導航:首頁 > 文檔加密 > 比特幣多合一加密

比特幣多合一加密

發布時間:2023-03-01 09:32:39

❶ 比特幣是怎麼會事怎樣產生的有什麼作用

下面的內容是來自:http://bitcoin.org/zh_CN/about

歷史背景

比特幣是第一批實現「加密貨幣」概念的貨幣之一。1998年,Wei Dai在cypherpunks郵件列表中首次闡述了「加密貨幣」這個概念。構建於貨幣的基本概念之上——在給定的國家或經濟體內通行的,用於支付商品、服務和償還債務的物品或任何形式的記錄,比特幣更是一種新的貨幣形態,其設計初衷融入了不依賴於中央權威機構,採用加密學原理控制貨幣發行和交易等思想。
2009年,中本聰(Satoshi Nakamoto 化名)在cryptography郵件列表中發表了第一個比特幣規范及其概念證明。2010年年底,中本聰聲稱他已經轉到其他事務上去了,離開了這個項目。這位比特幣的締造者從未透露過他的真實身份,只是將他的發明留給了這個世界。時至今日,比特幣發明的源起和動機仍然是一個充滿神秘色彩的故事。
2010年以來,眾多開發者致力於這個項目,比特幣社區很快成長起來。2011年6月至7月之間,比特幣突然得到了媒體的關注,從而導致大規模的買入。由此產生的泡沫導致整個2011年下半年比特幣的價格持續下跌。之後,比特幣的價格又逐漸緩緩地回升到2011年的高度。
為了規范、保護和促進比特幣的發展,比特幣基金會於2012年9月27日創建。如今,伴隨著日漸增多的比特幣用戶,比特幣經濟正在快速發展。

技術特徵

任何像比特幣一樣的網路都具有以下幾點基本特徵:
比特幣可以在網路的任意節點之間轉移。
交易具有不可逆轉性。
塊鏈的使用,避免了雙重消費的發生。
交易在幾秒鍾內就會傳播出去, 並在10到60分鍾內通過驗證。
交易的處理和貨幣的發行都是通過挖礦來統一執行的。
無論是否在線都能隨時接收比特幣。

經濟規則

整個比特幣網路共同執行以下規則:
比特幣發行總量約為2100萬。
一個比特幣可以拆分到小數點後8位,總共約為 21×1014 個貨幣單位。
交易成本非常低,大多數都是免費的。

統計數據

比特幣網路已經連續無間斷運行超過48個月。在過去的一年裡,比特幣的安全特性引人注目,發展顯著。截止到2013年4月:
最長的塊鏈擁有超過 232,000 個塊。
世界上最大的分布式計算網路之一,擁有超過65萬億次散列每秒的運算能力。
每天有50,000筆交易成交,交易總額高達幾百萬美元。
流通中的比特幣總值超過13億美元。
在協議中僅有一次重大的安全事件,已於2010年8月解決。

