注:(以下內容我是從網上找的,不知道能不能幫到你..這些問題我也不怎麼懂!!)
1.AES(Advanced Encryption Standard),
AES是一個使用128為分組塊的分組加密演算法,分組塊和128、192或256位的密鑰一起作為輸入,對4×4的位元組數組上進行操作。AES的每一輪加密都包含4個階段,分別是AddRoundKey,SubBytes,ShiftRows,和MixColumns。眾所周之AES是種十分高效的演算法,尤其在8位架構中,這源於它面向位元組的設計。
AES 適用於8位的小型單片機或者普通的32位微處理器,並且適合用專門的硬體實現,硬體實現能夠使其吞吐量(每秒可以到達的加密/解密bit數)達到十億量級。同樣,其也適用於RFID系統。[3]高效的實現和演算法的免費使用為AES在無線區域網和後來出現的相關協議中的應用鋪平了道路。
2.DESL(Data Encryption Standard Lightweight Extension),
數據加密標准(DES)是由美國聯邦信息處理標准在1976年為美國選出的一種加密演算法。作為一個分組加密演算法,DES在64位大小的分組快上進行操作,其密鑰同樣也是64位。[10]DES的大致結構由Feistel網路組成,此網路中包括含有8個S-Boxes的16次完全相同的基本輪回,一次初始排列,一次最終排列和一個獨立的密鑰次序表。
3.XXTEA
TEA微型加密演算法最初是由David Wheeler和Roger Needham在1994年以Fast Software Encryption工作室的名義發表的,設計的重點在於描述與實現的簡單性。它是一種分組加密演算法,以128位的密鑰對64位的分組塊進行操作。[6]TEA遭受到等效密鑰的困擾——每個密鑰與其他是那個密鑰是等效的,也就是說有效的密鑰長度只有126位。此演算法易受到相關密鑰(Related Key)攻擊法的攻擊。
❷ Advanced Encryption Standard(AES) 加密演算法簡介
AES(The Advanced Encryption Standard)是美國國家標准與技術研究所用於加密電子數據的規范。它被預期能成為人們公認的加密包括金融、電信和政府數字信息的方法。美國國家標准與技術研究所(NIST)在2002年5月26日建立了新的高級數據加密標准(AES)規范。AES是一個新的可以用於保護電子數據的加密演算法。
1998年National Institute of Standards and Technology(NIST)開始AES第一輪分析、測試和徵集,共產生了15個候選演算法。其中包括CAST-256, CRYPTON, DEAL, DFC, E2, FROG, HPC, LOKI97, MAGENTA, MARS,RC6, Rijndael, SAFER+, Serpent, Twofish。 其中五個候選演算法進入第二輪: MARS, RC6, Rijndael, Serpent, andTwofish. 1999年3月完成了第二輪AES2的分析、測試,最終確認Rijndael演算法獲得勝利。NIST於2002年5月26日制定了新的高級加密標准(AES)規范。
AES是典型的對稱加密演算法,應用廣泛。數據發信方將明文和加密密鑰一起經過特殊加密演算法處理後,使其變成復雜的加密密文發送出去。收信方收到密文後,若想解讀原文,則需要使用加密用過的密鑰及相同演算法的逆演算法對密文進行解密,才能使其恢復成可讀明文。在對稱加密演算法中,使用的密鑰只有一個,發收信雙方都使用這個密鑰對數據進行加密和解密,這就要求解密方事先必須知道加密密鑰。其優點是對稱加密演算法的特點是演算法公開、計算量小、加密速度快、加密效率高。不足之處是,雙方都使用同樣鑰匙,安全性得不到保證。
在此扯一下題外話,不對稱加密演算法,比如著名的RSA演算法,使用兩把完全不同但又是完全匹配的一對鑰匙----公鑰和私鑰。在使用不對稱加密演算法加密文件時,只有使用匹配的一對公鑰和私鑰,才能完成對明文的加密和解密過程。加密明文時採用公鑰加密,解密密文時使用私鑰才能完成,而且加密者知道收信方的公鑰,只有解密者才是唯一知道自己私鑰的人。
