Ⅰ 數據加密方式總結
程序開發過程中一般會遇到客戶端與服務端進行數據通信,不可避免的會遇到數據安全問題。為了防止數據在網路傳輸中發生數據泄露,我們常常會用到數據加密。常規的數據加密方式主要有:對稱加密和非對稱加密。
對稱加密主要有3種加密方式:DES加密、3DES加密及AES加密
如上圖所述,對稱加密使用同一個秘鑰,先用秘鑰對需要傳輸的明文數據進行加密,已加密的密文數據經過網路傳輸後,數據接收方通過同一個秘鑰進行解密,將密文數據再轉化成明文數據,完成數據傳輸過程。
但DES加密演算法的安全性不夠好,DES 被證明是可以破解的,明文+密鑰=密文,這個公式只要知道任何兩個,就可以推導出第三個在已經知道明文和對應密文的情況下,通過窮舉和暴力破解是可以破解DES的。
顧名思義,3DES加密就是使用DES演算法加密解密3次,由於DES加密缺乏安全性,3DES加密3次後安全性大大提高,但損失了一定的速度性能,所以慢慢被更優異的AES加密演算法所取代,3DES演算法可以說是DES加密和AES加密中間的過度品。
AES加解密過程和DES加解密過程類似,AES標准支持可變分組長度,分組長度可設定為32 比特的任意倍數,最小值為128 比特,最大值為256 比特,安全性大大增加,加解密速度也還可以。
RSA的安全基於大數分解的難度。其公鑰和私鑰是一對大素數(100到200位十進制數或更大)的函數。從一個公鑰和密文恢復出明文的難度,等價於分解兩個大素數之積(這是公認的數學難題)。
同時由於RSA的私鑰不用在網路上傳輸,避免了秘鑰泄露,因此安全性能大大提高。
RSA加解密速度測試:
通過上表可以發現,RSA加密速度還比較快,但解密速度會隨著加密數據的大小慢很多,加密6KB大小的數據用時0秒,解密用時1秒還可以接受。但對1M左右的數據進行解密,花費了5分多鍾的時間,在實際開發過程中就會顯得很慢,所以RSA演算法一般用於加密數據量較小的應用場景。
Ⅱ 3des加密 密鑰
Des的密鑰是8個位元組,但實際上只有7個用上,也就是56位。
3des是用3個或2個des密鑰加密一串明文,最少112位最多168位。也就是14~21個字母或數字元號。
從安全性上來說密鑰位數不足是不能加密的,但有些軟體為了保證用戶可用,會自動使用某種策略自動填充滿,一般是重復填充或採用特定字元,如果你只填了1234作為密鑰,有可能真正用於加密的密鑰是123412341234123412341或者123400000000000000000類似的。
另外請注意,最好去做3des的密鑰位數不是7或8,因為des的加密解密是同一個過程,這樣搞在填充後實際上是只使用了一次des加密••••••還不如5位6位好••••••
如果是你編程時碰到的問題,把你的源碼發來看看再說。
Ⅲ 3DES 加密解密
這個我不清楚。
給電腦上的文件加密或者文件夾加密,你可以使用超級加密3000。
超級加密3000採用國際上成熟的加密演算法和安全快速的加密方法,可以有效保障數據安全!
