A. DES、RSA的明文長度和密文長度分別是多少
加密的明文長度不能超過RSA密鑰的長度-11,比如1024位的,明文長度不能超過117。 密文的長度總是密鑰的長度的一半,比如1024位的,密文長度是64,如果是1032位,密文長度是65位。
B. 對稱加密演算法中,des演算法的密鑰長度是多少,採用什麼進行加密
DES使用56位密鑰對64位的數據塊進行加密,並對64位的數據塊進行16輪編碼。與每輪編碼時,一個48位的「每輪」密鑰值由56位的完整密鑰得出來。DES用軟體進行解碼需要用很長時間,而用硬體解碼速度非常快,但幸運的是當時大多數黑客並沒有足夠的設備製造出這種硬體設備。在1977年,人們估計要耗資兩千萬美元才能建成一個專門計算機用於DES的解密,而且需要12個小時的破解才能得到結果。所以,當時DES被認為是一種十分強壯的加密方法。
但是,當今的計算機速度越來越快了,製造一台這樣特殊的機器的花費已經降到了十萬美元左右,所以用它來保護十億美元的銀行間線纜時,就會仔細考慮了。另一個方面,如果只用它來保護一台伺服器,那麼DES確實是一種好的辦法,因為黑客絕不會僅僅為入侵一個伺服器而花那麼多的錢破解DES密文。由於現在已經能用二十萬美圓製造一台破譯DES的特殊的計算機,所以現在再對要求「強壯」加密的場合已經不再適用了。
三重DES
因為確定一種新的加密法是否真的安全是極為困難的,而且DES的唯一密碼學缺點,就是密鑰長度相對比較短,所以人們並沒有放棄使用DES,而是想出了一個解決其長度問題的方法,即採用三重DES。這種方法用兩個密鑰對明文進行三次加密,假設兩個密鑰是K1和K2,其演算法的步驟如圖5.9所示:
1. 用密鑰K1進行DEA加密。
2. 用K2對步驟1的結果進行DES解密。
3. 用步驟2的結果使用密鑰K1進行DES加密。
這種方法的缺點,是要花費原來三倍時間,從另一方面來看,三重DES的112位密鑰長度是很「強壯」的加密方式了
C. DES是一種什麼加密演算法,其密鑰長度為56 bit,3DES是基於DES的加密方式,對明文
des是一直對稱加密演算法,就是加密的密鑰和解密的密鑰是一樣的。DES 使用一個 56 位的密鑰以及附加的 8 位奇偶校驗位,來生成最大64bit的分組大小。
DES 的常見變體是3 DES,使用 168 位的密鑰對資料進行三次加密的一種機制;它通常(但非始終)提供極其強大的安全性。如果三個 56 位的子元素都相同,則三重 DES 向後兼容 DES。
D. java des加密,密鑰的長度是多少
3des演算法是指使用雙長度(16位元組)密鑰k=(kl||kr)將8位元組明文數據塊進行3次des加密/解密。如下所示:
y
=
des(kl)[des-1(kr)[des(kl[x])]]
解密方式為:
x
=
des-1
(kl)[des
(kr)[
des-1
(kl[y])]]
其中,des(kl[x])表示用密鑰k對數據x進行des加密,des-1
(kl[y])表示用密鑰k對數據y進行解密。
sessionkey的計算採用3des演算法,計算出單倍長度的密鑰。表示法為:sk
=
session(dk,data)
3des加密演算法為:
void
3des(byte
doublekeystr[16],
byte
data[8],
byte
out[8])
{
byte
buf1[8],
buf2[8];
des
(&doublekeystr[0],
data,
buf1);
udes(&doublekeystr[8],
buf1,
buf2);
des
(&doublekeystr[0],
buf2,
out);
}
E. 密碼技術(三、二)之對稱密碼(DES)
——用相同的密鑰進行加密和解密
此次主要介紹比特序列運算和XOR(異或)運算。這兩種運算在計算機數據處理中經常出現,因此大家應該在此屬性他們。
DES(Data Encryption)是1977年美國聯邦信息處理標准(FIPS)中所採用的一種對稱密碼(FIPS46-3)。DES一直以來被美國及其他國家的政府和銀行等廣泛使用。
