導航:首頁 > 文檔加密 > 加密技術主要有兩種類型

加密技術主要有兩種類型

發布時間:2023-01-03 21:56:16

加密技術有哪幾種分類

加密技術分為私用密鑰加密技術和公開密鑰加密技術。其中私用密鑰加密技術中最具有代表性的演算法是IBM公司提出的DES演算法、三重DES演算法(是DES加強版)、日本密碼學家提出隨機化數據加密標准(RDES)、瑞士學者發明的IDEA國際信息加密演算法;公開密鑰加密技術的核心是運用一種特殊的數學函數(單向陷門函數)。演算法有很多,比如著名的背包演算法等。目前公認比較安全的是RSA演算法及其變種和離散對數演算法等等。
數據來源《小議數據加密技術》

⑵ 目前常用的加密方法主要有哪兩種

私有密鑰加密和公開密鑰加密。加密是以某種特殊的演算法改變原有的信息數據,使得未授權的用戶即使獲得了已加密的信息,到2022年常用的加密方法主要有私有密鑰加密和公開密鑰加密兩種,按照網路層次的不同,數據加密方式劃分,主要有鏈路加密、節點加密、端到端的加密三種。

⑶ 加密技術的兩個元素

加密技術包括兩個元素:演算法和密鑰。演算法是將普通的文本(或者可以理解的信息)與一串數字(密鑰)的結合,產生不可理解的密文的步驟,密鑰是用來對數據進行編碼和解碼的一種演算法。在安全保密中,可通過適當的密鑰加密技術和管理機制來保證網路的信息通訊安全。密鑰加密技術的密碼體制分為對稱密鑰體制和非對稱密鑰體制兩種。相應地,對數據加密的技術分為兩類,即對稱加密(私人密鑰加密)和非對稱加密(公開密鑰加密)。對稱加密以數據加密標准(DES,Data Encryption Standard)演算法為典型代表,非對稱加密通常以RSA(Rivest Shamir Adleman)演算法為代表。對稱加密的加密密鑰和解密密鑰相同,而非對稱加密的加密密鑰和解密密鑰不同,加密密鑰可以公開而解密密鑰需要保密。

⑷ 常見加密技術的分類和特點是什麼

常見的加密技術有對稱加密和非對稱加密這兩類,他們的特點是對稱加密使用同樣的密碼來做加密和解密,非對稱演算法採用不同的密碼來做加密和解密。另外還有一些離散數據的信息處理技術比如MD5或者是SHA的運算,他們的目的是為了知道數據的完整性,就是原始的數據有沒有被人修改而出現的。

⑸ 數據加密技術分哪兩類

加密技術分為:

1、對稱加密

對稱加密採用了對稱密碼編碼技術,它的特點是文件加密和解密使用相同的密鑰,即加密密鑰也可以用作解密密鑰,這種方法在密碼學中叫做對稱加密演算法,對稱加密演算法使用起來簡單快捷,密鑰較短,且破譯困難

2、非對稱

1976年,美國學者Dime和Henman為解決信息公開傳送和密鑰管理問題,提出一種新的密鑰交換協議,允許在不安全的媒體上的通訊雙方交換信息,安全地達成一致的密鑰,這就是「公開密鑰系統」。

相關信息:

目前主流的加密技術有對稱加密例如DES,3DES和AES,然後還有非對稱加密技術:例如RSA和橢圓加密演算法。對稱加密的話,就是用來加密和解密的密鑰是一樣的,非對稱加密的話,加密的密鑰和解密的密鑰是不一樣的,用加密的密鑰加密以後,只有配對的另外一個密鑰才能解開。

另外我們還可以常常看到MD5,SHA,SHA1之類的演算法,其實他們不是加密演算法,因為他們的結算結果不可逆,你沒法從結果得到輸入的數據是什麼,他們的用途主要是為了防止泄密和修改數據,因為對於這些演算法來說,每一個輸入只能有一個輸出,修改了輸入就會使得輸出變化很大,所以被人修改了數據的話通過這個演算法就能知道了。