AES演算法基於排列和置換運算。排列是對數據重新進行安排,置換是將一個數據單元替換為另一個。AES使用幾種不同的方法來執行排列和置換運算。AES是一個迭代的、對稱密鑰分組的密碼,它可以使用128、192和256位密鑰,並且用128位(16位元組)分組加密和解密數據。與公共密鑰加密使用密鑰對不同,對稱密鑰密碼使用相同的密鑰加密和解密數據。通過分組密碼返回的加密數據的位數與輸入數據相同。迭代加密使用一個循環結構,在該循環中重復置換和替換輸入數據。密碼學簡介據記載,公元前400年,古希臘人發明了置換密碼。1881年世界上的第一個電話保密專利出現。在第二次世界大戰期間,德國軍方啟用「恩尼格瑪」密碼機,密碼學在戰爭中起著非常重要的作用。
AES加密過程是在一個4×4的位元組矩陣上運作,這個矩陣又稱為「state」,其初值就是一個明文區塊(矩陣中一個元素大小就是明文區塊中的一個Byte)。加密時,各輪AES加密循環(除最後一輪外)均包含4個步驟:
1.AddRoundKey — 矩陣中的每一個位元組都與該次round key做XOR運算;每個子密鑰由密鑰生成方案產生。
2.SubBytes — 通過一個非線性的替換函數,用查找表的方式把每個位元組替換成對應的位元組。
3.ShiftRows — 將矩陣中的每個橫列進行循環式移位。
4.MixColumns — 為了充分混合矩陣中各個直行的操作。這個步驟使用線性轉換來混合每內聯的四個位元組。
❸ des加密演算法
des加密演算法如下:
一、DES加密演算法簡介
DES(Data Encryption Standard)是目前最為流行的加密演算法之一。DES是對稱的,也就是說它使用同一個密鑰來加密和解密數據。
DES還是一種分組加密演算法,該演算法每次處理固定長度的數據段,稱之為分組。DES分組的大小是64位,如果加密的數據長度不是64位的倍數,可以按照某種具體的規則來填充位。
從本質上來說,DES的安全性依賴於虛假表象,從密碼學的術語來講就是依賴於「混亂和擴散」的原則。混亂的目的是為隱藏任何明文同密文、或者密鑰之間的關系,而擴散的目的是使明文中的有效位和密鑰一起組成盡可能多的密文。兩者結合到一起就使得安全性變得相對較高。
DES演算法具體通過對明文進行一系列的排列和替換操作來將其加密。過程的關鍵就是從給定的初始密鑰中得到16個子密鑰的函數。要加密一組明文,每個子密鑰按照順序(1-16)以一系列的位操作施加於數據上,每個子密鑰一次,一共重復16次。每一次迭代稱之為一輪。要對密文進行解密可以採用同樣的步驟,只是子密鑰是按照逆向的順序(16-1)對密文進行處理。
❹ 請問目前國際標準的分組對稱加密演算法是哪個DES還是AES
Rijndael是一個密鑰迭代分組密碼,包含了輪變換對狀態的重復作用。輪數Nr 的美國國家標准局倡導的AES即將作為新標准取代DES。 不對稱加密演算法 不對稱加密
❺ 幾種常用數據加密演算法的比較
幾種對稱性加密演算法:AES,DES,3DES
DES是一種分組數據加密技術(先將數據分成固定長度的小數據塊,之後進行加密),速度較快,適用於大量數據加密,而3DES是一種基於DES的加密演算法,使用3個不同密匙對同一個分組數據塊進行3次加密,如此以使得密文強度更高。
相較於DES和3DES演算法而言,AES演算法有著更高的速度和資源使用效率,安全級別也較之更高了,被稱為下一代加密標准。
幾種非對稱性加密演算法:RSA,DSA,ECC
RSA和DSA的安全性及其它各方面性能都差不多,而ECC較之則有著很多的性能優越,包括處理速度,帶寬要求,存儲空間等等。
幾種線性散列演算法(簽名演算法):MD5,SHA1,HMAC
這幾種演算法只生成一串不可逆的密文,經常用其效驗數據傳輸過程中是否經過修改,因為相同的生成演算法對於同一明文只會生成唯一的密文,若相同演算法生成的密文不同,則證明傳輸數據進行過了修改。通常在數據傳說過程前,使用MD5和SHA1演算法均需要發送和接收數據雙方在數據傳送之前就知道密匙生成演算法,而HMAC與之不同的是需要生成一個密匙,發送方用此密匙對數據進行摘要處理(生成密文),接收方再利用此密匙對接收到的數據進行摘要處理,再判斷生成的密文是否相同。