隨著計算機的進步,現在DES已經能夠被暴力破解,強度大不如前了。20世紀末,RSA公司舉辦過破譯DES密鑰的比賽,我們可以看一看RSA公司官方公布的比賽結果:1997年的DES Challenge I 中用了96天破譯密鑰,1998年的DES Challenge II-1中用了41天,1998年的DES Challenge II-2中用了56小時,1999年的DES Challenge III 中只用了22小時15分鍾。
由於DES的密文可以在短時間內被破譯,因此除了用它來解密一起的密文以外,現在我們不應該再使用DES了。
DES是一種將64比特的明文加密成64比特的密文的對稱密碼演算法,它的密鑰的長度是56比特。盡管從規格上來說,DES的密鑰長度是64比特,但由於每隔7比特會設置一個用於錯誤檢查的比特,因此實質上其密鑰長度是56比特。
DES 是以64比特的明文(比特序列)為一個單位來進行加密的,這個64比特的單位稱為 分組 ,一般來說,以分組為單位進行處理的密碼演算法稱為 分組密碼 ,DES就是分組密碼的一種。
DES每次只能加密64比特的數據,如果要加密的明文比較長,就需要對DES加密進行迭代(反復),而迭代的具體方式就稱為 模式 。
DES的基本結構是由Horst Feistel設計的,因此也稱為 Feistel網路(Feistel network) 、Feistel結構(Feistel structure)或者Feistel密碼(Feistel cipher)。這一結構不僅被用於DES,在其他很多密碼演算法中也有應用。
Feistel網路中,加密的各個步驟稱為輪,整個加密過程就是進行若干次輪的循環,下圖,展現的是Feistel網路中一輪的計算流程。DES是一種16輪循環的Feistel網路。
但是,這樣看來,「右側」根本沒有加密,因此我們需要用不同的子密鑰對一輪的處理重復若干次,並在沒兩輪處理指間將左側和有責的數據對調。
上圖展現了一個3輪的Feistel網路,3輪加密計算需要進行兩次左右對調。對調只在兩輪指間進行,租後一輪結束不需要對調。
那麼,Feistel網路如何解密呢?
如上圖所示,通過上述操作都能夠將密文正確的還原明文。
有多輪的情況也是一樣的,也就是說,Feistel網路的解密操作,只要按照相反的順序來使用子密鑰就可以完成了,而Feistel網路本身的結構,在加密和解密都是完全相同的。
該系列的主要內容來自《圖解密碼技術第三版》
我只是知識的搬運工
文章中的插圖來源於原著
F. 當待加密明文長度為任意長時,如何使用DES演算法來進行加密呢
不知道你用什麼語言,下面是C#的寫法。在C#里使用對稱加密不考慮明文大小,因為明文被處理成流.
public class TestClass
{
static void Main(string[] args)
{
byte[] key = new byte[] { 0, 1, 2, 3, 4, 5, 6, 7 };
byte[] iv = new byte[] { 0, 1, 2, 3, 4, 5, 6, 7 };
byte[] bytes = Encoding.UTF8.GetBytes("任意長度字元串");
byte[] enBytes = Encrypt(bytes, key, iv);
}
static byte[] Encrypt(byte[] bytes, byte[] key, byte[] iv)
{
MemoryStream ms = new MemoryStream();
DESCryptoServiceProvider desCsp = new DESCryptoServiceProvider();
desCsp.BlockSize = iv.Length * 8;
CryptoStream cs = new CryptoStream(ms, desCsp.CreateEncryptor(key, iv), CryptoStreamMode.Write);
cs.Write(bytes, 0, bytes.Length);
cs.FlushFinalBlock();
cs.Close();
desCsp.Clear();
return ms.ToArray();
}
}
G. DES演算法的內容
DES演算法