另外我校驗密碼的時候,如果只是通過這個計算結果來對比的話,其他人如果不知道我的密碼,即使他能解碼我的程序也不行,因為程序裡面只有結果,沒有輸入的密碼。

⑹ 數據加密主要有哪些方式

主要有兩種方式:「對稱式」和「非對稱式」。
對稱式加密就是加密和解密使用同一個密鑰,通常稱之為「Session Key 」這種加密技術目前被廣泛採用,如美國政府所採用的DES加密標准就是一種典型的「對稱式」加密法,它的Session Key長度為56Bits。
非對稱式加密就是加密和解密所使用的不是同一個密鑰,通常有兩個密鑰,稱為「公鑰」和「私鑰」,它們兩個必需配對使用,否則不能打開加密文件。這里的「公鑰」是指可以對外公布的,「私鑰」則不能,只能由持有人一個人知道。它的優越性就在這里,因為對稱式的加密方法如果是在網路上傳輸加密文件就很難把密鑰告訴對方,不管用什麼方法都有可能被別竊聽到。而非對稱式的加密方法有兩個密鑰,且其中的「公鑰」是可以公開的,也就不怕別人知道,收件人解密時只要用自己的私鑰即可以,這樣就很好地避免了密鑰的傳輸安全性問題。
一般的數據加密可以在通信的三個層次來實現:鏈路加密、節點加密和端到端加密。(3)
鏈路加密
對於在兩個網路節點間的某一次通信鏈路,鏈路加密能為網上傳輸的數據提供安全證。對於鏈路加密(又稱在線加密),所有消息在被傳輸之前進行加密,在每一個節點對接收到消息進行解密,然後先使用下一個鏈路的密鑰對消息進行加密,再進行傳輸。在到達目的地之前,一條消息可能要經過許多通信鏈路的傳輸。
由於在每一個中間傳輸節點消息均被解密後重新進行加密,因此,包括路由信息在內的鏈路上的所有數據均以密文形式出現。這樣,鏈路加密就掩蓋了被傳輸消息的源點與終點。由於填充技術的使用以及填充字元在不需要傳輸數據的情況下就可以進行加密,這使得消息的頻率和長度特性得以掩蓋,從而可以防止對通信業務進行分析。
盡管鏈路加密在計算機網路環境中使用得相當普遍,但它並非沒有問題。鏈路加密通常用在點對點的同步或非同步線路上,它要求先對在鏈路兩端的加密設備進行同步,然後使用一種鏈模式對鏈路上傳輸的數據進行加密。這就給網路的性能和可管理性帶來了副作用。
在線路/信號經常不通的海外或衛星網路中,鏈路上的加密設備需要頻繁地進行同步,帶來的後果是數據丟失或重傳。另一方面,即使僅一小部分數據需要進行加密,也會使得所有傳輸數據被加密。
在一個網路節點,鏈路加密僅在通信鏈路上提供安全性,消息以明文形式存在,因此所有節點在物理上必須是安全的,否則就會泄漏明文內容。然而保證每一個節點的安全性需要較高的費用,為每一個節點提供加密硬體設備和一個安全的物理環境所需要的費用由以下幾部分組成:保護節點物理安全的雇員開銷,為確保安全策略和程序的正確執行而進行審計時的費用,以及為防止安全性被破壞時帶來損失而參加保險的費用。
在傳統的加密演算法中,用於解密消息的密鑰與用於加密的密鑰是相同的,該密鑰必須被秘密保存,並按一定規則進行變化。這樣,密鑰分配在鏈路加密系統中就成了一個問題,因為每一個節點必須存儲與其相連接的所有鏈路的加密密鑰,這就需要對密鑰進行物理傳送或者建立專用網路設施。而網路節點地理分布的廣闊性使得這一過程變得復雜,同時增加了密鑰連續分配時的費用。
節點加密
盡管節點加密能給網路數據提供較高的安全性,但它在操作方式上與鏈路加密是類似的:兩者均在通信鏈路上為傳輸的消息提供安全性;都在中間節點先對消息進行解密,然後進行加密。因為要對所有傳輸的數據進行加密,所以加密過程對用戶是透明的。
然而,與鏈路加密不同,節點加密不允許消息在網路節點以明文形式存在,它先把收到的消息進行解密,然後採用另一個不同的密鑰進行加密,這一過程是在節點上的一個安全模塊中進行。
節點加密要求報頭和路由信息以明文形式傳輸,以便中間節點能得到如何處理消息的信息。因此這種方法對於防止攻擊者分析通信業務是脆弱的。
端到端加密
端到端加密允許數據在從源點到終點的傳輸過程中始終以密文形式存在。採用端到端加密,消息在被傳輸時到達終點之前不進行解密,因為消息在整個傳輸過程中均受到保護,所以即使有節點被損壞也不會使消息泄露。
端到端加密系統的價格便宜些,並且與鏈路加密和節點加密相比更可靠,更容易設計、實現和維護。端到端加密還避免了其它加密系統所固有的同步問題,因為每個報文包均是獨立被加密的,所以一個報文包所發生的傳輸錯誤不會影響後續的報文包。此外,從用戶對安全需求的直覺上講,端到端加密更自然些。單個用戶可能會選用這種加密方法,以便不影響網路上的其他用戶,此方法只需要源和目的節點是保密的即可。
端到端加密系統通常不允許對消息的目的地址進行加密,這是因為每一個消息所經過的節點都要用此地址來確定如何傳輸消息。由於這種加密方法不能掩蓋被傳輸消息的源點與終點,因此它對於防止攻擊者分析通信業務是脆弱的。

