加密的原因:保證數據安全
加密必備要素:1、明文/密文 2、秘鑰 3、演算法
秘鑰:在密碼學中是一個定長的字元串、需要根據加密演算法確定其長度
加密演算法解密演算法一般互逆、也可能相同
常用的兩種加密方式:
對稱加密:秘鑰:加密解密使用同一個密鑰、數據的機密性雙向保證、加密效率高、適合加密於大數據大文件、加密強度不高(相對於非對稱加密)
非對稱加密:秘鑰:加密解密使用的不同秘鑰、有兩個密鑰、需要使用密鑰生成演算法生成兩個秘鑰、數據的機密性只能單向加密、如果想解決這個問題、雙向都需要各自有一對秘鑰、加密效率低、加密強度高
公鑰:可以公開出來的密鑰、公鑰加密私鑰解密
私鑰:需要自己妥善保管、不能公開、私鑰加密公鑰解密
安全程度高:多次加密
按位異或運算
凱撒密碼:加密方式 通過將銘文所使用的字母表按照一定的字數平移來進行加密
mod:取余
加密三要素:明文/密文(字母)、秘鑰(3)、演算法(向右平移3/-3)
安全常識:不要使用自己研發的演算法、不要鑽牛角尖、沒必要研究底層實現、了解怎麼應用;低強度的密碼比不進行任何加密更危險;任何密碼都會被破解;密碼只是信息安全的一部分
保證數據的機密性、完整性、認證、不可否認性
計算機操作對象不是文字、而是由0或1排列而成的比特序列、程序存儲在磁碟是二進制的字元串、為比特序列、將現實的東西映射為比特序列的操作稱為編碼、加密又稱之為編碼、解密稱之為解碼、根據ASCII對照表找到對應的數字、轉換成二進制
三種對稱加密演算法:DES\3DES\ AES
DES:已經被破解、除了用它來解密以前的明文、不再使用
密鑰長度為56bit/8、為7byte、每隔7個bit會設置一個用於錯誤檢查的比特、因此實際上是64bit
分組密碼(以組為單位進行處理):加密時是按照一個單位進行加密(8個位元組/64bit為一組)、每一組結合秘鑰通過加密演算法得到密文、加密後的長度不變
3DES:三重DES為了增加DES的強度、將DES重復三次所得到的一種加密演算法 密鑰長度24byte、分成三份 加密--解密--加密 目的:為了兼容DES、秘鑰1秘鑰2相同==三個秘鑰相同 ---加密一次 密鑰1秘鑰3相同--加密三次 三個密鑰不相同最好、此時解密相當於加密、中間的一次解密是為了有三個密鑰相同的情況
此時的解密操作與加密操作互逆,安全、效率低
數據先解密後加密可以么?可以、解密相當於加密、加密解密說的是演算法
AES:(首選推薦)底層演算法為Rijndael 分組長度為128bit、密鑰長度為128bit到256bit范圍內就可以 但是在AES中、密鑰長度只有128bit\192bit\256bit 在go提供的介面中、只能是16位元組(128bit)、其他語言中秘鑰可以選擇
目前為止最安全的、效率高
底層演算法
分組密碼的模式:
按位異或、對數據進行位運算、先將數據轉換成二進制、按位異或操作符^、相同為真、不同為假、非0為假 按位異或一次為加密操作、按位異或兩次為解密操作:a和b按位異或一次、結果再和b按位異或
ECB : 如果明文有規律、加密後的密文有規律不安全、go里不提供該介面、明文分組分成固定大小的塊、如果最後一個分組不滿足分組長度、則需要補位
CBC:密碼鏈
問題:如何對字元串進行按位異或?解決了ECB的規律可查缺點、但是他不能並行處理、最後一個明文分組也需要填充 、初始化向量長度與分組長度相同
CFB:密文反饋模式
不需要填充最後一個分組、對密文進行加密
OFB:
不需要對最後一組進行填充
CTR計數器:
不需要對最後一組進行填充、不需要初始化向量
Go中的實現
官方文檔中:
在創建aes或者是des介面時都是調用如下的方法、返回的block為一個介面
func NewCipher(key [] byte ) ( cipher . Block , error )
type Block interface {
// 返回加密位元組塊的大小
BlockSize() int
// 加密src的第一塊數據並寫入dst,src和dst可指向同一內存地址
Encrypt(dst, src []byte)
// 解密src的第一塊數據並寫入dst,src和dst可指向同一內存地址
Decrypt(dst, src []byte)
}
Block介面代表一個使用特定密鑰的底層塊加/解密器。它提供了加密和解密獨立數據塊的能力。
Block的Encrypt/Decrypt也能進行加密、但是只能加密第一組、因為aes的密鑰長度為16、所以進行操作的第一組數據長度也是16
如果分組模式選擇的是cbc
func NewCBCEncrypter(b Block, iv []byte) BlockMode 加密
func NewCBCDecrypter(b Block, iv []byte) BlockMode 解密
加密解密都調用同一個方法CryptBlocks()
並且cbc分組模式都會遇到明文最後一個分組的補充、所以會用到加密位元組的大小
返回一個密碼分組鏈接模式的、底層用b加密的BlockMode介面,初始向量iv的長度必須等於b的塊尺寸。iv自己定義
返回的BlockMode同樣也是一個介面類型
type BlockMode interface {
// 返回加密位元組塊的大小
BlockSize() int
// 加密或解密連續的數據塊,src的尺寸必須是塊大小的整數倍,src和dst可指向同一內存地址
CryptBlocks(dst, src []byte)
}
BlockMode介面代表一個工作在塊模式(如CBC、ECB等)的加/解密器
返回的BlockMode其實是一個cbc的指針類型中的b和iv
