上述過程中,出現了公鑰(3233,17)和私鑰(3233,2753),這兩組數字是怎麼找出來的呢?參考 RSA演算法原理(二)
首字母縮寫說明:E是加密(Encryption)D是解密(Decryption)N是數字(Number)。
1.隨機選擇兩個不相等的質數p和q。
alice選擇了61和53。(實際應用中,這兩個質數越大,就越難破解。)
2.計算p和q的乘積n。
n = 61×53 = 3233
n的長度就是密鑰長度。3233寫成二進制是110010100001,一共有12位,所以這個密鑰就是12位。實際應用中,RSA密鑰一般是1024位,重要場合則為2048位。
3.計算n的歐拉函數φ(n)。稱作L
根據公式φ(n) = (p-1)(q-1)
alice算出φ(3233)等於60×52,即3120。
4.隨機選擇一個整數e,也就是公鑰當中用來加密的那個數字
條件是1< e < φ(n),且e與φ(n) 互質。
alice就在1到3120之間,隨機選擇了17。(實際應用中,常常選擇65537。)
5.計算e對於φ(n)的模反元素d。也就是密鑰當中用來解密的那個數字
所謂"模反元素"就是指有一個整數d,可以使得ed被φ(n)除的余數為1。ed ≡ 1 (mod φ(n))
alice找到了2753,即17*2753 mode 3120 = 1
6.將n和e封裝成公鑰,n和d封裝成私鑰。
在alice的例子中,n=3233,e=17,d=2753,所以公鑰就是 (3233,17),私鑰就是(3233, 2753)。
上述故事中,blob為了偷偷地傳輸移動位數6,使用了公鑰做加密,即6^17 mode 3233 = 824。alice收到824之後,進行解密,即824^2753 mod 3233 = 6。也就是說,alice成功收到了blob使用的移動位數。
再來復習一下整個流程:
p=17,q=19
n = 17 19 = 323
L = 16 18 = 144
E = 5(E需要滿足以下兩個條件:1<E<144,E和144互質)
D = 29(D要滿足兩個條件,1<D<144,D mode 144 = 1)
假設某個需要傳遞123,則加密後:123^5 mode 323 = 225
接收者收到225後,進行解密,225^ 29 mode 323 = 123
回顧上面的密鑰生成步驟,一共出現六個數字:
p
q
n
L即φ(n)
e
d
這六個數字之中,公鑰用到了兩個(n和e),其餘四個數字都是不公開的。其中最關鍵的是d,因為n和d組成了私鑰,一旦d泄漏,就等於私鑰泄漏。那麼,有無可能在已知n和e的情況下,推導出d?
(1)ed≡1 (mod φ(n))。只有知道e和φ(n),才能算出d。
(2)φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。
(3)n=pq。只有將n因數分解,才能算出p和q。
結論:如果n可以被因數分解,d就可以算出,也就意味著私鑰被破解。
可是,大整數的因數分解,是一件非常困難的事情。目前,除了暴力破解,還沒有發現別的有效方法。維基網路這樣寫道:"對極大整數做因數分解的難度決定了RSA演算法的可靠性。換言之,對一極大整數做因數分解愈困難,RSA演算法愈可靠。假如有人找到一種快速因數分解的演算法,那麼RSA的可靠性就會極度下降。但找到這樣的演算法的可能性是非常小的。今天只有短的RSA密鑰才可能被暴力破解。到2008年為止,世界上還沒有任何可靠的攻擊RSA演算法的方式。只要密鑰長度足夠長,用RSA加密的信息實際上是不能被解破的。"
然而,雖然RSA的安全性依賴於大數的因子分解,但並沒有從理論上證明破譯RSA的難度與大數分解難度等價。即RSA的重大缺陷是無法從理論上把握它的保密性能如何。此外,RSA的缺點還有:
A)產生密鑰很麻煩,受到素數產生技術的限制,因而難以做到一次一密。
B)分組長度太大,為保證安全性,n 至少也要 600bits以上,使運算代價很高,尤其是速度較慢,較對稱密碼演算法慢幾個數量級;且隨著大數分解技術的發展,這個長度還在增加,不利於數據格式的標准化。因此, 使用RSA只能加密少量數據,大量的數據加密還要靠對稱密碼演算法 。
加密和解密是自古就有技術了。經常看到偵探電影的橋段,勇敢又機智的主角,拿著一長串毫無意義的數字苦惱,忽然靈光一閃,翻出一本厚書,將第一個數字對應頁碼數,第二個數字對應行數,第三個數字對應那一行的某個詞。數字變成了一串非常有意義的話:
Eat the beancurd with the peanut. Taste like the ham.