⑺ 目前常用的加密方法主要有兩種

對稱加密體系與非對稱加密體系

對稱密鑰加密 對稱密鑰加密,又稱私鑰加密,即信息的發送方和接收方用一個密鑰去加密和解密數據。它的最大優勢是加/解密速度快, 適合於對大數據量進行加密,但密鑰管理困難。
非對稱密鑰加密系統 非對稱密鑰加密,又稱公鑰密鑰加密。它需要使用一對密鑰 來分別完成加密和解密操作,一個公開發布,即公開密鑰,另一 個由用戶自己秘密保存,即私用密鑰。信息發送者用公開密鑰去 加密,而信息接收者則用私用密鑰去解密。公鑰機制靈活,但加密和解密速度卻比對稱密鑰加密慢得多。

⑻ 目前常用的加密方法主要有兩種是什麼

目前常用的加密方法主要有兩種,分別為:私有密鑰加密和公開密鑰加密。私有密鑰加密法的特點信息發送方與信息接收方均需採用同樣的密鑰,具有對稱性,也稱對稱加密。公開密鑰加密,又稱非對稱加密,採用一對密鑰,一個是私人密鑰,另一個則是公開密鑰。
私有密鑰加密

私有密鑰加密,指在計算機網路上甲、乙兩用戶之間進行通信時,發送方甲為了保護要傳輸的明文信息不被第三方竊取,採用密鑰A對信息進行加密而形成密文M並發送給接收方乙,接收方乙用同樣的一把密鑰A對收到的密文M進行解密,得到明文信息,從而完成密文通信目的的方法。

這種信息加密傳輸方式,就稱為私有密鑰加密法。

私有密鑰加密的特點:

私有密鑰加密法的一個最大特點是:信息發送方與信息接收方均需採用同樣的密鑰,具有對稱性,所以私有密鑰加密又稱為對稱密鑰加密。

私有密鑰加密原理:

私有加密演算法使用單個私鑰來加密和解密數據。由於具有密鑰的任意一方都可以使用該密鑰解密數據,因此必須保證密鑰未被授權的代理得到。

公開密鑰加密

公開密鑰加密(public-key cryptography),也稱為非對稱加密(asymmetric cryptography),一種密碼學演算法類型,在這種密碼學方法中,需要一對密鑰,一個是私人密鑰,另一個則是公開密鑰。