# 加密流程:
1. 創建一個底層使用des/3des/aes的密碼介面 "crypto/des" func NewCipher(key []byte) (cipher.Block, error) # -- des func NewTripleDESCipher(key []byte) (cipher.Block, error) # -- 3des "crypto/aes" func NewCipher(key []byte) (cipher.Block, error) # == aes
2. 如果使用的是cbc/ecb分組模式需要對明文分組進行填充
3. 創建一個密碼分組模式的介面對象 - cbc func NewCBCEncrypter(b Block, iv []byte) BlockMode # 加密 - cfb func NewCFBEncrypter(block Block, iv []byte) Stream # 加密 - ofb - ctr
4. 加密, 得到密文
流程:
填充明文:
先求出最後一組中的位元組數、創建新切片、長度為新切片、值也為切片的長度、然後利用bytes.Reapet將長度換成位元組切片、追加到原明文中
//明文補充
func padPlaintText(plaintText []byte,blockSize int)[]byte{
//1、求出需要填充的個數
padNum := blockSize-len(plaintText) % blockSize
//2、對填充的個數進行操作、與原明文進行合並
newPadding := []byte{byte(padNum)}
newPlain := bytes.Repeat(newPadding,padNum)
plaintText = append(plaintText,newPlain...)
return plaintText
}
去掉填充數據:
拿去切片中的最後一個位元組、得到尾部填充的位元組個數、截取返回
//解密後的明文曲調補充的地方
func createPlaintText(plaintText []byte,blockSize int)[]byte{
//1、得到最後一個位元組、並將位元組轉換成數字、去掉明文中此數字大小的位元組
padNum := int(plaintText[len(plaintText)-1])
newPadding := plaintText[:len(plaintText)-padNum]
return newPadding
}
des加密:
1、創建一個底層使用des的密碼介面、參數為秘鑰、返回一個介面
2、對明文進行填充
3、創建一個cbc模式的介面、需要創建iv初始化向量、返回一個blockmode對象
4、加密、調用blockmode中的cryptBlock函數進行加密、參數為目標參數和源參數
//des利用分組模式cbc進行加密
func EncryptoText(plaintText []byte,key []byte)[]byte{
//1、創建des對象
cipherBlock,err := des.NewCipher(key)
if err != nil {
panic(err)
}
//2、對明文進行填充
newText := padPlaintText(plaintText,cipherBlock.BlockSize())
//3、選擇分組模式、其中向量的長度必須與分組長度相同
iv := make([]byte,cipherBlock.BlockSize())
blockMode := cipher.NewCBCEncrypter(cipherBlock,iv)
//4、加密
blockMode.CryptBlocks(newText,newText)
return newText
}
des解密:
1、創建一個底層使用des的密碼介面、參數為秘鑰、返回一個介面
2、創建一個cbc模式的介面、需要創建iv初始化向量,返回一個blockmode對象
3、加密、調用blockmode中的cryptBlock函數進行解密、參數為目標參數和源參數
4、調用去掉填充數據的方法
//des利用分組模式cbc進行解密
func DecryptoText(cipherText []byte, key []byte)[]byte{
//1、創建des對象
cipherBlock,err := des.NewCipher(key)
if err != nil {
panic(err)
}
//2、創建cbc分組模式介面
iv := []byte("12345678")
blockMode := cipher.NewCBCDecrypter(cipherBlock,iv)
//3、解密
blockMode.CryptBlocks(cipherText,cipherText)
//4、將解密後的數據進行去除填充的數據
newText := clearPlaintText(cipherText,cipherBlock.BlockSize())
return newText
}
Main函數調用
func main(){
//需要進行加密的明文
plaintText := []byte("CBC--密文沒有規律、經常使用的加密方式,最後一個分組需要填充,需要初始化向量" +
"(一個數組、數組的長度與明文分組相等、數據來源:負責加密的人提供,加解密使用的初始化向量必須相同)")
//密鑰Key的長度需要與分組長度相同、且加密解密的密鑰相同
key := []byte("1234abcd")
//調用加密函數
cipherText := EncryptoText(plaintText,key)
newPlaintText := DecryptoText(cipherText,key)