其它資料可參考:
網路:http://ke..com/view/5784548.htm
比特幣官網:http://bitcoin.org/zh_CN/

❷ 什麼是比特幣加密技術

比特幣和區塊鏈的誕生需要依賴於很多核心技術的突破:一是拜占庭容錯技術;二是非對稱加密技術;三是點對點支付技術。下面會依次介紹。
拜占庭容錯技術
比特幣和區塊鏈誕生的首要難點在於如何創建分布式共識機制,也就是菜斯利·蘭伯特等人1982年提出的拜占庭將軍問題。所謂拜占庭將軍問題是指,把戰爭中互不信任的各城邦軍隊如何達成共識並決定是否出兵的決策過程。延伸至計算機領域,試圖創建具有容錯性的分布式系統,即使部分節點失效仍可確保系統正常運行,也可讓多個基於零信任基礎的節點達成共識,並確保信息傳遞的一致性。
中本聰所提到的「拜占庭將軍問題」解決方法起始於亞當﹒拜克在1997年發明的哈希現金演算法機制,起初該設計是用於限制垃圾郵件發送與拒絕服務攻擊。2004年,密碼朋克運動早期和重要成員哈爾·芬尼將亞當﹒拜克的哈希現金演算法改進為可復用的工作量證明機制。他們的研究又是基於達利亞·馬凱與邁克爾·瑞特的學術成果:拜占庭容錯機制。正是哈爾·芬尼的可復用的工作量證明機制後來成為比特幣的核心要素之一。哈爾·芬尼是中本聰的最早支持者,同時也是第一筆比特幣轉賬的接受者,在比特幣發展的早期與中本聰有大量互動與交流。
非對稱加密技術
比特幣的非對稱加密技術來源於以下幾項密碼學的技術創新:1976年,Sun公司前首席安全官Whitfield Diffie與斯坦福大學教授Martin Hell,在開創性論文《密碼學的新方向》首次提出公開鑰匙密碼學的概念,發明了非對稱加密演算法。1978年省理工學院的倫納德·阿德曼、羅納德·李維斯特、阿迪·薩莫爾三名研究人員,共同發明了公開鑰匙系統「RSA」可用於數據加密和簽名,率先開發第一個具備商業實用性的非對稱RSA加密演算法。1985年,Neal Koblitz和Victor Miller倆人,首次提出將橢圓曲線演算法(ECC),應用於密碼學,並建立公鑰加密的演算法,公鑰密碼演算法的原理是利用信息的不對稱性,公鑰對應的是私鑰,私鑰是解開所有信息的鑰匙,公鑰可以由私鑰反推算出。ECC能夠提供比RSA更高級別的安全。比特幣使用的就是橢圓曲線演算法公鑰用於接收比特幣,而私鑰則是比特幣支付時的交易簽名。這些加密演算法奠定了當前非對稱加密理論的基礎,被廣泛應用於網路通信領域。但是,當時這些加密技術發明均在NSA嚴密監視的視野之內。NSA最初認為它們對國家安全構成威脅,並將其視為軍用技術。直到20世紀90年代末,NSA才放棄對這些非對稱加密技術的控制,RSA演算法、ECC演算法等非對稱加密技術最終得以走進公眾領域。
不過,中本聰並不信任NSA公布的加密技術,在比特幣系統中沒有使用RSA公鑰系統,原因除了ECC能夠提供比RSA更高級別的安全性能外,還擔心美國安全部門在RSA留有技術後門。2013年9月,斯諾登就曾爆料NSA採用秘密方法控制加密國際標准,比特幣採用的RSA可能留有後門,NSA能以不為人知的方法弱化這條曲線。所幸的是,中本聰神一般走位避開了RSA的陷阱,使用的加密技術不是NSA的標准,而是另一條鮮為人知的橢圓曲線,這條曲線並不在美國RSA的掌握之下。全世界只有極少數程序躲過了這一漏洞,比特幣便是其中之一。

❸ 比特幣演算法原理

比特幣演算法主要有兩種,分別是橢圓曲線數字簽名演算法和SHA256哈希演算法。

橢圓曲線數字簽名演算法主要運用在比特幣公鑰和私鑰的生成過程中,該演算法是構成比特幣系統的基石。SHA-256哈希演算法主要是運用在比特幣的工作量證明機制中。

比特幣產生的原理是經過復雜的運演算法產生的特解,挖礦就是尋找特解的過程。不過比特幣的總數量只有2100萬個,而且隨著比特幣不斷被挖掘,越往後產生比特幣的難度會增加,可能獲得比特幣的成本要比比特幣本身的價格高。

比特幣的區塊由區塊頭及該區塊所包含的交易列表組成,區塊頭的大小為80位元組,由4位元組的版本號、32位元組的上一個區塊的散列值、32位元組的 Merkle Root Hash、4位元組的時間戳(當前時間)、4位元組的當前難度值、4位元組的隨機數組成。擁有80位元組固定長度的區塊頭,就是用於比特幣工作量證明的輸入字元串。不停的變更區塊頭中的隨機數即 nonce 的數值,並對每次變更後的的區塊頭做雙重 SHA256運算,將結果值與當前網路的目標值做對比,如果小於目標值,則解題成功,工作量證明完成。

比特幣的本質其實是一堆復雜演算法所生成的一組方程組的特解(該解具有唯一性)。比特幣是世界上第一種分布式的虛擬貨幣,其沒有特定的發行中心,比特幣的網路由所有用戶構成,因為沒有中心的存在能夠保證了數據的安全性。