這兩個密鑰是數學相關,用某用戶密鑰加密後所得的信息,只能用該用戶的解密密鑰才能解密。如果知道了其中一個,並不能計算出另外一個。因此如果公開了一對密鑰中的一個,並不會危害到另外一個的秘密性質。稱公開的密鑰為公鑰;不公開的密鑰為私鑰。

⑼ 加密技術有哪幾種

採用密碼技術對信息加密,是最常用的安全交易手段。在電子商務中獲得廣泛應用的加密技術有以下兩種:

(1)公共密鑰和私用密鑰(public key and private key)

這一加密方法亦稱為RSA編碼法,是由Rivest、Shamir和Adlernan三人所研究發明的。它利用兩個很大的質數相乘所產生的乘積來加密。這兩個質數無論哪一個先與原文件編碼相乘,對文件加密,均可由另一個質數再相乘來解密。但要用一個質數來求出另一個質數,則是十分困難的。因此將這一對質數稱為密鑰對(Key Pair)。在加密應用時,某個用戶總是將一個密鑰公開,讓需發信的人員將信息用其公共密鑰加密後發給該用戶,而一旦信息加密後,只有用該用戶一個人知道的私用密鑰才能解密。具有數字憑證身份的人員的公共密鑰可在網上查到,亦可在請對方發信息時主動將公共密鑰傳給對方,這樣保證在Internet上傳輸信息的保密和安全。

(2)數字摘要(digital digest)

這一加密方法亦稱安全Hash編碼法(SHA:Secure Hash Algorithm)或MD5(MD Standards for Message Digest),由Ron Rivest所設計。該編碼法採用單向Hash函數將需加密的明文「摘要」成一串128bit的密文,這一串密文亦稱為數字指紋(Finger Print),它有固定的長度,且不同的明文摘要成密文,其結果總是不同的,而同樣的明文其摘要必定一致。這樣這摘要便可成為驗證明文是否是「真身」的「指紋」了。

上述兩種方法可結合起來使用,數字簽名就是上述兩法結合使用的實例。

3.2數字簽名(digital signature)

在書面文件上簽名是確認文件的一種手段,簽名的作用有兩點,一是因為自己的簽名難以否認,從而確認了文件已簽署這一事實;二是因為簽名不易仿冒,從而確定了文件是真的這一事實。數字簽名與書面文件簽名有相同之處,採用數字簽名,也能確認以下兩點:

a. 信息是由簽名者發送的。

b. 信息在傳輸過程中未曾作過任何修改。

這樣數字簽名就可用來防止電子信息因易被修改而有人作偽;或冒用別人名義發送信息;或發出(收到)信件後又加以否認等情況發生。

數字簽名採用了雙重加密的方法來實現防偽、防賴。其原理為:

(1) 被發送文件用SHA編碼加密產生128bit的數字摘要(見上節)。

(2) 發送方用自己的私用密鑰對摘要再加密,這就形成了數字簽名。

(3) 將原文和加密的摘要同時傳給對方。

(4) 對方用發送方的公共密鑰對摘要解密,同時對收到的文件用SHA編碼加密產生又一摘要。

(5) 將解密後的摘要和收到的文件在接收方重新加密產生的摘要相互對比。如兩者一致,則說明傳送過程中信息沒有被破壞或篡改過。否則不然。

3.3數字時間戳(digital time-stamp)

交易文件中,時間是十分重要的信息。在書面合同中,文件簽署的日期和簽名一樣均是十分重要的防止文件被偽造和篡改的關鍵性內容。

在電子交易中,同樣需對交易文件的日期和時間信息採取安全措施,而數字時間戳服務(DTS:digital time-stamp service)就能提供電子文件發表時間的安全保護。

數字時間戳服務(DTS)是網上安全服務項目,由專門的機構提供。時間戳(time-stamp)是一個經加密後形成的憑證文檔,它包括三個部分:1)需加時間戳的文件的摘要(digest),2)DTS收到文件的日期和時間,3)DTS的數字簽名。