這種加密方法是將原來的某種信息按照某個規律打亂。某種打亂的方式就叫做密鑰(cipher code)。發出信息的人根據密鑰來給信息加密,而接收信息的人利用相同的密鑰,來給信息解密。 就好像一個帶鎖的盒子。發送信息的人將信息放到盒子里,用鑰匙鎖上。而接受信息的人則用相同的鑰匙打開。加密和解密用的是同一個密鑰,這種加密稱為對稱加密(symmetric encryption)。
如果一對一的話,那麼兩人需要交換一個密鑰。一對多的話,比如總部和多個特工的通信,依然可以使用同一套密鑰。 但這種情況下,對手偷到一個密鑰的話,就知道所有交流的信息了。 二戰中盟軍的情報戰成果,很多都來自於破獲這種對稱加密的密鑰。
為了更安全,總部需要給每個特工都設計一個不同的密鑰。如果是FBI這樣龐大的機構,恐怕很難維護這么多的密鑰。在現代社會,每個人的信用卡信息都需要加密。一一設計密鑰的話,銀行怕是要跪了。
對稱加密的薄弱之處在於給了太多人的鑰匙。如果只給特工鎖,而總部保有鑰匙,那就容易了。特工將信息用鎖鎖到盒子里,誰也打不開,除非到總部用唯一的一把鑰匙打開。只是這樣的話,特工每次出門都要帶上許多鎖,太容易被識破身份了。總部老大想了想,乾脆就把造鎖的技術公開了。特工,或者任何其它人,可以就地取材,按照圖紙造鎖,但無法根據圖紙造出鑰匙。鑰匙只有總部的那一把。
上面的關鍵是鎖和鑰匙工藝不同。知道了鎖,並不能知道鑰匙。這樣,銀行可以將「造鎖」的方法公布給所有用戶。 每個用戶可以用鎖來加密自己的信用卡信息。即使被別人竊聽到,也不用擔心:只有銀行才有鑰匙呢!這樣一種加密演算法叫做非對稱加密(asymmetric encryption)。非對稱加密的經典演算法是RSA演算法。它來自於數論與計算機計數的奇妙結合。
1976年,兩位美國計算機學家Whitfield Diffie 和 Martin Hellman,提出了一種嶄新構思,可以在不直接傳遞密鑰的情況下,完成解密。這被稱為"Diffie-Hellman密鑰交換演算法"。這個演算法啟發了其他科學家。人們認識到,加密和解密可以使用不同的規則,只要這兩種規則之間存在某種對應關系即可,這樣就避免了直接傳遞密鑰。這種新的加密模式被稱為"非對稱加密演算法"。
1977年,三位數學家Rivest、Shamir 和 Adleman 設計了一種演算法,可以實現非對稱加密。這種演算法用他們三個人的名字命名,叫做RSA演算法。從那時直到現在,RSA演算法一直是最廣為使用的"非對稱加密演算法"。毫不誇張地說,只要有計算機網路的地方,就有RSA演算法。
1.能「撞」上的保險箱(非對稱/公鑰加密體制,Asymmetric / Public Key Encryption)
數據加密解密和門鎖很像。最開始的時候,人們只想到了那種只能用鑰匙「鎖」數據的鎖。如果在自己的電腦上自己加密數據,當然可以用最開始這種門鎖的形式啦,方便快捷,簡單易用有木有。
但是我們現在是通信時代啊,雙方都想做安全的通信怎麼辦呢?如果也用這種方法,通信就好像互相發送密碼保險箱一樣…而且雙方必須都有鑰匙才能進行加密和解密。也就是說,兩個人都拿著保險箱的鑰匙,你把數據放進去,用鑰匙鎖上發給我。我用同樣的鑰匙把保險箱打開,再把我的數據鎖進保險箱,發送給你。
這樣看起來好像沒什麼問題。但是,這裡面 最大的問題是:我們兩個怎麼弄到同一個保險箱的同一個鑰匙呢? 好像僅有的辦法就是我們兩個一起去買個保險箱,然後一人拿一把鑰匙,以後就用這個保險箱了。可是,現代通信社會,絕大多數情況下別說一起去買保險箱了,連見個面都難,這怎麼辦啊?
於是,人們想到了「撞門」的方法。我這有個可以「撞上」的保險箱,你那裡自己也買一個這樣的保險箱。通信最開始,我把保險箱打開,就這么開著把保險箱發給你。你把數據放進去以後,把保險箱「撞」上發給我。撞上以後,除了我以外,誰都打不開保險箱了。這就是RSA了,公開的保險箱就是公鑰,但是我有私鑰,我才能打開。
2.數字簽名
這種鎖看起來好像很不錯,但是鎖在運輸的過程中有這么一個嚴重的問題:你怎麼確定你收到的開著的保險箱就是我發來的呢?對於一個聰明人,他完全可以這么干:
(a)裝作運輸工人。我現在把我開著的保險箱運給對方。運輸工人自己也弄這么一個保險箱,運輸的時候把保險箱換成他做的。