具體操作方法:
1下載安裝超級加密3000。
2 然後在需要加密的文件上單擊滑鼠右鍵選擇加密。
3 在彈出的文件加密窗口中設置文件加密密碼就OK了。
超級加密3000的下載地址你可以在網路上搜索超級加密3000,第一個就是。
Ⅳ 加密演算法之3DES
如上圖所示,首先3DES的密鑰會被分成三組DES密鑰k1,k2,k3,首先k1對明文進行DES加密得到cipherTxt1,接下來k2對cipherTxt1進行解密得到cipherTx2,最後是使用k3對cipherTx2進行加密得到最後的密文cipherTx3
3DES的解密過程則是其加密的過程的逆過程。首先使用k3對密文進行解密,接下來使用k2對k3解密得到的結果進行加密,最後再使用k1對k2加密後得到的結果進行解密
Ⅳ 3DES的演算法介紹
3DES又稱Triple DES,是DES加密演算法的一種模式,它使用3條56位的密鑰對數據進行三次加密。數據加密標准(DES)是美國的一種由來已久的加密標准,它使用對稱密鑰加密法,並於1981年被ANSI組織規范為ANSI X.3.92。DES使用56位密鑰和密碼塊的方法,而在密碼塊的方法中,文本被分成64位大小的文本塊然後再進行加密。比起最初的DES,3DES更為安全。
3DES(即Triple DES)是DES向AES過渡的加密演算法(1999年,NIST將3-DES指定為過渡的加密標准),加密演算法,其具體實現如下:設Ek()和Dk()代表DES演算法的加密和解密過程,K代表DES演算法使用的密鑰,P代表明文,C代表密文,這樣:
3DES加密過程為:C=Ek3(Dk2(Ek1(P)))
3DES解密過程為:P=Dk1(EK2(Dk3(C)))
Ⅵ 什麼是3DES對稱加密演算法
DES加密經過下面的步驟
1、提供明文和密鑰,將明文按照64bit分塊(對應8個位元組),不足8個位元組的可以進行填充(填充方式多種),密鑰必須為8個位元組共64bit
填充方式:
當明文長度不為分組長度的整數倍時,需要在最後一個分組中填充一些數據使其湊滿一個分組長度。
* NoPadding
API或演算法本身不對數據進行處理,加密數據由加密雙方約定填補演算法。例如若對字元串數據進行加解密,可以補充\0或者空格,然後trim
* PKCS5Padding
加密前:數據位元組長度對8取余,余數為m,若m>0,則補足8-m個位元組,位元組數值為8-m,即差幾個位元組就補幾個位元組,位元組數值即為補充的位元組數,若為0則補充8個位元組的8
解密後:取最後一個位元組,值為m,則從數據尾部刪除m個位元組,剩餘數據即為加密前的原文。
例如:加密字元串為為AAA,則補位為AAA55555;加密字元串為BBBBBB,則補位為BBBBBB22;加密字元串為CCCCCCCC,則補位為CCCCCCCC88888888。
* PKCS7Padding
PKCS7Padding 的填充方式和PKCS5Padding 填充方式一樣。只是加密塊的位元組數不同。PKCS5Padding明確定義了加密塊是8位元組,PKCS7Padding加密快可以是1-255之間。
2、選擇加密模式
**ECB模式** 全稱Electronic Codebook模式,譯為電子密碼本模式
**CBC模式** 全稱Cipher Block Chaining模式,譯為密文分組鏈接模式
**CFB模式** 全稱Cipher FeedBack模式,譯為密文反饋模式
**OFB模式** 全稱Output Feedback模式,譯為輸出反饋模式。
**CTR模式** 全稱Counter模式,譯為計數器模式。
3、開始加密明文(內部原理--加密步驟,加密演算法實現不做講解)
image
1、將分塊的64bit一組組加密,示列其中一組:將此組進行初始置換(IP置換),目的是將輸入的64位數據塊按位重新組合,並把輸出分為L0、R0兩部分,每部分各長32位。
2、開始Feistel結構的16次轉換,第一次轉換為:右側數據R0和子密鑰經過輪函數f生成用於加密左側數據的比特序列,與左側數據L0異或運算,
運算結果輸出為加密後的左側L0,右側數據則直接輸出為右側R0。由於一次Feistel輪並不會加密右側,因此需要將上一輪輸出後的左右兩側對調後才正式完成一次Feistel加密,
3、DES演算法共計進行16次Feistel輪,最後一輪輸出後左右兩側無需對調,每次加密的子密鑰不相同,子密鑰是通過秘鑰計算得到的。
4、末置換是初始置換的逆過程,DES最後一輪後,左、右兩半部分並未進行交換,而是兩部分合並形成一個分組做為末置換的輸入
DES解密經過下面的步驟
1、拿到密文和加密的密鑰
2、解密:DES加密和解密的過程一致,均使用Feistel網路實現,區別僅在於解密時,密文作為輸入,並逆序使用子密鑰。
3、講解密後的明文去填充 (padding)得到的即為明文
Golang實現DES加密解密
package main
import (
"fmt"