fmt.Println(string(newPlaintText))
}
AES加密解密相同、所以只需要調用一次方法就可以加密、調用兩次則解密
推薦是用分組模式:cbc、ctr
aes利用分組模式cbc進行加密
//對明文進行補充
func paddingPlaintText(plaintText []byte , blockSize int ) []byte {
//1、求出分組余數
padNum := blockSize - len(plaintText) % blockSize
//2、將余數轉換為位元組切片、然後利用bytes.Repeat得出有該余數的大小的位元組切片
padByte := bytes.Repeat([]byte{byte(padNum)},padNum)
//3、將補充的位元組切片添加到原明文中
plaintText = append(plaintText,padByte...)
return plaintText
}
//aes加密
func encryptionText(plaintText []byte, key []byte) []byte {
//1、創建aes對象
block,err := aes.NewCipher(key)
if err != nil {
panic(err)
}
//2、明文補充
newText := paddingPlaintText(plaintText,block.BlockSize())
//3、創建cbc對象
iv := []byte("12345678abcdefgh")
blockMode := cipher.NewCBCEncrypter(block,iv)
//4、加密
blockMode.CryptBlocks(newText,newText)
return newText
}
//解密後的去尾
func clearplaintText(plaintText []byte, blockSize int) []byte {
//1、得到最後一個位元組、並轉換成整型數據
padNum := int(plaintText[len(plaintText)-1])
//2、截取明文位元組中去掉得到的整型數據之前的數據、此處出錯、沒有用len-padNum
newText := plaintText[:len(plaintText)-padNum]
return newText
}
//aes解密
func deCryptionText(crypherText []byte, key []byte ) []byte {
//1、創建aes對象
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
//2、創建cbc對象
iv := []byte("12345678abcdefgh")
blockMode := cipher.NewCBCDecrypter(block,iv)
//3、解密
blockMode.CryptBlocks(crypherText,crypherText)
//4、去尾
newText := clearplaintText(crypherText,block.BlockSize())
return newText
}
func main(){
//需要進行加密的明文
plaintText := []byte("CBC--密文沒有規律、經常使用的加密方式,最後一個分組需要填充,需要初始化向量")
//密鑰Key的長度需要與分組長度相同、且加密解密的密鑰相同
key := []byte("12345678abcdefgh")
//調用加密函數
cipherText := encryptionText(plaintText,key)
//調用解密函數
newPlaintText := deCryptionText(cipherText,key)
fmt.Println("解密後",string(newPlaintText))
}
//aes--ctr加密
func encryptionCtrText(plaintText []byte, key []byte) []byte {
//1、創建aes對象
block,err := aes.NewCipher(key)
if err != nil {
panic(err)
}
//2、創建ctr對象,雖然ctr模式不需要iv,但是go中使用ctr時還是需要iv
iv := []byte("12345678abcdefgh")
stream := cipher.NewCTR(block,iv)
stream.XORKeyStream(plaintText,plaintText)
return plaintText
}
func main() {
//aes--ctr加密解密、調用兩次即為解密、因為加密解密函數相同stream.XORKeyStream
ctrcipherText := encryptionCtrText(plaintText, key)
ctrPlaintText := encryptionCtrText(ctrcipherText,key)
fmt.Println("aes解密後", string(ctrPlaintText))
}
英文單詞:
明文:plaintext 密文:ciphertext 填充:padding/fill 去掉clear 加密Encryption 解密Decryption
『貳』 關於RSA中公鑰和私鑰的具體使用情況區分
公鑰和私鑰在一些銀行系統、第三方支付系統SDK中經常會遇到,剛接觸公鑰私鑰的朋友們估計很難區分兩者的區別。
RSA公鑰和私鑰是什麼?