(b)對方收到保險箱後,沒法知道這個保險箱是我最初發過去的,還是運輸工人替換的。對方把數據放進去,把保險箱撞上。
(c)運輸工人往回運的時候,用自己的鑰匙打開自己的保險箱,把數據拿走。然後復印也好,偽造也好,弄出一份數據,把這份數據放進我的保險箱,撞上,然後發給我。
從我的角度,從對方的角度,都會覺得這數據傳輸過程沒問題。但是,運輸工人成功拿到了數據,整個過程還是不安全的,大概的過程是這樣:
這怎麼辦啊?這個問題的本質原因是,人們沒辦法獲知,保險箱到底是「我」做的,還是運輸工人做的。那乾脆,我們都別做保險箱了,讓權威機構做保險箱,然後在每個保險箱上用特殊的工具刻上一個編號。對方收到保險箱的時候,在權威機構的「公告欄」上查一下編號,要是和保險箱上的編號一樣,我就知道這個保險箱是「我」的,就安心把數據放進去。大概過程是這樣的:
如何做出刻上編號,而且編號沒法修改的保險箱呢?這涉及到了公鑰體制中的另一個問題:數字簽名。
要知道,刻字這種事情吧,誰都能幹,所以想做出只能自己刻字,還沒法讓別人修改的保險箱確實有點難度。那麼怎麼辦呢?這其實困擾了人們很長的時間。直到有一天,人們發現:我們不一定非要在保險箱上刻規規矩矩的字,我們乾脆在保險箱上刻手寫名字好了。而且,刻字有點麻煩,乾脆我們在上面弄張紙,讓人直接在上面寫,簡單不費事。具體做法是,我們在保險箱上嵌進去一張紙,然後每個出產的保險箱都讓權威機構的CEO簽上自己的名字。然後,CEO把自己的簽名公開在權威機構的「公告欄」上面。比如這個CEO就叫「學酥」,那麼整個流程差不多是這個樣子:
這個方法的本質原理是,每個人都能夠通過筆跡看出保險箱上的字是不是學酥CEO簽的。但是呢,這個字體是學酥CEO唯一的字體。別人很難模仿。如果模仿我們就能自己分辨出來了。要是實在分辨不出來呢,我們就請一個筆跡專家來分辨。這不是很好嘛。這個在密碼學上就是數字簽名。
上面這個簽字的方法雖然好,但是還有一個比較蛋疼的問題。因為簽字的樣子是公開的,一個聰明人可以把公開的簽字影印一份,自己造個保險箱,然後把這個影印的字也嵌進去。這樣一來,這個聰明人也可以造一個相同簽字的保險箱了。解決這個問題一個非常簡單的方法就是在看保險箱上的簽名時,不光看字體本身,還要看字體是不是和公開的字體完全一樣。要是完全一樣,就可以考慮這個簽名可能是影印出來的。甚至,還要考察字體是不是和其他保險櫃上的字體一模一樣。因為聰明人為了欺騙大家,可能不影印公開的簽名,而影印其他保險箱上的簽名。這種解決方法雖然簡單,但是驗證簽名的時候麻煩了一些。麻煩的地方在於我不僅需要對比保險箱上的簽名是否與公開的筆跡一樣,還需要對比得到的簽名是否與公開的筆跡完全一樣,乃至是否和所有發布的保險箱上的簽名完全一樣。有沒有什麼更好的方法呢?
當然有,人們想到了一個比較好的方法。那就是,學酥CEO簽字的時候吧,不光把名字簽上,還得帶上簽字得日期,或者帶上這個保險箱的編號。這樣一來,每一個保險箱上的簽字就唯一了,這個簽字是學酥CEO的簽名+學酥CEO寫上的時間或者編號。這樣一來,就算有人偽造,也只能偽造用過的保險箱。這個問題就徹底解決了。這個過程大概是這么個樣子:
3 造價問題(密鑰封裝機制,Key Encapsulation Mechanism)
解決了上面的各種問題,我們要考慮考慮成本了… 這種能「撞」門的保險箱雖然好,但是這種鎖造價一般來說要比普通的鎖要高,而且鎖生產時間也會變長。在密碼學中,對於同樣「結實」的鎖,能「撞」門的鎖的造價一般來說是普通鎖的上千倍。同時,能「撞」門的鎖一般來說只能安裝在小的保險櫃裡面。畢竟,這么復雜的鎖,裝起來很費事啊!而普通鎖安裝在多大的保險櫃上面都可以呢。如果兩個人想傳輸大量數據的話,用一個大的保險櫃比用一堆小的保險櫃慢慢傳要好的多呀。怎麼解決這個問題呢?人們又想出了一個非常棒的方法:我們把兩種鎖結合起來。能「撞」上的保險櫃裡面放一個普通鎖的鑰匙。然後造一個用普通的保險櫃來鎖大量的數據。這樣一來,我們相當於用能「撞」上的保險櫃發一個鑰匙過去。對方收到兩個保險櫃後,先用自己的鑰匙把小保險櫃打開,取出鑰匙。然後在用這個鑰匙開大的保險櫃。這樣做更棒的一個地方在於,既然對方得到了一個鑰匙,後續再通信的時候,我們就不再需要能「撞」上的保險櫃了啊,在以後一定時間內就用普通保險櫃就好了,方便快捷嘛。
以下參考 數字簽名、數字證書、SSL、https是什麼關系?