❹ 比特幣的核心技術包括哪些

比特幣的核心技術包括1、非對稱加密技術 2、點對點傳輸技術 3、哈希現金演算法機制。
1.非對稱加密技術和對稱加密技術最大的不同就是有了公鑰和私鑰之分。非對稱加密演算法需要兩個密鑰:公開密鑰(publickey)和私有密鑰(privatekey)。公開密鑰與私有密鑰是一對,如果用公開密鑰對數據進行加密,只有用對應的私有密鑰才能解密;如果用私有密鑰對數據進行加密,那麼只有用對應的公開密鑰才能解密。公鑰是公開的,私鑰是保密的。 由於不涉及私鑰的傳輸,整個傳輸過程就變得安全多了。後來又出現了具備商業實用性的非對稱RSA加密演算法以及後來的橢圓曲線加密演算法(ECC),這些都奠定了加密演算法理論的基礎,但是美國國家安全局NSA最初認為這些技術對國家安全構成威脅,所以對這些技術進行了嚴密的監控,知道20世紀90年代末NSA才放棄了對這些技術的監控,這些非對稱技術才最終走入了了公眾的視野。這項技術對應到比特幣場景中就是比特幣的地址和私鑰。
2.點對點傳輸技術顧名思義,就是無需中心伺服器、個體之間可以相互傳輸信息的技術,P2P網路的重要目標就是讓所有客戶端都能提供資源,包括寬頻、存儲空間和計算能力。 對應到比特幣網路中就是利用點對點的技術實現真正的去中心化。
3.哈希現金演算法機制就是讓那些製造垃圾郵件的人付出相應的代價!發送者需要付出一定的工作量,比如說哈希運算,幾秒鍾時間對於普通用戶不算什麼,但對於垃圾郵件的發送者每封郵件都要花幾秒鍾的時間,這樣的成本是沒有辦法負擔的。同時每次運算都會蓋上一個獨一無二的時間戳,這樣就能保證郵件發送方不能重復使用一個運算結果。 對於比特幣而言也是同樣的道理,如何保證一筆數字貨幣沒有被多次消費(Double Spending),就類似於驗證一封郵件沒有被多次發送,所以就要保證每一筆交易順利完成,必須要付出一定的工作量(proof of Work),並且在完成交易時蓋上一個時間戳表示交易完成的時間。

❺ 高中生如何理解比特幣加密演算法

加密演算法是數字貨幣的基石,比特幣的公鑰體系採用橢圓曲線演算法來保證交易的安全性。這是因為要攻破橢圓曲線加密就要面對離散對數難題,目前為止還沒有找到在多項式時間內解決的辦法,在演算法所用的空間足夠大的情況下,被認為是安全的。本文不涉及高深的數學理論,希望高中生都能看懂。

密碼學具有久遠的歷史,幾乎人人都可以構造出加解密的方法,比如說簡單地循環移位。古老或簡單的方法需要保密加密演算法和秘鑰。但是從歷史上長期的攻防斗爭來看,基於加密方式的保密並不可靠,同時,長期以來,秘鑰的傳遞也是一個很大的問題,往往面臨秘鑰泄漏或遭遇中間人攻擊的風險。

上世紀70年代,密碼學迎來了突破。Ralph C. Merkle在1974年首先提出非對稱加密的思想,兩年以後,Whitfield Diffie和Whitfield Diffie兩位學者以單向函數和單向暗門函數為基礎提出了具體的思路。隨後,大量的研究和演算法涌現,其中最為著名的就是RSA演算法和一系列的橢圓曲線演算法。

無論哪一種演算法,都是站在前人的肩膀之上,主要以素數為研究對象的數論的發展,群論和有限域理論為基礎。內容加密的秘鑰不再需要傳遞,而是通過運算產生,這樣,即使在不安全的網路中進行通信也是安全的。密文的破解依賴於秘鑰的破解,但秘鑰的破解面臨難題,對於RSA演算法,這個難題是大數因式分解,對於橢圓曲線演算法,這個難題是類離散對數求解。兩者在目前都沒有多項式時間內的解決辦法,也就是說,當位數增多時,難度差不多時指數級上升的。

那麼加解密如何在公私鑰體系中進行的呢?一句話,通過在一個有限域內的運算進行,這是因為加解密都必須是精確的。一個有限域就是一個具有有限個元素的集合。加密就是在把其中一個元素映射到另一個元素,而解密就是再做一次映射。而有限域的構成與素數的性質有關。

前段時間,黎曼猜想(與素數定理關系密切)被熱炒的時候,有一位區塊鏈項目的技術總監說橢圓曲線演算法與素數無關,不受黎曼猜想證明的影響,就完全是瞎說了。可見區塊鏈項目內魚龍混雜,確實需要好好洗洗。

比特幣及多數區塊鏈項目採用的公鑰體系都是橢圓曲線演算法,而非RSA。而介紹橢圓曲線演算法之前,了解一下離散對數問題對其安全性的理解很有幫助。

先來看一下 費馬小定理

原根 定義:
設(a, p)=1 (a與p互素),滿足

的最下正整數 l,叫作a模p的階,模p階為(最大值)p-1的整數a叫作模p的原根。

兩個定理:

基於此,我們可以看到,{1, 2, 3, … p-1} 就是一個有限域,而且定義運算 gi (mod p), 落在這個有限域內,同時,當i取0~p-2的不同數時,運算結果不同。這和我們在高中學到的求冪基本上是一樣的,只不過加了一層求模運算而已。