對於各種加密演算法的選用:
由於對稱加密演算法的密鑰管理是一個復雜的過程,密鑰的管理直接決定著他的安全性,因此當數據量很小時,我們可以考慮採用非對稱加密演算法。
在實際的操作過程中,我們通常採用的方式是:採用非對稱加密演算法管理對稱演算法的密鑰,然後用對稱加密演算法加密數據,這樣我們就集成了兩類加密演算法的優點,既實現了加密速度快的優點,又實現了安全方便管理密鑰的優點。
如果在選定了加密演算法後,那採用多少位的密鑰呢?一般來說,密鑰越長,運行的速度就越慢,應該根據的我們實際需要的安全級別來選擇,一般來說,RSA建議採用1024位的數字,ECC建議採用160位,AES採用128為即可。
❻ 分組加密演算法
基於SOC的FPSLIC硬體實現分組加密演算法
1 引言:
美國Atmel公司生產的AT94K系列晶元是以Atmel 0.35 的5層金屬CMOS工藝製造。它基於SRAM的FPGA、高性能准外設的Atmel 8位RISC AVR單片機。另外器件中還包括擴展數據和程序SRAM及器件控制和管理邏輯。圖1-1是Atmel公司的FPSLIC內部結構圖。
圖1-1 FPSLIC內部結構圖
AT94K內嵌AVR內核,Atmel公司的FPSLIC可編程SOC內嵌高性能和低功耗的8位AVR單片機,最多還帶有36KB的SRAM,2個UART、1個雙線串列介面,3個定時/計數器、1個8 8乘法器以及一個實時時鍾。通過採用單周期指令,運算速度高達1MPS/MHz,這樣用戶可以充分優化系統功耗和處理速度。AVR內核基於增強型RISC結構,擁有豐富的指令系統以及32個通用工作寄存器。而且所有通用寄存器都與算術邏輯單元ALU相連;另外,在一個時鍾周期內,執行單條指令時允許存取2個獨立的寄存器,這種結構使得代碼效率更高,並且在相同的時鍾頻率下,可以獲得比傳統的CISC微處理器高10倍的數據吞吐量。AVR從片內SRAM執行程序,由於AVR運行代碼存儲在SRAM中,因此它可以提供比較大的吞吐量,這樣可以使其工作在突發模式上。在這種模式上,AVR大多時間都是處於低功耗待機狀態,並能在很短的時間里進行高性能的處理。微處理器在突發模式運行模式下的平均功耗要比長時間低頻率運行時的功耗低得多。FPSLIC的待機電流小於100 ,典型的工作電流為2-3mA/MHz。在系統上電時,FPGA配置SRAM和AVR程序SRAM都能自動地通過Atmel在系統可編程串列存貯器AT17來裝載。
2 FPSLIC硬體的設計實現:
2.1 硬體實現框圖
圖2-1系統硬體實現框圖
圖2-1是為了實現加密演算法的硬體框圖。計算機通過它的串口和FPSLIC的通信埠UART0相連,用來進行數據的傳送和接收。FPSLIC通過AVR的通信埠等待接收主機傳來的信息,通過內部的下載程序將數據進行處理,最後再傳回到主機上。圖2-1中FPGA是一個計數器,此計數器一上電就從0計數,並用進位輸出信號產生一個AVR中斷,即進位輸出信號RCO連接到AVR的中斷信號INTA0。當AVR接收到由計數器的進位信號產生的中斷時,則執行INTA0的中斷服務程序(ISR)。在此期間
,AVR就給INTA0產生的次數計數,並把它放到8位的AVR-FPGA數據匯流排上,這時就會觸發AVR的寫使能信號(FPGA的aWE信號端)和FPGA的I/O SELECT0信號(FPGA的LOAD信號端),同時從AVR——FPGA數據匯流排上將數據載入計數器。數碼管的各極連接在實驗板上的可編程埠,通過引腳配置用來顯示數據。LED指示燈在AVR I/O輸出的D口,直接將數據通過命令PORTD來顯示。FPGA的時鍾通過GCLK5選自AVR單片機的時鍾。我們以DES數據加密為例,由模擬試驗可以得出DES加密的速率為57.024 kbit/s,它大於串口的最大速率19.2kbit/s,因此可以實時進行數據的加密操作。
一個典型的FPSLIC設計通常應該包括以下幾個步驟:
1. 利用聯合模擬軟體建立一個FPSLIC工程。
2. 預先建立一個AVR軟體模擬程序文件。
3. 預先建立一個FPGA的硬體模擬程序文件。
4. 設置和運行AVR-FPGA介面設計。
