㈠ 世界上有多少種密碼
世界上有很多種密碼,主要分類有以下幾種
1、摩斯密碼
最早的摩爾斯電碼是一些表示數字的點和劃。數字對應單詞,需要查找一本代碼表才能知道每個詞對應的數。用一個電鍵可以敲擊出點、劃以及中間的停頓。
雖然摩爾斯發明了電報,但他缺乏相關的專門技術。他與艾爾菲德·維爾簽定了一個協議,讓他幫自己製造更加實用的設備。艾爾菲德·維爾構思了一個方案,通過點、劃和中間的停頓,可以讓每個字元和標點符號彼此獨立地發送出去。他們達成一致,同意把這種標識不同符號的方案放到摩爾斯的專利中。這就是現在我們所熟知的美式摩爾斯電碼,它被用來傳送了世界上第一條電報。
2、四方密碼:是一種對稱式加密法,由法國人Felix Delastelle(1840年–1902年)發明。 這種方法將字母兩個一組,然後採用多字母替換密碼。
四方密碼用4個5×5的矩陣來加密。每個矩陣都有25個字母(通常會取消Q或將I,J視作同一樣,或改進為6×6的矩陣,加入10個數字)。
首先選擇兩個英文字作密匙,例如example和keyword。對於每一個密匙,將重復出現的字母去除,即example要轉成exampl,然後將每個字母順序放入矩陣,再將餘下的字母順序放入矩陣,便得出加密矩陣。
3、希爾密碼:是運用基本矩陣論原理的替換密碼,由Lester S. Hill在1929年發明。
每個字母當作26進制數字:A=0, B=1, C=2... 一串字母當成n維向量,跟一個n×n的矩陣相乘,再將得出的結果模26。
注意用作加密的矩陣(即密匙)在<math>\mathbb_^n</math>必須是可逆的,否則就不可能解碼。只有矩陣的行列式和26互質,才是可逆的。
4、波雷費密碼是一種對稱式密碼,是首種雙字母取代的加密法。
關於波雷費密碼最早的紀錄出現在一份1854年3月26日由查爾斯·惠斯登簽署的文件。惠斯登的朋友波雷費勛爵普及了這個加密法。最初英國外交部拒絕使用這種密碼,認為它太復雜。當惠斯登證明鄰近學校的四個男孩中,有三個可以在15分鍾內學會這種方法,外交部副秘書長的回應是:「這是有可能的,可惜你不能教曉那些高層人員。」
在第二次布爾戰爭和第一次世界大戰,英軍用了它;在二戰,澳大利亞人也用了。波雷費密碼所用的工具很少,而且很快便能加密訊息。它主要用來加密重要而又不關鍵的訊息。當時,敵軍的密碼分析員很快解出密碼,可惜得的訊息都不重要。現時,波雷費密碼被視為十分不安全的。
1914年,Joseph O. Mauborgne刊出了19頁解密法。
1選取一個英文字作密匙。除去重復出現的字母。將密匙的字母逐個逐個加入5×5的矩陣內,剩下的空間將未加入的英文字母依a-z的順序加入。(將Q去除,或將I和J視作同一字。)
2將要加密的訊息分成兩個一組。若組內的字母相同,將X(或Q)加到該組的第一個字母後,重新分組。若剩下一個字,也加入X字。
3在每組中,找出兩個字母在矩陣中的地方。
若兩個字母不同行也不同列,在矩陣中找出另外兩個字母,使這四個字母成為一個長方形的四個角。
若兩個字母同行,取這兩個字母右方的字母(若字母在最右方則取最左方的字母)。
若兩個字母同列,取這兩個字母下方的字母(若字母在最下方則取最上方的字母)。
新找到的兩個字母就是原本的兩個字母加密的結果。
5、仿射密碼
仿射密碼是一種替換密碼。它是一個字母對一個字母的。
6、三分密碼
三分密碼由Felix Delastelle發明(他也發明了四方密碼和二分密碼)。二分密碼是二維的,用5×5(或6×6)的矩陣加密,但三分密碼則用3×3×3的。它是第一個應用的三字母替換密碼。
首先隨意製造一個3個3×3的Polybius方格替代密碼,包括26個英文字母和一個符號。然後寫出要加密的訊息的三維坐標。訊息和坐標四個一列排起,再順序取橫行的數字,三個一組分開,將這三個數字當成坐標,找出對應的字母,便得到密文。