時間戳產生的過程為:用戶首先將需要加時間戳的文件用HASH編碼加密形成摘要,然後將該摘要發送到DTS,DTS在加入了收到文件摘要的日期和時間信息後再對該文件加密(數字簽名),然後送回用戶。由Bellcore創造的DTS採用如下的過程:加密時將摘要信息歸並到二叉樹的數據結構;再將二叉樹的根值發表在報紙上,這樣更有效地為文件發表時間提供了佐證。注意,書面簽署文件的時間是由簽署人自己寫上的,而數字時間戳則不然,它是由認證單位DTS來加的,以DTS收到文件的時間為依據。因此,時間戳也可作為科學家的科學發明文獻的時間認證。

3.4數字憑證(digital certificate, digital ID)

數字憑證又稱為數字證書,是用電子手段來證實一個用戶的身份和對網路資源的訪問的許可權。在網上的電子交易中,如雙方出示了各自的數字憑證,並用它來進行交易操作,那麼雙方都可不必為對方身份的真偽擔心。數字憑證可用於電子郵件、電子商務、群件、電子基金轉移等各種用途。

數字憑證的內部格式是由CCITT X.509國際標准所規定的,它包含了以下幾點:

(1) 憑證擁有者的姓名,

(2) 憑證擁有者的公共密鑰,

(3) 公共密鑰的有效期,

(4) 頒發數字憑證的單位,

(5) 數字憑證的序列號(Serial number),

(6) 頒發數字憑證單位的數字簽名。

數字憑證有三種類型:

(1) 個人憑證(Personal Digital ID):它僅僅為某一個用戶提供憑證,以幫助其個人在網上進行安全交易操作。個人身份的數字憑證通常是安裝在客戶端的瀏覽器內的。並通過安全的電子郵件(S/MIME)來進行交易操作。

(2) 企業(伺服器)憑證(Server ID):它通常為網上的某個Web伺服器提供憑證,擁有Web伺服器的企業就可以用具有憑證的萬維網站點(Web Site)來進行安全電子交易。有憑證的Web伺服器會自動地將其與客戶端Web瀏覽器通信的信息加密。

(3) 軟體(開發者)憑證(Developer ID):它通常為Internet中被下載的軟體提供憑證,該憑證用於和微軟公司Authenticode技術(合法化軟體)結合的軟體,以使用戶在下載軟體時能獲得所需的信息。

上述三類憑證中前二類是常用的憑證,第三類則用於較特殊的場合,大部分認證中心提供前兩類憑證,能提供各類憑證的認證中心並不普遍

⑽ 數據加密技術主要分為哪兩種

所謂數據加密(Data Encryption)技術是指將一個信息(或稱明文,plain text)經過加密鑰匙(Encryption key)及加密函數轉換,變成無意義的密文(cipher text),而接收方則將此密文經過解密函數、解密鑰匙(Decryption key)還原成明文。加密技術是網路安全技術的基石。

詳見參考資料

閱讀全文

與加密技術主要有兩種類型相關的資料

熱點內容
centos命令窗口 瀏覽:596
編譯器有幾個好用的 瀏覽:500
資料庫和網站如何搭載伺服器 瀏覽:154
網路流理論演算法與應用 瀏覽:795
java和matlab 瀏覽:388
釘釘蘋果怎麼下app軟體 瀏覽:832
php網站驗證碼不顯示 瀏覽:859
鋁膜構造柱要設置加密區嗎 瀏覽:344
考駕照怎麼找伺服器 瀏覽:884
阿里雲伺服器如何更換地區 瀏覽:972
手機app調音器怎麼調古箏 瀏覽:503
銳起無盤系統在伺服器上需要設置什麼嗎 瀏覽:19
紅旗計程車app怎麼應聘 瀏覽:978
如何編寫linux程序 瀏覽:870
吉利車解壓 瀏覽:248
java輸入流字元串 瀏覽:341
安卓軟體沒網怎麼回事 瀏覽:785
dvd壓縮碟怎麼導出電腦 瀏覽:275
冒險島什麼伺服器好玩 瀏覽:543
如何在伺服器上做性能測試 瀏覽:794