首先來說,RSA是一種非對稱加密演算法,它是由三位數學家(Rivest、Shamir、Adleman)設計出來的。非對稱加密是相對於對稱加密而言的。對稱加密演算法是指加密解密使用的是同一個秘鑰,而非對稱加密是由兩個密鑰(公鑰、私鑰)來進行加密解密的,由此可見非對稱加密安全性更高。
公鑰顧名思義就是公開的密鑰會發放給多個持有人,而私鑰是私有密碼往往只有一個持有人。
公私鑰特性
公鑰和私鑰都可用於加密和解密
公鑰和私鑰都可以用於加解密操作,用公鑰加密的數據只能由對應的私鑰解密,反之亦然。雖說兩者都可用於加密,但是不同場景使用不同的密鑰來加密,規則如下:
1、私鑰用於簽名、公鑰用於驗簽
簽名和加密作用不同,簽名並不是為了保密,而是為了保證這個簽名是由特定的某個人簽名的,而不是被其它人偽造的簽名,所以私鑰的私有性就適合用在簽名用途上。
私鑰簽名後,只能由對應的公鑰解密,公鑰又是公開的(很多人可持有),所以這些人拿著公鑰來解密,解密成功後就能判斷出是持有私鑰的人做的簽名,驗證了身份合法性。
2、公鑰用於加密、私鑰用於解密,這才能起到加密作用
因為公鑰是公開的,很多人可以持有公鑰。若用私鑰加密,那所有持有公鑰的人都可以進行解密,這是不安全的!
若用公鑰加密,那隻能由私鑰解密,而私鑰是私有不公開的,只能由特定的私鑰持有人解密,保證的數據的安全性。
『叄』 對稱加密、非對稱加密、RSA(總結)
指的就是加、解密使用的同是一串密鑰,所以被稱做對稱加密。對稱加密只有一個密鑰作為私鑰。 常見的對稱加密演算法:DES,AES等。
指的是加、解密使用不同的密鑰,一把作為公開的公鑰,另一把作為私鑰。公鑰加密的信息,只有私鑰才能解密。反之,私鑰加密的信息,只有公鑰才能解密。 舉個例子,你向某公司伺服器請求公鑰,伺服器將公鑰發給你,你使用公鑰對消息加密,那麼只有私鑰的持有人才能對你的消息解密。與對稱加密不同的是,公司伺服器不需要將私鑰通過網路發送出去,因此安全性大大提高。最常用的非對稱加密演算法:
對稱加密相比非對稱加密演算法來說,加解密的效率要高得多、加密速度快。但是缺陷在於對於密鑰的管理和分發上比較困難,不是非常安全,密鑰管理負擔很重。
安全性更高,公鑰是公開的,密鑰是自己保存的,不需要將私鑰給別人。缺點:加密和解密花費時間長、速度慢,只適合對少量數據進行加密。
安全肯定是非對稱加密安全,但是效率比較慢,對稱加密效率高,但是不安全。嚴謹一點的做法是混合起來使用,將對稱加密的密鑰使用非對稱加密的公鑰進行加密,然後發送出去,接收方使用私鑰進行解密得到對稱加密的密鑰,然後雙方可以使用對稱加密來進行溝通。實際工作中直接使用非對稱加、解密其實也可以,因為我們平時一般請求的報文不會很大,加解密起來速度在可接受范圍內,或者可以對敏感欄位,比如密碼、手機號、身份證號等進行分段加密,效率還可以。
『肆』 簡要說說對稱加密和非對稱加密的原理以及區別是什麼
對稱加密的原理是數據發送方將明文(原始數據)和加密密鑰一起經過特殊加密演算法處理後,使其變成復雜的加密密文發送出去。接收方收到密文後,若想解讀原文,則需要使用加密密鑰及相同演算法的逆演算法對密文進行解密,才能使其恢復成可讀明文。
非對稱加密的原理是甲方首先生成一對密鑰同時將其中的一把作為公開密鑰;得到公開密鑰的乙方再使用該密鑰對需要加密的信息進行加密後再發送給甲方;甲方再使用哪鍵另一把對應的私有密鑰對加密後的信息進行解密,這樣就實現了機密數據傳輸。
對稱加密和非對稱加密的區別為:密鑰不同、安全性不同、數字簽名不同。
一、密鑰不同
1、對稱加密:對稱加密加密和解密使用同一個密鑰。
2、非對稱加密:非對稱加密加密和解密所使用的不是同一個密鑰,需要兩個密鑰來進行加密和解密。
二、安全性不同
1、對基緩銷稱加密:對稱加密如果用於通過網路傳輸加密文件,那麼不管使用任何方法將密鑰告訴對方,都有可能被竊聽。
2、非對稱加密:非對稱加密因為它包含有兩個密鑰,且僅有其中的「公鑰」是可以被公開的,接收方只需要使用自己已持有的私鑰進行解密,這樣就可以很好的避免密鑰在傳輸過程中產生的安全問題。
三搏游、數字簽名不同
1、對稱加密:對稱加密不可以用於數字簽名和數字鑒別。
2、非對稱加密:非對稱加密可以用於數字簽名和數字鑒別。
『伍』 對稱密鑰加密的缺點和公開密鑰加密的缺點是什麼急!!!!