二分密碼的做法相近,和後來出現的ADFGVX密碼差不多。
㈡ 矩陣加密和解密
去看看矩陣的乘法運算,就清楚了。很簡單的乘法運算
㈢ 希爾密碼原理
希爾密碼(Hill Cipher)是運用基本矩陣論原理的替換密碼,由Lester S. Hill在1929年發明。每個字母當作26進制數字:A=0, B=1, C=2... 一串字母當成n維向量,跟一個n×n的矩陣相乘,再將得出的結果MOD26。
中文名
希爾密碼
外文名
Hill Cipher
原理
基本矩陣論
類別
替換密碼
提出者
Lester S. Hill
快速
導航
產生原因
原理
安全性分析
例子
簡介
希爾密碼是運用基本矩陣論原理的替換密碼,由Lester S. Hill在1929年發明。
每個字母當作26進制數字:A=0, B=1, C=2... 一串字母當成n維向量,跟一個n×n的矩陣相乘,再將得出的結果模26。
注意用作加密的矩陣(即密匙)在必須是可逆的,否則就不可能解碼。只有矩陣的行列式和26互質,才是可逆的。
產生原因
隨著科技的日新月異和人們對信用卡、計算機的依賴性的加強,密碼學顯得愈來愈重要。密碼學是一門關於加密和解密、密文和明文的學科。若將原本的符號代換成另一種符號,即可稱之為廣義的密碼。狹義的密碼主要是為了保密,是一種防止竊文者得知內容而設的另一種符號文字,也是一般人所熟知的密碼。
使用信用卡、網路賬號及密碼、電子信箱、電子簽名等都需要密碼。為了方便記憶,許多人用生日、電話號碼、門牌號碼記做密碼,但是這樣安全性較差。
為了使密碼更加復雜,更難解密,產生了許多不同形式的密碼。密碼的函數特性是明文對密碼為一對一或一對多的關系,即明文是密碼的函數。傳統密碼中有一種叫移位法,移位法基本型態是加法加密系統C=P+s(mod m)。一般來說,我們以1表示A,2表示B,……,25表示Y,26表示Z,以此類推。由於s=0時相當於未加密,而0≤s≤m-1(s≥m都可用0≤s≤m-1取代),因此,整個系統只有m-1種變化。換言之,只要試過m-1次,機密的信息就會泄漏出去。
由此看來,日常生活中的密碼和傳統的密碼的可靠性較差,我們有必要尋求一種容易將字母的自然頻度隱蔽或均勻化,從而有利於統計分析的安全可靠的加密方法。希爾密碼能基本滿足這一要求。
原理
希爾加密演算法的基本思想是,將d個明文字母通過線性變換將它們轉換為d個密文字母。解密只要作一次逆變換就可以了,密鑰就是變換矩陣本身。[1]
希爾密碼是多字母代換密碼的一種。多字母代換密碼可以利用矩陣變換方便地描述,有時又稱為矩陣變換密碼。令明文字母表為Z,若採用L個字母為單位進行代換,則多碼代換是映射f:Z→Z。若映射是線性的,則f是線性變換,可以用Z上的L×L矩陣K表示。若是滿秩的,則變換為一一映射,且存在有逆變換K。將L個字母的數字表示為Z上的L維矢量m,相應的密文矢量c,且mK=c,以K作為解密矩陣,可由c恢復出相應的明文c·K=m。
在軍事通訊中,常將字元(信息)與數字對應(為方便起見,我們將字元和數字按原有的順序對應,事實上這種對應規則是極易被破解的):
abcde…x y z
12345…242526
如信息「NOSLEEPPING」對應著一組編碼14,15,19,12,5,5,16,16,9,14,7。但如果按這種方式直接傳輸出去,則很容易被敵方破譯。於是必須採取加密措施,即用一個約定的加密矩陣K乘以原信號B,傳輸信號為C=KB(加密),收到信號的一方再將信號還原(破譯)為B=KC。
㈣ 求個矩陣加密演算法的程序
暈,我原號登陸竟然沒有回答框~~!!
是不是樓主對我 (1西方不勝1) 做了限制? 那我也只能回答一部分...
把 生成滿秩矩陣以及其逆矩陣 的代碼貼上來....