4.數字簽名(Digital Signature)
數據在瀏覽器和伺服器之間傳輸時,有可能在傳輸過程中被冒充的盜賊把內容替換了,那麼如何保證數據是真實伺服器發送的而不被調包呢,同時如何保證傳輸的數據沒有被人篡改呢,要解決這兩個問題就必須用到數字簽名,數字簽名就如同日常生活的中的簽名一樣,一旦在合同書上落下了你的大名,從法律意義上就確定是你本人簽的字兒,這是任何人都沒法仿造的,因為這是你專有的手跡,任何人是造不出來的。那麼在計算機中的數字簽名怎麼回事呢?數字簽名就是用於驗證傳輸的內容是不是真實伺服器發送的數據,發送的數據有沒有被篡改過,它就干這兩件事,是非對稱加密的一種應用場景。不過他是反過來用私鑰來加密,通過與之配對的公鑰來解密。
第一步:服務端把報文經過Hash處理後生成摘要信息Digest,摘要信息使用私鑰private-key加密之後就生成簽名,伺服器把簽名連同報文一起發送給客戶端。
第二步:客戶端接收到數據後,把簽名提取出來用public-key解密,如果能正常的解密出來Digest2,那麼就能確認是對方發的。
第三步:客戶端把報文Text提取出來做同樣的Hash處理,得到的摘要信息Digest1,再與之前解密出來的Digist2對比,如果兩者相等,就表示內容沒有被篡改,否則內容就是被人改過了。因為只要文本內容哪怕有任何一點點改動都會Hash出一個完全不一樣的摘要信息出來。
5.數字證書(Certificate Authority)
數字證書簡稱CA,它由權威機構給某網站頒發的一種認可憑證,這個憑證是被大家(瀏覽器)所認可的,為什麼需要用數字證書呢,難道有了數字簽名還不夠安全嗎?有這樣一種情況,就是瀏覽器無法確定所有的真實伺服器是不是真的是真實的,舉一個簡單的例子:A廠家給你們家安裝鎖,同時把鑰匙也交給你,只要鑰匙能打開鎖,你就可以確定鑰匙和鎖是配對的,如果有人把鑰匙換了或者把鎖換了,你是打不開門的,你就知道肯定被竊取了,但是如果有人把鎖和鑰匙替換成另一套表面看起來差不多的,但質量差很多的,雖然鑰匙和鎖配套,但是你卻不能確定這是否真的是A廠家給你的,那麼這時候,你可以找質檢部門來檢驗一下,這套鎖是不是真的來自於A廠家,質檢部門是權威機構,他說的話是可以被公眾認可的(呵呵)。
同樣的, 因為如果有人(張三)用自己的公鑰把真實伺服器發送給瀏覽器的公鑰替換了,於是張三用自己的私鑰執行相同的步驟對文本Hash、數字簽名,最後得到的結果都沒什麼問題,但事實上瀏覽器看到的東西卻不是真實伺服器給的,而是被張三從里到外(公鑰到私鑰)換了一通。那麼如何保證你現在使用的公鑰就是真實伺服器發給你的呢?我們就用數字證書來解決這個問題。數字證書一般由數字證書認證機構(Certificate Authority)頒發,證書裡麵包含了真實伺服器的公鑰和網站的一些其他信息,數字證書機構用自己的私鑰加密後發給瀏覽器,瀏覽器使用數字證書機構的公鑰解密後得到真實伺服器的公鑰。這個過程是建立在被大家所認可的證書機構之上得到的公鑰,所以這是一種安全的方式。
常見的對稱加密演算法有DES、3DES、AES、RC5、RC6。非對稱加密演算法應用非常廣泛,如SSH,
HTTPS, TLS,電子證書,電子簽名,電子身份證等等。
參考 DES/3DES/AES區別
2. rsa私鑰加密後字元串不可見
原因
解密有長度限制,稿念長度限制為密鑰長度/8;
一般來說密鑰長度為1024,加密長度衫碧為 128 ,加密長度為 117 ,如果字元超過這個數量就會報錯。
解決方案
採用分段鍵塌困加密解密,計算出來需要加密數據的長度
以128分割成多個數組進行加密,
以117分割成多個數組進行解密
3. javascript怎樣利用C#生成的RSA公鑰對字元串加密
js對公鑰串進行加密的寫法:
依兄塵賴:頌亮RSA.js BigInt.js 和Barrett.js
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html:html lang="true">
<head>
<html:base />
<title>login</title>
<meta http-equiv="pragma" content="no-cache">
<script type="text/javascript" src="js/RSA.js"></script>
<script type="text/javascript" src="js/BigInt.js"></script>
<script type="text/javascript" src="js/Barrett.js"></script>
<script type="text/javascript">
function rsalogin()
{
bodyRSA();
var result = encryptedString(key, document.getElementById("pwd"羨櫻禪).value);
//alert(result);
loginForm.action="login.do?result="+result;
loginForm.submit();
}
var key ;
function bodyRSA()
{
setMaxDigits(130);
key = new RSAKeyPair("10001","","");
}
</script>
4. 如何利用OpenSSL庫進行RSA加密和解密
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<openssl/rsa.h>
#include<openssl/engine.h>
intmain(intargc,char*argv[])
{
printf("openssl_testbegin ");
RSA*rsa=NULL;
charoriginstr[]="hello ";//這是我們需要加密的原始數據
//allocateRSAstructure,首先需要申請一個RSA結構題用於存放生成的公私鑰,這里rsa就是這個結構體的指針
rsa=RSA_new();
if(rsa==NULL)
{
printf("RSA_newfailed ");
return-1;
}
//generateRSAkeys
BIGNUM*exponent;
exponent=BN_new();//生成RSA公私鑰之前需要選擇一個奇數(oddnumber)來用於生成公私鑰
if(exponent==NULL)
{
printf("BN_newfailed ");
gotoFAIL1;
}
if(0==BN_set_word(exponent,65537))//這里選擇奇數65537
{
printf("BN_set_wordfailed ");
gotoFAIL1;
}
//這里molus的長度選擇4096,小於1024的molus長度都是不安全的,容易被破解
if(0==RSA_generate_key_ex(rsa,4096,exponent,NULL))
{
printf("RSA_generate_key_exfailed ");
gotoFAIL;
}
char*cipherstr=NULL;
//分配一段空間用於存儲加密後的數據,這個空間的大小由RSA_size函數根據rsa算出
cipherstr=malloc(RSA_size(rsa));
if(cipherstr==NULL)
{
printf("malloccipherstrbuffailed ");
gotoFAIL1;
}
//下面是實際的加密過程,最後一個參數paddingtype,有以下幾種。
/*
RSA_PKCS1_PADDINGPKCS#1v1.5padding..
RSA_PKCS1_OAEP_PADDING
EME-OAEPasdefinedinPKCS#1v2.0withSHA-1,..
RSA_SSLV23_PADDING
PKCS#1v1.5paddingwithanSSL-.