對稱加密:加密和解密的密鑰相同,其缺點是:保存和管理密鑰十分復雜,安全地傳送密鑰也十分困難。
分對稱加密:有兩個密鑰,一個用來加密一個用來解密,並且不能根據與一個密鑰來推算出另一個密鑰,比較安全,但實現起來比較復雜。
『陸』 對稱密碼體質加密使用什麼的密鑰,非對稱密碼體質的加密使用什麼的密鑰
1.對稱密鑰密碼:對稱密鑰加密又稱私鑰加密,即信息的發送方和接收方用一個密鑰去加密和解密數據。它的最大優勢是加/解密速度快,
適合於對大數據量進行加密,但密鑰管理困難。
2.非對稱密鑰密碼:非對稱密鑰加密又稱公鑰密鑰加密。它需要使用一對密鑰
來分別完成加密和解密操作,一個公開發布,即公開密鑰,另一
個由用戶自己秘密保存,即私用密鑰。信息發送者用公開密鑰去
加密,而信息接收者則用私用密鑰去解密。公鑰機制靈活,但加密和解密速度卻比對稱密鑰加密慢得多。
『柒』 對稱 和 非對稱 密鑰 結合使用
對稱加密是最快速、最簡單的一種加密方式,加密(encryption)與解密(decryption)用的是同樣的密鑰(secret key),這種方法在密碼學中叫做對稱加密演算法。對稱加密有很多種演算法,由於它效率很高,所以被廣泛使用在很多加密協議的核心當中。
對稱加密通常使用的是相對較小的密鑰,一般小於256 bit。因為密鑰越大,加密越強,但加密與解密的過程越慢。如果你只用1 bit來做這個密鑰,那黑客們可以先試著用0來解密,不行的話就再用1解;但如果你的密鑰有1 MB大,黑客們可能永遠也無法破解,但加密和解密的過程要花費很長的時間。密鑰的大小既要照顧到安全性,也要照顧到效率,是一個trade-off。
2000年10月2日,美國國家標准與技術研究所(NIST--American National Institute of Standards and Technology)選擇了Rijndael演算法作為新的高級加密標准(AES--Advanced Encryption Standard)。
對稱加密的一大缺點是密鑰的管理與分配,換句話說,如何把密鑰發送到需要解密你的消息的人的手裡是一個問題。在發送密鑰的過程中,密鑰有很大的風險會被黑客們攔截。現實中通常的做法是將對稱加密的密鑰進行非對稱加密,然後傳送給需要它的人。
對稱加密演算法在分布式網路系統上使用較為困難,主要是因為密鑰管理困難,使用成本較高。在計算機專網系統中廣泛使用的對稱加密演算法有DES、IDEA和AES。
傳統的DES由於只有56位的密鑰,因此已經不適應當今分布式開放網路對數據加密安全性的要求。1997年RSA數據安全公司發起了一項「DES挑戰賽」的活動,志願者四次分別用四個月、41天、56個小時和22個小時破解了其用56位密鑰DES演算法加密的密文。即DES加密演算法在計算機速度提升後的今天被認為是不安全的。
AES是美國聯邦政府採用的商業及政府數據加密標准,預計將在未來幾十年裡代替DES在各個領域中得到廣泛應用。AES提供128位密鑰,因此,128位AES的加密強度是56位DES加密強度的1021倍還多。假設可以製造一部可以在1秒內破解DES密碼的機器,那麼使用這台機器破解一個128位AES密碼需要大約149億萬年的時間。(更深一步比較而言,宇宙一般被認為存在了還不到200億年)因此可以預計,美國國家標准局倡導的AES即將作為新標准取代DES。
1976年,美國學者Dime和Henman為解決 信息公開 傳送和密鑰管理問題,提出一種新的密鑰交換協議,允許在不安全的媒體上的通訊雙方交換信息,安全地達成一致的密鑰,這就是「 公開密鑰 系統」。相對於「對稱加密演算法」這種方法也叫做「非對稱加密演算法」。
非對稱加密為數據的加密與解密提供了一個非常安全的方法,它使用了一對密鑰,公鑰(public key)和私鑰(private key)。私鑰只能由一方安全保管,不能外泄,而公鑰則可以發給任何請求它的人。非對稱加密使用這對密鑰中的一個進行加密,而解密則需要另一個密鑰。比如,你向銀行請求公鑰,銀行將公鑰發給你,你使用公鑰對消息加密,那麼只有私鑰的持有人--銀行才能對你的消息解密。與對稱加密不同的是,銀行不需要將私鑰通過網路發送出去,因此安全性大大提高。