#include "stdio.h"
#include "time.h"
#include "stdlib.h"
#define MAX 8 // 矩陣大小
#define PT 10 // 附矩陣 隨機初始值的最大值
#define bianhuan 100 // 由對角線矩陣生成滿秩矩陣所需的行變化次數
struct changs // 記錄變化的過程, 以便逆過來求其逆矩陣
{
int temp1 ;
int temp2 ;
} change[bianhuan + 1 ] ;
int Matrix[MAX][MAX] ; // 滿秩矩陣
int R_matrix[MAX][MAX]; // 逆矩陣
// ***** 生成 滿秩矩陣 並求出該滿秩矩陣的逆矩陣 ****************************//
void creat()
{
int i , k ;
int flage = 0 ;
for(i = 0 ; i < MAX ; i ++ ) // 生成主對角線矩陣
Matrix[i][i] = R_matrix[i][i] = 1 ;
for(k = 0 ; k < bianhuan ; k ++ ) // 進行 行 隨意變化生成滿秩矩陣 , 並記錄下變化過程
{
int x1 = change[k].temp1 = rand() % MAX ;
int x2 = rand() % MAX ;
while( x2 == x1 ) x2 = rand() % MAX ;
change[k].temp2 = x2 ;
for(i = 0 ; i < MAX ; i ++ )
if( Matrix[x1][i] + Matrix[x2][i] >= 31 ) break ; // 控制矩陣中最大的數的范圍在30內
if(i >= MAX )
{
for(i = 0 ; i < MAX ; i ++ )
Matrix[x1][i] += Matrix[x2][i] ;
}
else k-- ,flage ++ ;
if(flage > 2000 ) { k++ ; break ; }
}
for(k-- ; k >= 0 ; k -- ) // 行逆變換, 求出其逆矩陣
{
for( i = 0 ; i < MAX ; i ++ )
R_matrix[ change[k].temp1 ][i] -= R_matrix[ change[k].temp2 ][i] ;
}
return ;
}
int main()
{
int i , j ;
srand(time(0)) ;
creat() ;
printf("加密矩陣為:\n") ;
for(i =0 ; i < MAX ; i ++ )
{
for(j =0 ; j < MAX ; j ++)
printf("%4d " , Matrix[i][j]) ;
printf("\n") ;
}
printf("\n") ;
printf("解密矩陣為:\n") ;
for( i = 0; i < MAX ; i ++ )
{
for(j =0 ; j < MAX ; j ++ )
printf("%4d ",R_matrix[i][j]) ;
printf("\n");
}
return 0 ;
}
如下:是一個測試數據.
加密矩陣為:
14 8 29 30 10 2 14 13
11 8 23 25 6 1 10 8
12 8 26 27 7 3 11 9
7 5 15 15 3 1 5 4
9 6 19 21 7 1 10 9
10 6 21 22 7 2 10 9
8 6 17 18 3 1 6 4
7 6 15 19 5 1 9 7
解密矩陣為:
-2 5 -1 -2 -3 5 -2 -1
-1 5 2 -1 -1 -1 -4 -1
2 -1 2 0 1 -5 0 0
-1 -4 -3 2 1 4 3 1
-3 2 0 -2 2 3 0 -2
-1 1 0 0 -1 2 -1 0
2 4 4 -4 -1 -6 -2 -1
1 -3 -2 4 -1 1 0 2
被加密文件:
=====================================
發往: 劉曉輝 (ACM基地/QT002)
時間: 2007-06-11 星期一 18:58:40 (RSA)(封裝)
(文件) player.swf
-------------------------------------
加密後文件:
x xxxx \ \\\\ g gggg 7 7777 R RRRR W WWWW ? ???? E EEEE x xxxx \ \\\\ g gggg 7 7777 R RRRR W WWWW ? ???? E EEEE x xxxx \ \\\\ g gggg 7 7777 R RRRR W WWWW ? ???? E EEEE x xxxx \ \\\\ g gggg 7 7777 R RRRR W WWWW ? ???? E EEEE hh]hv
Q QJQ[ YYSYd 11.16 G鶪?GQ KKDKU 8858> ;;5;D B9#PIaBP2,@:K2=90F@S9E'#-%-'72B-60):5F0:"-)4"*&!/+7&-%$8-3>H3*!*25*/$.6=. %"+0"( %-4%#$%'?5>nJ6Q1'2V8,C8,6`>1I?4"**$+K2&7.&-P5(;##<&1"%@(#/+(
J1X!"9%B%& A(I#'? 2"< 6#?(,*14)@x+2\. 8g 7%-R &/W�???"
(ER2L]>'<JE+AS% #. 8"5?;$7D*?)5�.