5. 運行布局前的聯合模擬Pre-layout Converification(這一步是可選擇的)。
6. 運行Figaro-IDS進行FPGA的布局布線。
7. 運行布局後的聯合模擬Pos-layout Converification(這一步是可選擇的)。
8. 器件編程數據下載與實驗驗證。
我們以DES數據加密為例,(新建的工程名為lab1.apj,AVR模擬程序文件為desjiami.asm,FPGA的硬體模擬程序為Count.vhdl)。
2.2 編譯AVR的模擬程序軟體
(以上程序代碼是整個模擬的程序框架,最主要的是對介面進行初始化和對發送和接收部分進行設置,以便進行串口的通信)
2.3器件編程與試驗驗證
1. 將下載電纜ATDH2225的25針的一端從計算機的並行口接出,令一端10針扁平線插入ATSTK94實驗板的J1插頭上。下載電纜的標有紅色的線和J1插頭的第一腳連接。
2. 因為要和計算機串口進行通信,因此要製作一個串口連接電纜,其九針連接電纜的連接關系如下圖2-2。電纜一端連接在計算機的任意串口上,另一端連接在實驗板上的UART0上。連接電纜只需要連接三根線,UART0的2端連接在FPSLIC的發送端,因此它和計算機的串口2端(接收數據端)相連。UART0的3端連接在FPSLIC的接收端,因此它和計算機的串口2端(發送數據端)相連。
&n
bsp; 圖2-2 串口通信連接指示圖
3. 選擇4MHz時鍾,即在實驗板上將JP17設置在靠近板子內側位置,而將JP18不連接,也就是將其連接跳線拔掉。
4. 將直流9V電源接頭插入ATSTK94實驗板的電源插座P3上。
5. 將實驗板上的開關SW10調至PROG位置。開關SW10有編程(PROG)和運行(RUN)兩種連接。在編程位置,用戶可以通過下載電纜和下載程序軟體CPS,將System Designer生成的FPSLIC數據流文件給配置存儲器編程。在運行位置,FPSLIC器件將載入數據流文件並運行該設計。
6. 打開電源開關SW14,即將它調整到ON位置。這時候實驗板上電源發光二極體(紅色)發光,表示實驗板上已經上電。這樣,硬體就連接完畢,等待下一步的數據下載。
7. 單擊OK按鈕,即生成數據流文件,它將下載到ATSTK94實驗板的配置存儲器中,這時,Atmel的AT17配置可編程系統(CPS)窗口被打開,如下圖2-3,並自動給器件編程。
圖2-3 FPSLIC控制寄存器設置對話框
在Procesure下拉列表框中選擇/P Partition,Program and Verify from an Atmel File。在Family下拉列表框中選擇AT40K/Cypress,在Device下拉列表框中選擇AT17LV010(A)(1M)。其餘採用系統的默認值。然後點擊Start Proce按鈕,如果電纜等硬體設置正確,那麼程序將下載到實驗板上。
8. 將開關SW10調至RUN位置,打開串口調試程序Accesspot129軟體。對於Accessport129的設置為:串口為COM1(根據用戶選擇的計算機埠來設定),波特率:9600,校驗位:NONE,數據位為8 ,停止位選擇1,串口開關選擇開;
3 試驗結果:
圖3-1中,下面方框中是要輸入的64比特的明文,(程序中輸入的明文為0123456789ABCDEF),當這64個比特的數據全部輸入完畢後,點擊發送按鈕,在軟體上方的數據接收端顯示出經過DES演算法加密後的密文(85E813540F0AB405)。通過硬體實現的的結果和實際
模擬結果是完全一致的。同時通過數碼管也分別顯示出最後的加密數據。至此整個硬體試驗結束。
圖3-1 Accesspot串口調試軟體顯示的結果圖
從上面的串口調試軟體可以看出,DES演算法的模擬是正確的也是可以在實際中應用的。同理,可以通過以上的方法來實現DES解密和AES等其它的分組加解密。
❼ 分組密碼加密模式選擇有哪些