目前最常用的非對稱加密演算法是RSA演算法,是Rivest, Shamir, 和Adleman於1978年發明,他們那時都是在MIT。
不對稱加密演算法使用兩把完全不同但又是完全匹配的一對鑰匙—公鑰和私鑰。在使用不對稱加密演算法加密文件時,只有使用匹配的一對公鑰和私鑰,才能完成對明文的加密和解密過程。加密明文時採用公鑰加密,解密密文時使用私鑰才能完成,而且發信方(加密者)知道收信方的公鑰,只有收信方(解密者)才是唯一知道自己私鑰的人。不對稱加密演算法的基本原理是,如果發信方想發送只有收信方才能解讀的加密信息,發信方必須首先知道收信方的公鑰,然後利用收信方的公鑰來加密原文;收信方收到加密密文後,使用自己的私鑰才能解密密文。顯然,採用不對稱加密演算法,收發信雙方在通信之前,收信方必須將自己早已隨機生成的公鑰送給發信方,而自己保留私鑰。由於不對稱演算法擁有兩個密鑰,因而特別適用於分布式系統中的數據加密。廣泛應用的不對稱加密演算法有RSA演算法和美國國家標准局提出的DSA。以不對稱加密演算法為基礎的加密技術應用非常廣泛。
雖然非對稱加密很安全,但是和對稱加密比起來,它非常的慢,所以我們還是要用對稱加密來傳送消息,但對稱加密所使用的密鑰我們可以通過非對稱加密的方式發送出去。為了解釋這個過程,請看下面的例子:
(1) Alice需要在銀行的網站做一筆交易,她的瀏覽器首先生成了一個隨機數作為 對稱密鑰 。
(2) Alice的瀏覽器向銀行的網站請求公鑰。
(3) 銀行將公鑰發送給Alice。
(4) Alice的瀏覽器使用銀行的公鑰將自己的 對稱密鑰 加密。
(5) Alice的瀏覽器將加密後的 對稱密鑰 發送給銀行。
(6) 銀行使用私鑰解密得到Alice瀏覽器的對稱密鑰。
(7) Alice與銀行可以使用對稱密鑰來對溝通的內容進行加密與解密了。
(1) 對稱加密加密與解密使用的是同樣的密鑰,所以速度快,但由於需要將密鑰在 網路傳輸 ,所以安全性不高。
(2) 非對稱加密使用了一對密鑰,公鑰與私鑰,所以安全性高,但加密與解密速度慢。
(3) 解決的辦法是將對稱加密的密鑰使用非對稱加密的公鑰進行加密,然後發送出去,接收方使用私鑰進行解密得到對稱加密的密鑰,然後雙方可以使用對稱加密來進行溝通。
『捌』 簡述對稱加密演算法的基本原理
不對稱加密演算法使用兩把完全不同但又是完全匹配的一對鑰匙—公鑰和私鑰。在使用不對稱加密演算法加密文件時,只有使用匹配的一對公鑰和私鑰,才能完成對明文的加密和解密過程。~~~ ~ 加密明文時採用公鑰加密,解密密文時使用私鑰才能完成,而且發信方(加密者)知道收信方的公鑰,只有收信方(解密者)才是唯一知道自己私鑰的人。不對稱加密演算法的基本原理是,如果發信方想發送只有收信方才能解讀的加密信息,發信方必須首先知道收信方的公鑰,然後利用收信方的公鑰來加密原文; 收信方收到加密密文後,使用自己的私鑰才能解密密文。顯然,採用不對稱加密演算法,收發信雙方在通信之前,收信方必須將自己早已隨機生成的公鑰送給發信方,而自己保留私鑰。由於不對稱演算法擁有兩個密鑰,因而特別適用於分布式系統中的數據加密。 廣泛應用的不對稱加密演算法有RSA演算法和美國國家標准局提出的DSA。以不對稱加密演算法為基礎的加密技術應用非常廣泛。~~~ OK
『玖』 科普知識—對稱加密和非對稱加密
區塊鏈技術中廣泛應用到非對稱加密技術,非對稱加密技術保證了信息在傳輸過程中的安全性,非對稱加密技術是在對稱加密技術上發展來的。本文主要闡述對稱加密技術和非對稱加密技術的概念和特點,並舉例說明。
對稱加密就是用相同的密鑰對原文進行加密和解密,通信雙方共用一個密鑰。
基於對稱加密演算法傳輸信息「ABC」的步驟。