.5 ^A`E3QK3K2*CR7T9.I.-*@ .B0"7D?F2%;5"4 16)9)/*,3hk
$)QT #'-Y^ 13 #GI ? %KN 8; ;> K(;3T&':0#?@!5'H"#&
3(#96+$=( #+*"/?/
` "I' Q?,? A?" E25?%%.:xS#.\=&2gE7# (R9 ?!*W<? ?(#E0V]K%IvS BJ9;[A IS>AdH '. %6( ;?51Q8 >D65U< -5%+>. 25.)D. x xx x \ \\ \ g gg g 7 77 7 R RR R W WW W ? ?? ? E EE E x xx x \ \\ \ g gg g 7 77 7 R RR R W WW W ? ?? ? E EE E x xx x \ \\ \ g gg g 7 77 7 R RR R W WW W ? ?? ? E EE E x xx x \ \\ \ g gg g 7 77 7 R RR R W WW W ? ?? ? E EE E P(Px P ==\ = E"Eg E %%7 % 66R 6 ::W : **? * --E -
解密後文件:
=====================================
發往: 劉曉輝 (ACM基地/QT002)
時間: 2007-06-11 星期一 18:58:40 (RSA)(封裝)
(文件) player.swf
-------------------------------------
㈤ 常用的加密演算法有哪些
對稱密鑰加密
對稱密鑰加密 Symmetric Key Algorithm 又稱為對稱加密、私鑰加密、共享密鑰加密:這類演算法在加密和解密時使用相同的密鑰,或是使用兩個可以簡單的相互推算的密鑰,對稱加密的速度一般都很快。
分組密碼
分組密碼 Block Cipher 又稱為「分塊加密」或「塊加密」,將明文分成多個等長的模塊,使用確定的演算法和對稱密鑰對每組分別加密解密。這也就意味著分組密碼的一個優點在於可以實現同步加密,因為各分組間可以相對獨立。
與此相對應的是流密碼:利用密鑰由密鑰流發生器產生密鑰流,對明文串進行加密。與分組密碼的不同之處在於加密輸出的結果不僅與單獨明文相關,而是與一組明文相關。
DES、3DES
數據加密標准 DES Data Encryption Standard 是由IBM在美國國家安全局NSA授權下研製的一種使用56位密鑰的分組密碼演算法,並於1977年被美國國家標准局NBS公布成為美國商用加密標准。但是因為DES固定的密鑰長度,漸漸不再符合在開放式網路中的安全要求,已經於1998年被移出商用加密標准,被更安全的AES標准替代。
DES使用的Feistel Network網路屬於對稱的密碼結構,對信息的加密和解密的過程極為相似或趨同,使得相應的編碼量和線路傳輸的要求也減半。
DES是塊加密演算法,將消息分成64位,即16個十六進制數為一組進行加密,加密後返回相同大小的密碼塊,這樣,從數學上來說,64位0或1組合,就有2^64種可能排列。DES密鑰的長度同樣為64位,但在加密演算法中,每逢第8位,相應位會被用於奇偶校驗而被演算法丟棄,所以DES的密鑰強度實為56位。
3DES Triple DES,使用不同Key重復三次DES加密,加密強度更高,當然速度也就相應的降低。
AES
高級加密標准 AES Advanced Encryption Standard 為新一代數據加密標准,速度快,安全級別高。由美國國家標准技術研究所NIST選取Rijndael於2000年成為新一代的數據加密標准。
AES的區塊長度固定為128位,密鑰長度可以是128位、192位或256位。AES演算法基於Substitution Permutation Network代換置列網路,將明文塊和密鑰塊作為輸入,並通過交錯的若干輪代換"Substitution"和置換"Permutation"操作產生密文塊。
AES加密過程是在一個4*4的位元組矩陣(或稱為體State)上運作,初始值為一個明文區塊,其中一個元素大小就是明文區塊中的一個Byte,加密時,基本上各輪加密循環均包含這四個步驟:
ECC
ECC即 Elliptic Curve Cryptography 橢圓曲線密碼學,是基於橢圓曲線數學建立公開密鑰加密的演算法。ECC的主要優勢是在提供相當的安全等級情況下,密鑰長度更小。
ECC的原理是根據有限域上的橢圓曲線上的點群中的離散對數問題ECDLP,而ECDLP是比因式分解問題更難的問題,是指數級的難度。而ECDLP定義為:給定素數p和橢圓曲線E,對Q=kP,在已知P,Q 的情況下求出小於p的正整數k。可以證明由k和P計算Q比較容易,而由Q和P計算k則比較困難。
數字簽名
數字簽名 Digital Signature 又稱公鑰數字簽名是一種用來確保數字消息或文檔真實性的數學方案。一個有效的數字簽名需要給接收者充足的理由來信任消息的可靠來源,而發送者也無法否認這個簽名,並且這個消息在傳輸過程中確保沒有發生變動。
數字簽名的原理在於利用公鑰加密技術,簽名者將消息用私鑰加密,然後公布公鑰,驗證者就使用這個公鑰將加密信息解密並對比消息。一般而言,會使用消息的散列值來作為簽名對象。