DES演算法為密碼體制中的對稱密碼體制,又被成為美國數據加密標准,是1972年美國IBM公司研製的對稱密碼體制加密演算法。
其密鑰長度為56位,明文按64位進行分組,將分組後的明文組和56位的密鑰按位替代或交換的方法形成密文組的加密方法。
DES加密演算法特點:分組比較短、密鑰太短、密碼生命周期短、運算速度較慢。
DES工作的基本原理是,其入口參數有三個:key、data、mode。 key為加密解密使用的密鑰,data為加密解密的數據,mode為其工作模式。當模式為加密模式時,明文按照64位進行分組,形成明文組,key用於對數據加密,當模式為解密模式時,key用於對數據解密。實際運用中,密鑰只用到了64位中的56位,這樣才具有高的安全性。
DES演算法把64位的明文輸入塊變為64位的密文輸出塊,它所使用的密鑰也是64位,整個演算法的主流程圖如下:
其功能是把輸入的64位數據塊按位重新組合,並把輸出分為L0、R0兩部分,每部分各長32位,其置換規則見下表:
58,50,12,34,26,18,10,2,60,52,44,36,28,20,12,4,
62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8,
57,49,41,33,25,17, 9,1,59,51,43,35,27,19,11,3,
61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7,
即將輸入的第58位換到第一位,第50位換到第2位,...,依此類推,最後一位是原來的第7位。L0、R0則是換位輸出後的兩部分,L0是輸出的左32位,R0 是右32位,例:設置換前的輸入值為D1D2D3......D64,則經過初始置換後的結果為:L0=D58D50...D8;R0=D57D49...D7。
經過16次迭代運算後。得到L16、R16,將此作為輸入,進行逆置換,即得到密文輸出。逆置換正好是初始置的逆運算。
H. 利用des演算法加密double型數據,加密之後數據長度會發生變化么
分組加密的密文的長度和填充後的明文長度相同,不會發生變化
3des的分組大小和DES相同,都是64bit,所以也不需要填充數據
對於補充的問題:
這要看你在程序裡面是怎麼對這個數據進行處理了
因為長度是相同的,你可以對其進行強制的類型轉換,將其當成double值來處理
I. 對稱加密演算法之DES介紹
DES (Data Encryption Standard)是分組對稱密碼演算法。
DES演算法利用 多次組合替代演算法 和 換位演算法 ,分散和錯亂的相互作用,把明文編製成密碼強度很高的密文,它的加密和解密用的是同一演算法。
DES演算法,是一種 乘積密碼 ,其在演算法結構上主要採用了 置換 、 代替 、 模二相加 等函數,通過 輪函數 迭代的方式來進行計算和工作。
DES演算法也會使用到數據置換技術,主要有初始置換 IP 和逆初始置換 IP^-1 兩種類型。DES演算法使用置換運算的目的是將原始明文的所有格式及所有數據全部打亂重排。而在輪加密函數中,即將數據全部打亂重排,同時在數據格式方面,將原有的32位數據格式,擴展成為48位數據格式,目的是為了滿足S盒組對數據長度和數據格式規范的要求。
一組數據信息經過一系列的非線性變換以後,很難從中推導出其計算的過程和使用的非線性組合;但是如果這組數據信息使用的是線性變換,計算就容易的多。在DES演算法中,屬於非線性變換的計算過程只有S盒,其餘的數據計算和變換都是屬於線性變換,所以DES演算法安全的關鍵在於S盒的安全強度。此外,S盒和置換IP相互配合,形成了很強的抗差分攻擊和抗線性攻擊能力,其中抗差分攻擊能力更強一些。
DES演算法是一種分組加密機制,將明文分成N個組,然後對各個組進行加密,形成各自的密文,最後把所有的分組密文進行合並,形成最終的密文。
DES加密是對每個分組進行加密,所以輸入的參數為分組明文和密鑰,明文分組需要置換和迭代,密鑰也需要置換和循環移位。在初始置換IP中,根據一張8*8的置換表,將64位的明文打亂、打雜,從而提高加密的強度;再經過16次的迭代運算,在這些迭代運算中,要運用到子密鑰;每組形成的初始密文,再次經過初始逆置換 IP^-1 ,它是初始置換的逆運算,最後得到分組的最終密文。