另一點需要說明的是,g的指數可以不限於0~p-2, 其實可以是所有自然數,但是由於

所以,所有的函數值都是在有限域內,而且是連續循環的。

離散對數定義:
設g為模p的原根,(a,p) = 1,

我們稱 i 為a(對於模p的原根g)的指數,表示成:

這里ind 就是 index的前3個字母。
這個定義是不是和log的定義很像?其實這也就是我們高中學到的對數定義的擴展,只不過現在應用到一個有限域上。

但是,這與實數域上的對數計算不同,實數域是一個連續空間,其上的對數計算有公式和規律可循,但往往很難做到精確。我們的加密體系裡需要精確,但是在一個有限域上的運算極為困難,當你知道冪值a和對數底g,求其離散對數值i非常困難。

當選擇的素數P足夠大時,求i在時間上和運算量上變得不可能。因此我們可以說i是不能被計算出來的,也就是說是安全的,不能被破解的。

比特幣的橢圓曲線演算法具體而言採用的是 secp256k1演算法。網上關於橢圓曲線演算法的介紹很多,這里不做詳細闡述,大家只要知道其實它是一個三次曲線(不是一個橢圓函數),定義如下:

那麼這里有參數a, b;取值不同,橢圓曲線也就不同,當然x, y 這里定義在實數域上,在密碼體系裡是行不通的,真正採用的時候,x, y要定義在一個有限域上,都是自然數,而且小於一個素數P。那麼當這個橢圓曲線定義好後,它反應在坐標系中就是一些離散的點,一點也不像曲線。但是,在設定的有限域上,其各種運算是完備的。也就是說,能夠通過加密運算找到對應的點,通過解密運算得到加密前的點。

同時,與前面講到的離散對數問題一樣,我們希望在這個橢圓曲線的離散點陣中找到一個有限的子群,其具有我們前面提到的遍歷和循環性質。而我們的所有計算將使用這個子群。這樣就建立好了我們需要的一個有限域。那麼這里就需要子群的階(一個素數n)和在子群中的基點G(一個坐標,它通過加法運算可以遍歷n階子群)。

根據上面的描述,我們知道橢圓曲線的定義包含一個五元祖(P, a, b, G, n, h);具體的定義和概念如下:

P: 一個大素數,用來定義橢圓曲線的有限域(群)
a, b: 橢圓曲線的參數,定義橢圓曲線函數
G: 循環子群中的基點,運算的基礎
n: 循環子群的階(另一個大素數,< P )
h:子群的相關因子,也即群的階除以子群的階的整數部分。

好了,是時候來看一下比特幣的橢圓曲線演算法是一個怎樣的橢圓曲線了。簡單地說,就是上述參數取以下值的橢圓曲線:

橢圓曲線定義了加法,其定義是兩個點相連,交與圖像的第三點的關於x軸的對稱點為兩個點的和。網上這部分內容已經有很多,這里不就其細節進行闡述。

但細心的同學可能有個疑問,離散對數問題的難題表現在求冪容易,但求其指數非常難,然而,橢圓曲線演算法中,沒有求冪,只有求乘積。這怎麼體現的是離散對數問題呢?

其實,這是一個定義問題,最初橢圓曲線演算法定義的時候把這種運算定義為求和,但是,你只要把這種運算定義為求積,整個體系也是沒有問題的。而且如果定義為求積,你會發現所有的操作形式上和離散對數問題一致,在有限域的選擇的原則上也是一致的。所以,本質上這還是一個離散對數問題。但又不完全是簡單的離散對數問題,實際上比一般的離散對數問題要難,因為這里不是簡單地求數的離散對數,而是在一個自定義的計算上求類似於離散對數的值。這也是為什麼橢圓曲線演算法採用比RSA所需要的(一般2048位)少得多的私鑰位數(256位)就非常安全了。

閱讀全文

與比特幣多合一加密相關的資料

熱點內容
excel表格單列數據加密 瀏覽:646
給同事的解壓話語 瀏覽:990
linux關閉網卡命令行 瀏覽:452
史上最漂亮程序員 瀏覽:768
java實現excel的導入 瀏覽:758
光遇賬號如何轉移安卓 瀏覽:266
5分之13除以26的演算法 瀏覽:342
蘭州安寧區買解壓包子 瀏覽:641
php接收圖片代碼 瀏覽:668
hci命令 瀏覽:662
福建伺服器大區雲空間 瀏覽:840
筆桿子程序員 瀏覽:745
手機軟體易驗證加密 瀏覽:589
文檔加密只讀模式也不能看到 瀏覽:431
把jpg轉換成pdf的軟體 瀏覽:874
linuxeth0mac 瀏覽:192
windows編程知乎 瀏覽:442
壓縮工期超過40 瀏覽:249
Android怎麼優化內存 瀏覽:106
linuxetcsysconfig 瀏覽:396