RSA_NO_PADDING
RawRSAencryption.ntheapplicationcode..
*/
//這里首先用公鑰進行加密,選擇了RSA_PKCS1_PADDING
if(RSA_size(rsa)!=RSA_public_encrypt(strlen(originstr)+1,originstr,cipherstr,rsa,RSA_PKCS1_PADDING))
{
printf("encryptionfailure ");
gotoFAIL2;
}
printf("theoriginalstringis%s ",originstr);
printf("theencryptedstringis%s ",cipherstr);
//Now,let'
//下面來用私鑰解密,首先需要一個buffer用於存儲解密後的數據,這個buffer的長度要足夠(小於RSA_size(rsa))
//這里分配一個長度為250的字元數組,應該是夠用的。
chardecrypted_str[250];
intdecrypted_len;
if(-1=(decrypted_len=RSA_private_decrypt(256,cipherstr,decrypted_str,rsa,RSA_PKCS1_PADDING)))
{
printf("decryptionfailure ");
gotoFAIL2;
}
printf("decryptedstringlengthis%d,decryped_stris%s ",decrypted_len,decrypted_str);
FAIL2:
free(cipherstr);
FAIL1:
BN_free(exponent);
FAIL:
RSA_free(rsa);
return0;
}
以上是源代碼,下面使用下面的編譯命令在源碼所在路徑下生成可執行文件
gcc *.c -o openssl_test -lcrypto -ldl -L/usr/local/ssl/lib -I/usr/local/ssl/include
其中,-lcrypto和-ldl是必須的,前者是OpenSSL中的加密演算法庫,後者是用於成功載入動態庫。
5. 銀聯支付介面使用rsa 數據加密。明文密鑰都是16進制的字元串,加密結果和對方給的小工具加密的結果不一樣
你需要確認三個東西:
你們用的key是不是一樣的
RSA有pading的,一般來說nopading不會用於實際的產品,所以你需要確認人家提供的那個工具的pading是不是跟你現在用的一樣。至少你的程序裡面需要指定這個東西。
你最後數據顯示的格式,因為RSA加密的數據並不全部都是可以看的字元,一般都需要將他們處理一下才是可以看的字元,所以人家那邊的演算法跟你用是一樣的嗎?
6. [求助}如何對excel進行RSA加密
這個方法,我沒有使用過。
對excel進行加密,我使用的是超級加密3000.
1 下載安裝超級加密3000。
2 然後在需要加密的文件上單擊滑鼠右鍵選擇加密。
3 在彈出的文件加密窗口中設置文件加密密碼就OK了。
超級加密3000的下載地址你可以在百昌悄手度上搜索超級耐嫌加密3000,第運悄一個就是。
7. ios開發rsa加密怎麼生成秘鑰
1、加密解密的第一步是生成公鑰、私鑰對,私鑰加密的內容能通過公鑰解密(反過來亦可以) 下載開源RSA密鑰生成工具openssl(通常linux系統都自帶該程序),解壓縮至獨立的文件夾,進入其中的bin目錄,執行以下命令: 代碼如下: openssl genrsa -out rsa_private_key.pem 1024 openssl pkcs8 -topk8 -inform PEM -in rsa_private_key.pem -outform PEM -nocrypt -out private_key.pem openssl rsa -in rsa_private_key.pem -pubout -out rsa_public_key.pem 第一條命令生成原始 RSA私鑰文件 rsa_private_key.pem,第二條命令將原始 RSA私鑰轉換為 pkcs8格式,第三條生成RSA公鑰 rsa_public_key.pem 從上面看出通過私鑰能生成對應的公鑰,因此我們將私鑰private_key.pem用在伺服器端,公鑰發放給android跟ios等前端 2、php中用生成的公鑰、私鑰進行加密解密,直接上代碼 代碼如下: $fp=fopen("rsa/rsa_private_key.pem","r"); //你的私鑰文件路徑 $private_key=fread($fp,8192); fclose($fp); $fp1=fopen("rsa/rsa_public_key.pem","r"); //你的公鑰文件路徑 $public_key=fread($fp1,8192); fclose($fp1); //echo $private_key; $pi_key=openssl_pkey_get_private($private_key);//這個函數可用來判斷私鑰是否是可用的,可用返回資源id Resource id $pu_key=openssl_pkey_get_public($public_key );//這個函數可用來判斷公鑰是否是可用的 print_r($pi_key);echo "n"; echo "<br>"; print_r($pu_key);echo "n"; echo "<br>"; echo "<hr>"; $data='php ras加密演算法'; $encrypted = ""; $decrypted = ""; echo "加密的源數據:".$data."n"; echo "<br>"; echo "private key encrypt:n"; echo "<br>"; openssl_private_encrypt($data,$encrypted,$pi_key);//私鑰加密 $encrypted = base64_encode($encrypted);//加密後的內容通常含有特殊字元,需要編碼轉換下,在網路間通過url傳輸時要注意base64編碼是否是url安全的 echo '私鑰加密後:'.$encrypted."n"; echo "<br>";echo "<br>"; echo "public key decrypt:n"; echo "<br>"; openssl_public_decrypt(base64_decode($encrypted),$decrypted,$pu_key);//私鑰加密的內容通過公鑰可用解密出來 echo '公鑰解密後:'.$decrypted."n"; echo "<br>"; echo "<hr>"; echo "public key encrypt:n"; echo "<br>"; openssl_public_encrypt($data,$encrypted,$pu_key);//公鑰加密 $encrypted = base64_encode($encrypted); echo $encrypted,"n"; echo "<br>"; echo "private key decrypt:n"; echo "<br>"; openssl_private_decrypt(base64_decode($encrypted),$decrypted,$pi_key);//私鑰解密 echo $decrypted,"n"; echo "<br>"; PHP的RSA配置常見問題: ●PHP開發語言的代碼示例中openssl文件夾中的3個DLL文件用法 1、如果你的系統是windows系統,且system32文件目錄下沒有libeay32.dll、ssleay32.dll這兩個文件 那麼需要拷貝這兩個文件到system32文件目錄。 2、如果您的php安裝目錄下(phpext)中沒有php_openssl.dll 那麼請把php_openssl.dll放在這個文件夾中 喜歡加密解密的小夥伴一定要好好看看這篇文章,受益匪淺。。。
8. jsencrypt實現前端RSA非對稱加密解密(vue項目)
最近一個vue項目要求所有密碼數據需要使用RSA非對稱加密傳輸,以為挺簡單,結果開發過程中還是遇到了些問題,簡單做個筆記。同時也希望可以幫助到遇到同樣問題的道友門。
重點來了:使用jsencrypt實現RSA非對稱加解密
因為這里直接在前端加解密,所以需要一對現成的密鑰,我們通過 密鑰在線生成器 得到:
然後在需要使用的文件中引入JSEncrypt,我是將所有工具函數都封裝在一個js文件的,我就直接在該文件中引入,我看也有人是在main.js中引入的。
到這里我們的加密解密方法就完成了,在需要的地方直接拿過來用就好了!