圖2右半部分,給出了作用56比特密鑰的過程。DES演算法的加密密鑰是64比特,但是由於密鑰的第n*8(n=1,2…8)是校驗(保證含有奇數個1),因此實際參與加密的的密鑰只有 56比特 。開始時,密鑰經過一個置換,然後經過循環左移和另一個置換分別得到子密鑰ki,供每一輪的迭代加密使用。每輪的置換函數都一樣,但是由於密鑰位的重復迭代使得子密鑰互不相同。
DES演算法 利用多次組合替代演算法和換位演算法,分散和錯亂的相互作用,把明文編製成密碼強度很高的密文,它的加密和解密用的是同一演算法。
DES演算法詳述:DES對64位明文分組(密鑰56bit)進行操作。
1、 初始置換函數IP:64位明文分組x經過一個初始置換函數IP,產生64位的輸出x0,再將分組x0分成左半部分L0和右半部分R0:即將輸入的第58位換到第一位,第50位換到第2位,…,依次類推,最後一位是原來的第7位。L0、R0則是換位輸出後的兩部分,L0是輸出的左32位,R0是右32位。例,設置換前的輸入值為D1D2D3…D64,則經過初始置換後的結果為:L0=D58D50…D8;R0=D57D49…D7.其置換規則如表1所示。
DES加密過程最後的逆置換 IP^-1 ,是表1的 逆過程 。就是把原來的每一位都恢復過去,即把第1位的數據,放回到第58位,把第2位的數據,放回到第50位。
2、 獲取子密鑰 Ki :DES加密演算法的密鑰長度為56位,一般表示為64位(每個第8位用於奇偶校驗),將用戶提供的64位初始密鑰經過一系列的處理得到K1,K2,…,K16,分別作為 1~16 輪運算的 16個子密鑰 。
(1). 將64位密鑰去掉8個校驗位,用密鑰置換 PC-1 (表2)置換剩下的56位密鑰;
(2). 將56位分成前28位C0和後28位D0,即 PC-1(K56)=C0D0 ;
(3). 根據輪數,這兩部分分別循環左移1位或2位,表3:
(4). 移動後,將兩部分合並成56位後通過壓縮置換PC-2(表4)後得到48位子密鑰,即Ki=PC-2(CiDi).
子密鑰產生如圖2所示:
3、 密碼函數F(非線性的)
(1). 函數F的操作步驟:密碼函數F 的輸入是32比特數據和48比特的子密鑰:
A.擴展置換(E):將數據的右半部分Ri從32位擴展為48位。位選擇函數(也稱E盒),如表5所示:
B.異或:擴展後的48位輸出E(Ri)與壓縮後的48位密鑰Ki作異或運算;
C.S盒替代:將異或得到的48位結果分成八個6位的塊,每一塊通過對應的一個S盒產生一個4位的輸出。
(2)、D、P盒置換:將八個S盒的輸出連在一起生成一個32位的輸出,輸出結果再通過置換P產生一個32位的輸出即:F(Ri,Ki),F(Ri,Ki)演算法描述如圖3,最後,將P盒置換的結果與最初的64位分組的左半部分異或,然後,左、右半部分交換,開始下一輪計算。
4、密文輸出:經過16次迭代運算後,得到L16、R16,將此作為輸入,進行逆置換,即得到密文輸出。逆置換正好是初始置的逆運算。例如,第1位經過初始置換後,處於第40位,而通過逆置換,又將第40位換回到第1位,其逆置換規則如表8所示:
圖4為DES演算法加密原理圖:
DES演算法加密和解密過程採用相同的演算法,並採用相同的加密密鑰和解密密鑰,兩者的區別是:(1)、DES加密是從L0、R0到L15、R15進行變換,而解密時是從L15、R15到L0、R0進行變換的;(2)、加密時各輪的加密密鑰為K0K1…K15,而解密時各輪的解密密鑰為K15K14…K0;(3)、加密時密鑰循環左移,解密時密鑰循環右移。
DES加密過程分析:
(1)、首先要生成64位密鑰,這64位的密鑰經過「子密鑰演算法」換轉後,將得到總共16個子密鑰。將這些子密鑰標識為Kn(n=1,2,…,16)。這些子密鑰主要用於總共十六次的加密迭代過程中的加密工具。
(2)、其次要將明文信息按64位數據格式為一組,對所有明文信息進行分組處理。每一段的64位明文都要經過初試置換IP,置換的目的是將數據信息全部打亂重排。然後將打亂的數據分為左右兩塊,左邊一塊共32位為一組,標識為L0;右邊一塊也是32位為一組,標識為R0.