"crypto/des"
"bytes"
"crypto/cipher"
)
func main() {
var miwen,_= DESEncode([]byte("hello world"),[]byte("12345678"))
fmt.Println(miwen) // [11 42 146 232 31 180 156 225 164 50 102 170 202 234 123 129],密文:最後5位是補碼
var txt,_ = DESDecode(miwen,[]byte("12345678"))
fmt.Println(txt) // [104 101 108 108 111 32 119 111 114 108 100]明碼
fmt.Printf("%s",txt) // hello world
}
// 加密函數
func DESEncode(orignData, key []byte)([]byte,error){
// 建立密碼塊
block ,err:=des.NewCipher(key)
if err!=nil{ return nil,err}
// 明文分組,不足的部分加padding
txt := PKCS5Padding(orignData,block.BlockSize())
// 設定加密模式,為了方便,初始向量直接使用key充當了(實際項目中,最好別這么做)
blockMode := cipher.NewCBCEncrypter(block,key)
// 創建密文長度的切片,用來存放密文位元組
crypted :=make([]byte,len(txt))
// 開始加密,將txt作為源,crypted作為目的切片輸入
blockMode.CryptBlocks(crypted,txt)
// 將加密後的切片返回
return crypted,nil
}
// 加密所需padding
func PKCS5Padding(ciphertext []byte,size int)[]byte{
padding := size - len(ciphertext)%size
padTex := bytes.Repeat([]byte{byte(padding)},padding)
return append(ciphertext,padTex...)
}
// 解密函數
func DESDecode(cripter, key []byte) ([]byte,error) {
// 建立密碼塊
block ,err:=des.NewCipher(key)
if err!=nil{ return nil,err}
// 設置解密模式,加密模式和解密模式要一樣
blockMode := cipher.NewCBCDecrypter(block,key)
// 設置切片長度,用來存放明文位元組
originData := make([]byte,len(cripter))
// 使用解密模式解密,將解密後的明文位元組放入originData 切片中
blockMode.CryptBlocks(originData,cripter)
// 去除加密的padding部分
strByt := UnPKCS5Padding(origenData)
return strByt,nil
}
// 解密所需要的Unpadding
func UnPKCS5Padding(origin []byte) []byte{
// 獲取最後一位轉為整型,然後根據這個整型截取掉整型數量的長度
// 若此數為5,則減掉轉換明文後的最後5位,即為我們輸入的明文
var last = int(origin[len(origin)-1])
return origin[:len(origin)-last]
}
注意:在設置加密模式為CBC的時候,我們需要設置一個初始化向量,這個量的意思 在對稱加密演算法中,如果只有一個密鑰來加密數據的話,明文中的相同文字就會也會被加密成相同的密文,這樣密文和明文就有完全相同的結構,容易破解,如果給一個初始化向量,第一個明文使用初始化向量混合並加密,第二個明文用第一個明文的加密後的密文與第二個明文混合加密,這樣加密出來的密文的結構則完全與明文不同,更加安全可靠。CBC模式圖如下
CBC
3DES
DES 的常見變體是三重 DES,使用 168 位的密鑰對資料進行三次加密的一種機制;它通常(但非始終)提供極其強大的安全性。如果三個 56 位的子元素都相同,則三重 DES 向後兼容 DES。
對比DES,發現只是換了NewTripleDESCipher。不過,需要注意的是,密鑰長度必須24byte,否則直接返回錯誤。關於這一點,PHP中卻不是這樣的,只要是8byte以上就行;而Java中,要求必須是24byte以上,內部會取前24byte(相當於就是24byte)。另外,初始化向量長度是8byte(目前各個語言都是如此,不是8byte會有問題)