分組密碼工作模式的應用背景:多次使用相同的密鑰對多個分組加密,會引發許多安全問題。為了應對不同場合,因而需要開發出不同的工作模式來增強密碼演算法的安全性。ECB特別適合數據較少的情況,對於很長的信息或者具有特定結構的信息,其大量重復的信息或固定的字元開頭將給密碼分析者提供大量的已知明密文對。若明文不是完整的分組,ECB需要進行填充。CBC(Cipher Block Chaining)由於加密演算法的每次輸入和本明文組沒有固定的關系,因此就算有重復的明文組,加密後也看不出來了。為了配合演算法的需要,有一個初始向量(IV)。與ECB一樣有填充機制以保證完整的分組。CFB(Cipher Feedback)和OFB,CTR模式一樣,均可將分組密碼當做流密碼(實際是將分組大小任意縮減)使用。
❽ 常用的加密演算法有哪些
對稱密鑰加密
對稱密鑰加密 Symmetric Key Algorithm 又稱為對稱加密、私鑰加密、共享密鑰加密:這類演算法在加密和解密時使用相同的密鑰,或是使用兩個可以簡單的相互推算的密鑰,對稱加密的速度一般都很快。
分組密碼
分組密碼 Block Cipher 又稱為「分塊加密」或「塊加密」,將明文分成多個等長的模塊,使用確定的演算法和對稱密鑰對每組分別加密解密。這也就意味著分組密碼的一個優點在於可以實現同步加密,因為各分組間可以相對獨立。
與此相對應的是流密碼:利用密鑰由密鑰流發生器產生密鑰流,對明文串進行加密。與分組密碼的不同之處在於加密輸出的結果不僅與單獨明文相關,而是與一組明文相關。
DES、3DES
數據加密標准 DES Data Encryption Standard 是由IBM在美國國家安全局NSA授權下研製的一種使用56位密鑰的分組密碼演算法,並於1977年被美國國家標准局NBS公布成為美國商用加密標准。但是因為DES固定的密鑰長度,漸漸不再符合在開放式網路中的安全要求,已經於1998年被移出商用加密標准,被更安全的AES標准替代。
DES使用的Feistel Network網路屬於對稱的密碼結構,對信息的加密和解密的過程極為相似或趨同,使得相應的編碼量和線路傳輸的要求也減半。
DES是塊加密演算法,將消息分成64位,即16個十六進制數為一組進行加密,加密後返回相同大小的密碼塊,這樣,從數學上來說,64位0或1組合,就有2^64種可能排列。DES密鑰的長度同樣為64位,但在加密演算法中,每逢第8位,相應位會被用於奇偶校驗而被演算法丟棄,所以DES的密鑰強度實為56位。
3DES Triple DES,使用不同Key重復三次DES加密,加密強度更高,當然速度也就相應的降低。
AES
高級加密標准 AES Advanced Encryption Standard 為新一代數據加密標准,速度快,安全級別高。由美國國家標准技術研究所NIST選取Rijndael於2000年成為新一代的數據加密標准。
AES的區塊長度固定為128位,密鑰長度可以是128位、192位或256位。AES演算法基於Substitution Permutation Network代換置列網路,將明文塊和密鑰塊作為輸入,並通過交錯的若干輪代換"Substitution"和置換"Permutation"操作產生密文塊。
AES加密過程是在一個4*4的位元組矩陣(或稱為體State)上運作,初始值為一個明文區塊,其中一個元素大小就是明文區塊中的一個Byte,加密時,基本上各輪加密循環均包含這四個步驟:
ECC
ECC即 Elliptic Curve Cryptography 橢圓曲線密碼學,是基於橢圓曲線數學建立公開密鑰加密的演算法。ECC的主要優勢是在提供相當的安全等級情況下,密鑰長度更小。
ECC的原理是根據有限域上的橢圓曲線上的點群中的離散對數問題ECDLP,而ECDLP是比因式分解問題更難的問題,是指數級的難度。而ECDLP定義為:給定素數p和橢圓曲線E,對Q=kP,在已知P,Q 的情況下求出小於p的正整數k。可以證明由k和P計算Q比較容易,而由Q和P計算k則比較困難。
數字簽名
數字簽名 Digital Signature 又稱公鑰數字簽名是一種用來確保數字消息或文檔真實性的數學方案。一個有效的數字簽名需要給接收者充足的理由來信任消息的可靠來源,而發送者也無法否認這個簽名,並且這個消息在傳輸過程中確保沒有發生變動。
數字簽名的原理在於利用公鑰加密技術,簽名者將消息用私鑰加密,然後公布公鑰,驗證者就使用這個公鑰將加密信息解密並對比消息。一般而言,會使用消息的散列值來作為簽名對象。