(3)、置換後的數據塊總共要進行總共十六次的加密迭代過程。加密迭代主要由加密函數f來實現。首先使用子密鑰K1對右邊32位的R0進行加密處理,得到的結果也是32位的;然後再將這個32位的結果數據與左邊32位的L0進行模2處理,從而再次得到一個32位的數據組。我們將最終得到的這個32位組數據,作為第二次加密迭代的L1,往後的每一次迭代過程都與上述過程相同。
(4)、在結束了最後一輪加密迭代之後,會產生一個64位的數據信息組,然後我們將這個64位數據信息組按原有的數據排列順序平均分為左右兩等分,然後將左右兩等分的部分進行位置調換,即原來左等分的數據整體位移至右側,而原來右等分的數據則整體位移至左側,這樣經過合並後的數據將再次經過逆初始置換IP^-1的計算,我們最終將得到一組64位的密文。
DES解密過程分析:DES的解密過程與它的加密過程是一樣的,這是由於DES演算法本身屬於對稱密碼體制演算法,其加密和解密的過程可以共用同一個過程和運算。
DES加密函數f:在DES演算法中,要將64位的明文順利加密輸出成64位的密文,而完成這項任務的核心部分就是加密函數f。加密函數f的主要作用是在第m次的加密迭代中使用子密鑰Km對Km-1進行加密操作。加密函數f在加密過程中總共需要運行16輪。
十六輪迭代演算法:它先將經過置換後的明文分成兩組,每組32位;同時密鑰也被分成了兩組,每組28位,兩組密鑰經過運算,再聯合成一個48位的密鑰,參與到明文加密的運算當中。S盒子,它由8個4*16的矩陣構成,每一行放著0到15的數據,順序各個不同,是由IBM公司設計好的。經過異或運算的明文,是一個48位的數據,在送入到S盒子的時候,被分成了8份,每份6位,每一份經過一個S盒子,經過運算後輸出為4位,即是一個0到15的數字的二進製表示形式。具體運算過程為,將輸入的6位中的第1位為第6位合並成一個二進制數,表示行號,其餘4位也合並成一個二進制數,表示列號。在當前S盒子中,以這個行號和列號為准,取出相應的數,並以二進制的形式表示,輸出,即得到4位的輸出,8個S盒子共計32位。
DES演算法優缺點:
(1)、產生密鑰簡單,但密鑰必須高度保密,因而難以做到一次一密;
(2)、DES的安全性依賴於密鑰的保密。攻擊破解DES演算法的一個主要方法是通過密鑰搜索,使用運算速度非常高的計算機通過排列組合枚舉的方式不斷嘗試各種可能的密鑰,直到破解為止。一般,DES演算法使用56位長的密鑰,通過簡單計算可知所有可能的密鑰數量最多是2^56個。隨著巨型計算機運算速度的不斷提高,DES演算法的安全性也將隨之下降,然而在一般的民用商業場合,DES的安全性仍是足夠可信賴的。
(3)、DES演算法加密解密速度比較快,密鑰比較短,加密效率很高但通信雙方都要保持密鑰的秘密性,為了安全還需要經常更換DES密鑰。
參考鏈接 : https://blog.csdn.net/fengbingchun/article/details/42273257
J. des加密演算法
des加密演算法如下:
一、DES加密演算法簡介
DES(Data Encryption Standard)是目前最為流行的加密演算法之一。DES是對稱的,也就是說它使用同一個密鑰來加密和解密數據。
DES還是一種分組加密演算法,該演算法每次處理固定長度的數據段,稱之為分組。DES分組的大小是64位,如果加密的數據長度不是64位的倍數,可以按照某種具體的規則來填充位。
從本質上來說,DES的安全性依賴於虛假表象,從密碼學的術語來講就是依賴於「混亂和擴散」的原則。混亂的目的是為隱藏任何明文同密文、或者密鑰之間的關系,而擴散的目的是使明文中的有效位和密鑰一起組成盡可能多的密文。兩者結合到一起就使得安全性變得相對較高。
DES演算法具體通過對明文進行一系列的排列和替換操作來將其加密。過程的關鍵就是從給定的初始密鑰中得到16個子密鑰的函數。要加密一組明文,每個子密鑰按照順序(1-16)以一系列的位操作施加於數據上,每個子密鑰一次,一共重復16次。每一次迭代稱之為一輪。要對密文進行解密可以採用同樣的步驟,只是子密鑰是按照逆向的順序(16-1)對密文進行處理。