(1)發送方通過密鑰對原文"ABC"進行加密,得到密文"abc",並發送給接收方。密鑰為將字母轉換為對應的小寫字母,大寫A轉換為小寫a,「BC」同理轉換為「bc」。
(2)發送方將密鑰發送給接收方。
(3)接收方通過密鑰對密文進行解密,反推出原文「ABC」。
對稱加密演算法的缺點:無法確保密鑰被安全傳遞。
密鑰就是傳說中的「密碼本」。密文在傳輸過程中是可能被第三方截獲的,關鍵就落在「密碼本」上,如果密碼本也被第三方截獲,則傳輸的密碼信息將被第三方破獲,所以經常看到電影、電視劇的情節中通過各種手段保護密碼本的安全送達。
非對稱加密技術很好的解決了對稱加密技術密鑰無法安全傳遞的問題。
非對稱加密有兩個密鑰,即公鑰(Public Key)和私鑰(Private Key),對數據進行加密和解密使用不同的密鑰。使用公鑰進行加密,使用私鑰進行解密。
非對稱加密演算法中私鑰就是一個隨機數,基於不同的演算法生成不同的隨機數,如:SHA256演算法生成的是256位的隨機數,通常是調用操作系統的隨機數生成器來生成私鑰,私鑰通過一定的加密演算法推導出公鑰,私鑰到公鑰的推導過程是單向的,也就是說公鑰無法反推導出私鑰。
基於非對稱加密演算法傳輸信息「hello world」的步驟。
(1)發送方使用接收方的公鑰對待發送信息「hello world」加密,此處需注意:信息發送給誰,使用誰的公鑰進行加密,公鑰是可以公開的,類似於銀行卡賬戶。
(2)發送方將加密後的密文通過網路發送給接收方。
(3)接收方接收到密文後,使用自己的私鑰對密文進行解密,從而獲得傳輸信息「hello world」。
採用非對稱加密演算法即使第三方在網路上截獲到密文,但其無法獲得接收方的私鑰,也就無法對密文進行解密,作為接收方務必保證自己私鑰的安全,所以非對稱加密技術解決了密鑰傳輸過程的安全性問題。
本文主要闡述對稱加密技術和非對稱加密技術的概念和特點,並舉例說明。對稱加密是通信雙方共用密鑰,無法保證密鑰的安全傳遞;非對稱加密使用接收方的公鑰對數據加密,接收方使用自己的私鑰解密,即使信息被第三方截獲,由於沒有接收方的私鑰,也無法破解密文。
『拾』 非對稱加密和對稱加密
非對稱加密和對稱加密在加密和解密過程、加密解密速度、傳輸的安全性上都有所不同,具體介紹如下:
1、加密和解密過程不同
對稱加密過程和解密過程使用的同一個密鑰,加密過程相當於用原文+密鑰可以傳輸出密文,同時解密過程用密文-密鑰可以推導出原文。但非對稱加密採用了兩個密鑰,一般使用公鑰進行加密,使用私鑰進行解密。
2、加密解密速度不同
對稱加密解密的速度比較快,適合數據比較長時的使用。非對稱加密和解密花費的時間長、速度相對較慢,只適合對少量數據的使用。
3、傳輸的安全性不同
對稱加密的過程中無法確保密鑰被安全傳遞,密文在傳輸過程中是可能被第三方截獲的,如果密碼本也被第三方截獲,則傳輸的密碼信息將被第三方破獲,安全性相對較低。
非對稱加密演算法中私鑰是基於不同的演算法生成不同的隨機數,私鑰通過一定的加密演算法推導出公鑰,但私鑰到公鑰的推導過程是單向的,也就是說公鑰無法反推導出私鑰。所以安全性較高。
一、對稱加密演算法
指加密和解密使用相同密鑰的加密演算法。對稱加密演算法用來對敏感數據等信息進行加密,常用的演算法包括DES、3DES、AES、DESX、Blowfish、、RC4、RC5、RC6。
DES(Data Encryption Standard) :數據加密標准,速度較快,適用於加密大量數據的場合。
3DES(Triple DES) :是基於DES,對一塊數據用三個不同的密鑰進行三次加密,強度更高。
AES(Advanced Encryption Standard) :高級加密標准,是下一代的加密演算法標准,速度快,安全級別高;
二、非對稱加密演算法
