鑰KA和私鑰ka, 並公開公鑰KA。

Bob 採用公鑰演算法 KB = kb * G ,生成了公鑰KB和私鑰 kb, 並公開公鑰KB。

計算ECDH階段:

Alice 利用計算公式 Q = ka * KB 計算出一個秘鑰Q。

Bob 利用計算公式 Q' = kb * KA 計算出一個秘鑰Q'。

共享秘鑰驗證:

Q = ka KB = ka * kb * G = ka * G * kb = KA * kb = kb * KA = Q'

故 雙方分別計算出的共享秘鑰不需要進行公開就可採用Q進行加密。我們將Q稱為共享秘鑰。

在以太坊中,採用的ECIEC的加密套件中的其他內容:

1、其中HASH演算法採用的是最安全的SHA3演算法 Keccak 。

2、簽名演算法採用的是 ECDSA

3、認證方式採用的是 H-MAC

4、ECC的參數體系採用了secp256k1, 其他參數體系 參考這里

H-MAC 全程叫做 Hash-based Message Authentication Code. 其模型如下:

以太坊 的 UDP通信時(RPC通信加密方式不同),則採用了以上的實現方式,並擴展化了。

首先,以太坊的UDP通信的結構如下:

其中,sig是 經過 私鑰加密的簽名信息。mac是可以理解為整個消息的摘要, ptype是消息的事件類型,data則是經過RLP編碼後的傳輸數據。

其UDP的整個的加密,認證,簽名模型如下:

閱讀全文

與現實中加密的例子相關的資料

熱點內容
php保留兩位小數不四捨五入 瀏覽:290
黑馬程序員路徑大全 瀏覽:1000
saas平台PHP 瀏覽:333
雲伺服器科學計算配置怎麼選 瀏覽:649
jar解壓命令 瀏覽:609
php正則問號 瀏覽:299
無線已加密不可上網是怎麼了 瀏覽:464
什麼app可以免費做手機 瀏覽:375
異性下載什麼app 瀏覽:680
51單片機程序單步視頻 瀏覽:241
家庭寬頻如何連接伺服器 瀏覽:119
汽車高壓泵解壓 瀏覽:772
上門正骨用什麼app 瀏覽:761
安卓為什麼免費使用 瀏覽:398
加密貨幣都有哪些平台 瀏覽:629
python和matlab難度 瀏覽:391
python爬蟲很難學么 瀏覽:575
小米解壓積木可以組成什麼呢 瀏覽:818
為什麼滴滴出行app還能用 瀏覽:568
怎麼升級手機android 瀏覽:926