大功告成!這樣就完了?我以為這樣就ok了。
當然,如果沒有遇到這個bug,就可以忽略下面的內容了。
從上面截圖可以看到,重啟項目的時候報錯: navigator is not defined
而且這個bug有點奇葩,先啟動項目再引入jsencrypt就什麼問題都沒有,但是先引入jsencrypt再啟動項目就報錯。這也是我前面能順利執行的原因所在。
通過好一通折騰,用了網上的各種方法,比如在main.js引入jsencrypt、引入jsdom之類的,都沒能解決這個問題,最終還是在jsencrypt的git相關 issue 下找到了這個問題的解決方案。
到這里問題就算基本解決了,但是由於項目組不止我一個前端,我不能要求每個同事或者以後接手維護項目的同事都要在node_moles中去替換文件。
所以就採用了另外一種方案:將jsencrypt.js通過在線js壓縮器壓縮至jsencrypt.min.js中,然後把jsencrypt.min.js放到src/assets/jsencrypt文件夾中,就不用npm install的方式了。
換了種方式,jsencrypt的引用方式需要做出相應的調整:
參考鏈接: RSA非對稱加密傳輸---前端加密&解密(VUE項目)
https://github.com/travist/jsencrypt/issues/144
PS:才疏學淺,如果有考慮不周之處或者有更好的解決方案,歡迎指正探討!
9. iOS RSA加密生成公鑰私鑰
該命令生成一個模長 2048 位,名字為 rsa_private_key.pem 、 PKCS1 格式的 RSA 私鑰文件.
genrsa :指定生成演算法使用 RSA
-out :後面參數是生成的私鑰的文件名
2048 :生成私鑰的模長,單位位元組(bits)
根據生成的私鑰 rsa_private_key.pem 文件,生成公鑰 rsa_public_key.pem 文件
生成名字為 rsa_pkcs8_private_key.pem 的私鑰文件
Java 和 Android 用到的密鑰:
公鑰: rsa_public_key.pem
私鑰: rsa_pkcs8_private_key.pem
終端會提示輸入國家、省市、所在地、組織、組織單位、常用名稱、郵箱地址等信息,按要求填寫(可以隨便填寫), 輸入完對應信息後會提示輸入一個密碼 :
最終會生成 rsacert.csr 文件
用最開始生成的私鑰 rsa_private_key.pem 和 rsacert.csr 證書請求文件生成一個數字證書 rsacert.crt
使用 x509 工具自建CA。由於 x509 無法建立證書請求文件,所以只能使用 openssl req 來生成請求文件,然後使用 x509 來自簽署, 也可以用來簽署他人的證書請求,即為他人頒發證書。
知識點 :
終端會提示設置密碼,該密碼是 .p12 私鑰的密碼(用 private_key.p12 私鑰解密時, 要用到該密碼, 需要記錄下 ), 會提示再次輸入檢驗剛才輸入的密碼.