指加密和解密使用不同密鑰的加密演算法,也稱為公私鑰加密。假設兩個用戶要加密交換數據,雙方交換公鑰,使用時一方用對方的公鑰加密,另一方即可用自己的私鑰解密。常見的非對稱加密演算法:RSA、DSA(數字簽名用)、ECC(移動設備用)、Diffie-Hellman、El Gamal。
RSA: 由 RSA 公司發明,是一個支持變長密鑰的公共密鑰演算法,需要加密的文件塊的長度也是可變的;
DSA(Digital Signature Algorithm) :數字簽名演算法,是一種標準的 DSS(數字簽名標准);
ECC(Elliptic Curves Cryptography) :橢圓曲線密碼編碼學。
ECC和RSA相比,在許多方面都有對絕對的優勢,主要體現在以下方面:
(1)抗攻擊性強。相同的密鑰長度,其抗攻擊性要強很多倍。
(2)計算量小,處理速度快。ECC總的速度比RSA、DSA要快得多。
(3)存儲空間佔用小。ECC的密鑰尺寸和系統參數與RSA、DSA相比要小得多,意味著它所佔的存貯空間要小得多。這對於加密演算法在IC卡上的應用具有特別重要的意義。
(4)帶寬要求低。當對長消息進行加解密時,三類密碼系統有相同的帶寬要求,但應用於短消息時ECC帶寬要求卻低得多。帶寬要求低使ECC在無線網路領域具有廣泛的應用前景。
三、散列演算法(Hash演算法---單向加密演算法)
散列是信息的提煉,通常其長度要比信息小得多,且為一個固定長度。加密性強的散列一定是不可逆的,這就意味著通過散列結果,無法推出任何部分的原始信息。任何輸入信息的變化,哪怕僅一位,都將導致散列結果的明顯變化,這稱之為雪崩效應。散列還應該是防沖突的,即找不出具有相同散列結果的兩條信息。具有這些特性的散列結果就可以用於驗證信息是否被修改。
Hash演算法: 特別的地方在於它是一種單向演算法,用戶可以通過Hash演算法對目標信息生成一段特定長度的唯一的Hash值,卻不能通過這個Hash值重新獲得目標信息。因此Hash演算法常用在不可還原的密碼存儲、信息完整性校驗等。
單向散列函數一般用於產生消息摘要,密鑰加密等,常見的Hash演算法:MD2、MD4、MD5、HAVAL、SHA、SHA-1、HMAC、HMAC-MD5、HMAC-SHA1。
MD5(Message Digest Algorithm 5): 是RSA數據安全公司開發的一種單向散列演算法,非可逆,相同的明文產生相同的密文。
SHA(Secure Hash Algorithm): 可以對任意長度的數據運算生成一個160位的數值;
SHA-1與MD5的比較
因為二者均由MD4導出,SHA-1和MD5彼此很相似。相應的,他們的強度和其他特性也是相似,但還有以下幾點不同:
(1)對強行供給的安全性:最顯著和最重要的區別是SHA-1摘要比MD5摘要長32 位。使用強行技術,產生任何一個報文使其摘要等於給定報摘要的難度對MD5是2^(128)數量級的操作,而對SHA-1則是2^(160)數量級的操作。這樣,SHA-1對強行攻擊有更大的強度。
(2)對密碼分析的安全性:由於MD5的設計,易受密碼分析的攻擊,SHA-1顯得不易受這樣的攻擊。
速度:在相同的硬體上,SHA-1的運行速度比MD5慢。
四、 加密演算法的選擇
1.由於非對稱加密演算法的運行速度比對稱加密演算法的速度慢很多,當我們需要加密大量的數據時,建議採用對稱加密演算法,提高加解密速度。
2.對稱加密演算法不能實現簽名,因此簽名只能非對稱演算法。
3.由於對稱加密演算法的密鑰管理是一個復雜的過程,密鑰的管理直接決定著他的安全性,因此當數據量很小時,我們可以考慮採用非對稱加密演算法。
4.在實際的操作過程中,我們通常採用的方式是:採用非對稱加密演算法管理對稱演算法的密鑰,然後用對稱加密演算法加密數據,這樣我們就集成了兩類加密演算法的優點,既實現了加密速度快的優點,又實現了安全方便管理密鑰的優點。
那採用多少位的密鑰呢?
RSA建議採用1024位的數字,ECC建議採用160位,AES採用128為即可。