10. 高分求java的RSA 和IDEA 加密解密演算法
RSA演算法非常簡單,概述如下:
找兩素數p和q
取n=p*q
取t=(p-1)*(q-1)
取任何一個數e,要求滿足e<t並且e與t互素(就是最大公因數為1)
取d*e%t==1
這樣最終得到三個數: n d e
設消息為數M (M <n)
設c=(M**d)%n就得到了加密後的消息c
設m=(c**e)%n則 m == M,從而完成對c的解密。
註:**表示次方,上面兩式中的d和e可以互換。
在對稱加密中:
n d兩個數構成公鑰,可以告訴別人;
n e兩個數構成私鑰,e自己保留,不讓任何人知道。
給別人發送的信息使用e加密,只要別人能用d解開就證明信息是由你發送的,構成了簽名機制。
別人給你發送信息時使用d加密,這樣只有擁有e的你能夠對其解密。
rsa的安全性在於對於一個大數n,沒有有效的方法能夠將其分解
從而在已知n d的情況下無法獲得e;同樣在已知n e的情況下無法
求得d。
<二>實踐
接下來我們來一個實踐,看看實際的操作:
找兩個素數:
p=47
q=59
這樣
n=p*q=2773
t=(p-1)*(q-1)=2668
取e=63,滿足e<t並且e和t互素
用perl簡單窮舉可以獲得滿主 e*d%t ==1的數d:
C:\Temp>perl -e "foreach $i (1..9999){ print($i),last if $i*63%2668==1 }"
847
即d=847
最終我們獲得關鍵的
n=2773
d=847
e=63
取消息M=244我們看看
加密:
c=M**d%n = 244**847%2773
用perl的大數計算來算一下:
C:\Temp>perl -Mbigint -e "print 244**847%2773"
465
即用d對M加密後獲得加密信息c=465
解密:
我們可以用e來對加密後的c進行解密,還原M:
m=c**e%n=465**63%2773 :
C:\Temp>perl -Mbigint -e "print 465**63%2773"
244
即用e對c解密後獲得m=244 , 該值和原始信息M相等。
<三>字元串加密
把上面的過程集成一下我們就能實現一個對字元串加密解密的示例了。
每次取字元串中的一個字元的ascii值作為M進行計算,其輸出為加密後16進制
的數的字元串形式,按3位元組表示,如01F
代碼如下:
#!/usr/bin/perl -w
#RSA 計算過程學習程序編寫的測試程序
#watercloud 2003-8-12
#
use strict;
use Math::BigInt;
my %RSA_CORE = (n=>2773,e=>63,d=>847); #p=47,q=59
my $N=new Math::BigInt($RSA_CORE{n});
my $E=new Math::BigInt($RSA_CORE{e});
my $D=new Math::BigInt($RSA_CORE{d});
print "N=$N D=$D E=$E\n";
sub RSA_ENCRYPT
{
my $r_mess = shift @_;
my ($c,$i,$M,$C,$cmess);
for($i=0;$i < length($$r_mess);$i++)
{
$c=ord(substr($$r_mess,$i,1));
$M=Math::BigInt->new($c);
$C=$M->(); $C->bmodpow($D,$N);
$c=sprintf "%03X",$C;
$cmess.=$c;
}
return \$cmess;
}
sub RSA_DECRYPT
{
my $r_mess = shift @_;
my ($c,$i,$M,$C,$dmess);
for($i=0;$i < length($$r_mess);$i+=3)
{
$c=substr($$r_mess,$i,3);
$c=hex($c);
$M=Math::BigInt->new($c);
$C=$M->(); $C->bmodpow($E,$N);
$c=chr($C);
$dmess.=$c;
}
return \$dmess;
}
my $mess="RSA 娃哈哈哈~~~";
$mess=$ARGV[0] if @ARGV >= 1;
print "原始串:",$mess,"\n";
my $r_cmess = RSA_ENCRYPT(\$mess);
print "加密串:",$$r_cmess,"\n";
my $r_dmess = RSA_DECRYPT($r_cmess);
print "解密串:",$$r_dmess,"\n";
#EOF
測試一下:
C:\Temp>perl rsa-test.pl
N=2773 D=847 E=63
原始串:RSA 娃哈哈哈~~~
加密串:
解密串:RSA 娃哈哈哈~~~
C:\Temp>perl rsa-test.pl 安全焦點(xfocus)
N=2773 D=847 E=63
原始串:安全焦點(xfocus)
加密串:
解密串:安全焦點(xfocus)
<四>提高
前面已經提到,rsa的安全來源於n足夠大,我們測試中使用的n是非常小的,根本不能保障安全性,
我們可以通過RSAKit、RSATool之類的工具獲得足夠大的N 及D E。
通過工具,我們獲得1024位的N及D E來測試一下:
n=EC3A85F5005D
4C2013433B383B
A50E114705D7E2
BC511951
d=0x10001
e=DD28C523C2995
47B77324E66AFF2
789BD782A592D2B
1965
設原始信息
M=
完成這么大數字的計算依賴於大數運算庫,用perl來運算非常簡單:
A) 用d對M進行加密如下:
c=M**d%n :
C:\Temp>perl -Mbigint -e " $x=Math::BigInt->bmodpow(0x11111111111122222222222233
333333333, 0x10001,
D55EDBC4F0
6E37108DD6
);print $x->as_hex"
b73d2576bd
47715caa6b
d59ea89b91
f1834580c3f6d90898
即用d對M加密後信息為:
c=b73d2576bd
47715caa6b
d59ea89b91
f1834580c3f6d90898
B) 用e對c進行解密如下:
m=c**e%n :
C:\Temp>perl -Mbigint -e " $x=Math::BigInt->bmodpow(0x17b287be418c69ecd7c39227ab
5aa1d99ef3
0cb4764414
, 0xE760A
3C29954C5D
7324E66AFF
2789BD782A
592D2B1965, CD15F90
4F017F9CCF
DD60438941
);print $x->as_hex"
(我的P4 1.6G的機器上計算了約5秒鍾)
得到用e解密後的m= == M
C) RSA通常的實現
RSA簡潔幽雅,但計算速度比較慢,通常加密中並不是直接使用RSA 來對所有的信息進行加密,
最常見的情況是隨機產生一個對稱加密的密鑰,然後使用對稱加密演算法對信息加密,之後用
RSA對剛才的加密密鑰進行加密。
最後需要說明的是,當前小於1024位的N已經被證明是不安全的
自己使用中不要使用小於1024位的RSA,最好使用2048位的。
----------------------------------------------------------
一個簡單的RSA演算法實現JAVA源代碼:
filename:RSA.java
/*
* Created on Mar 3, 2005
*
* TODO To change the template for this generated file go to
* Window - Preferences - Java - Code Style - Code Templates
*/
import java.math.BigInteger;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.FileWriter;
import java.io.FileReader;
import java.io.BufferedReader;
import java.util.StringTokenizer;
/**
* @author Steve
*
* TODO To change the template for this generated type comment go to
* Window - Preferences - Java - Code Style - Code Templates
*/
public class RSA {
/**
* BigInteger.ZERO
*/
private static final BigInteger ZERO = BigInteger.ZERO;
/**
* BigInteger.ONE
*/
private static final BigInteger ONE = BigInteger.ONE;
/**
* Pseudo BigInteger.TWO
*/
private static final BigInteger TWO = new BigInteger("2");
private BigInteger myKey;
private BigInteger myMod;
private int blockSize;
public RSA (BigInteger key, BigInteger n, int b) {
myKey = key;
myMod = n;
blockSize = b;
}
public void encodeFile (String filename) {
byte[] bytes = new byte[blockSize / 8 + 1];
byte[] temp;
int tempLen;
InputStream is = null;
FileWriter writer = null;
try {
is = new FileInputStream(filename);
writer = new FileWriter(filename + ".enc");
}
catch (FileNotFoundException e1){
System.out.println("File not found: " + filename);
}
catch (IOException e1){
System.out.println("File not found: " + filename + ".enc");
}
/**
* Write encoded message to 'filename'.enc
*/
try {
while ((tempLen = is.read(bytes, 1, blockSize / 8)) > 0) {
for (int i = tempLen + 1; i < bytes.length; ++i) {
bytes[i] = 0;
}
writer.write(encodeDecode(new BigInteger(bytes)) + " ");
}
}
catch (IOException e1) {
System.out.println("error writing to file");
}
/**
* Close input stream and file writer
*/
try {
is.close();
writer.close();
}
catch (IOException e1) {
System.out.println("Error closing file.");
}
}
public void decodeFile (String filename) {
FileReader reader = null;
OutputStream os = null;
try {
reader = new FileReader(filename);
os = new FileOutputStream(filename.replaceAll(".enc", ".dec"));
}
catch (FileNotFoundException e1) {
if (reader == null)
System.out.println("File not found: " + filename);
else
System.out.println("File not found: " + filename.replaceAll(".enc", "dec"));
}
BufferedReader br = new BufferedReader(reader);
int offset;
byte[] temp, toFile;
StringTokenizer st = null;
try {
while (br.ready()) {
st = new StringTokenizer(br.readLine());
while (st.hasMoreTokens()){
toFile = encodeDecode(new BigInteger(st.nextToken())).toByteArray();
System.out.println(toFile.length + " x " + (blockSize / 8));
if (toFile[0] == 0 && toFile.length != (blockSize / 8)) {
temp = new byte[blockSize / 8];
offset = temp.length - toFile.length;
for (int i = toFile.length - 1; (i <= 0) && ((i + offset) <= 0); --i) {
temp[i + offset] = toFile[i];
}
toFile = temp;
}
/*if (toFile.length != ((blockSize / 8) + 1)){
temp = new byte[(blockSize / 8) + 1];
System.out.println(toFile.length + " x " + temp.length);
for (int i = 1; i < temp.length; i++) {
temp[i] = toFile[i - 1];
}
toFile = temp;
}
else
System.out.println(toFile.length + " " + ((blockSize / 8) + 1));*/
os.write(toFile);
}
}
}
catch (IOException e1) {
System.out.println("Something went wrong");
}
/**
* close data streams
*/
try {
os.close();
reader.close();
}
catch (IOException e1) {
System.out.println("Error closing file.");
}
}
/**
* Performs <tt>base</tt>^<sup><tt>pow</tt></sup> within the molar
* domain of <tt>mod</tt>.
*
* @param base the base to be raised
* @param pow the power to which the base will be raisded
* @param mod the molar domain over which to perform this operation
* @return <tt>base</tt>^<sup><tt>pow</tt></sup> within the molar
* domain of <tt>mod</tt>.
*/
public BigInteger encodeDecode(BigInteger base) {
BigInteger a = ONE;
BigInteger s = base;
BigInteger n = myKey;
while (!n.equals(ZERO)) {
if(!n.mod(TWO).equals(ZERO))
a = a.multiply(s).mod(myMod);
s = s.pow(2).mod(myMod);
n = n.divide(TWO);
}
return a;
}
}
在這里提供兩個版本的RSA演算法JAVA實現的代碼下載:
1. 來自於 http://www.javafr.com/code.aspx?ID=27020 的RSA演算法實現源代碼包:
http://zeal.newmenbase.net/attachment/JavaFR_RSA_Source.rar
2. 來自於 http://www.ferrara.linux.it/Members/lucabariani/RSA/implementazioneRsa/ 的實現:
http://zeal.newmenbase.net/attachment/sorgentiJava.tar.gz - 源代碼包
http://zeal.newmenbase.net/attachment/algoritmoRSA.jar - 編譯好的jar包
另外關於RSA演算法的php實現請參見文章:
php下的RSA演算法實現
關於使用VB實現RSA演算法的源代碼下載(此程序採用了psc1演算法來實現快速的RSA加密):
http://zeal.newmenbase.net/attachment/vb_PSC1_RSA.rar
RSA加密的JavaScript實現: http://www.ohdave.com/rsa/