導航:首頁 > 文檔加密 > 用於加密消息摘要的密鑰是

用於加密消息摘要的密鑰是

發布時間:2023-04-27 18:07:55

A. 網路信息安全古典加密演算法都有哪些

常用密鑰演算法
密鑰演算法用來對敏感數據、摘要、簽名等信息進行加密,常用的密鑰演算法包括:
DES(Data Encryption Standard):數據加密標准,速度較快,適用於加密大量數據的場合;
3DES(Triple DES):是基於DES,對一塊數據用三個不同的密鑰進行三次加密,強度更高;
RC2和RC4:用變長密鑰對大量數據進行加密,比DES快;
RSA:由RSA公司發明,是一個支持變長密鑰的公共密鑰演算法,需要加密的文件快的長度也是可變的;
DSA(Digital Signature Algorithm):數字簽名演算法,是一種標準的DSS(數字簽名標准);
AES(Advanced Encryption Standard):高級加密標准,是下一代的加密演算法標准,速度快,安全級別高,目前AES標準的一個實現是 Rijndael演算法;
BLOWFISH:它使用變長的密鑰,長度可達448位,運行速度很快;
其它演算法:如ElGamal、Deffie-Hellman、新型橢圓曲線演算法ECC等。

常見加密演算法
des(data
encryption
standard):數據加密標准,速度較快,適用於加密大量數據的場合;
3des(triple
des):是基於des,對一塊數據用三個不同的密鑰進行三次加密,強度更高;
rc2和
rc4:用變長密鑰對大量數據進行加密,比
des
快;
idea(international
data
encryption
algorithm)國際數據加密演算法:使用
128
位密鑰提供非常強的安全性;
rsa:由
rsa
公司發明,是一個支持變長密鑰的公共密鑰演算法,需要加密的文件塊的長度也是可變的;
dsa(digital
signature
algorithm):數字簽名演算法,是一種標準的
dss(數字簽名標准);
aes(advanced
encryption
standard):高級加密標准,是下一代的加密演算法標准,速度快,安全級別高,目前
aes
標準的一個實現是
rijndael
演算法;
blowfish,它使用變長的密鑰,長度可達448位,運行速度很快;
其它演算法,如elgamal、deffie-hellman、新型橢圓曲線演算法ecc等。
比如說,md5,你在一些比較正式而嚴格的網站下的東西一般都會有md5值給出,如安全焦點的軟體工具,每個都有md5。

B. 十大常見密碼加密方式

一、密鑰散列

採用MD5或者SHA1等散列演算法,對明文進行加密。嚴格來說,MD5不算一種加密演算法,而是一種摘要演算法。無論多長的輸入,MD5都會輸出一個128位(16位元組)的散列值。而SHA1也是流行的消息摘要演算法,它可以生成一個被稱為消息摘要的160位(20位元組)散列值。MD5相對SHA1來說,安全性較低,但是速度快;SHA1和MD5相比安全性高,但是速度慢。

二、對稱加密

採用單鑰密碼系統的加密方法,同一個密鑰可以同時用作信息的加密和解密,這種加密方法稱為對稱加密。對稱加密演算法中常用的演算法有:DES、3DES、TDEA、Blowfish、RC2、RC4、RC5、IDEA、SKIPJACK等。

三、非對稱加密

非對稱加密演算法是一種密鑰的保密方法,它需要兩個密鑰來進行加密和解密,這兩個密鑰是公開密鑰和私有密鑰。公鑰與私鑰是一對,如果用公鑰對數據進行加密,只有用對應的私鑰才能解密。非對稱加密演算法有:RSA、Elgamal、背包演算法、Rabin、D-H、ECC(橢圓曲線加密演算法)。

四、數字簽名

數字簽名(又稱公鑰數字簽名)是只有信息的發送者才能產生的別人無法偽造的一段數字串,這段數字串同時也是對信息的發送者發送信息真實性的一個有效證明。它是一種類似寫在紙上的普通的物理簽名,但是在使用了公鑰加密領域的技術來實現的,用於鑒別數字信息的方法。

五、直接明文保存

早期很多這樣的做法,比如用戶設置的密碼是「123」,直接就將「123」保存到資料庫中,這種是最簡單的保存方式,也是最不安全的方式。但實際上不少互聯網公司,都可能採取的是這種方式。

六、使用MD5、SHA1等單向HASH演算法保護密碼

使用這些演算法後,無法通過計算還原出原始密碼,而且實現比較簡單,因此很多互聯網公司都採用這種方式保存用戶密碼,曾經這種方式也是比較安全的方式,但隨著彩虹表技術的興起,可以建立彩虹表進行查表破解,目前這種方式已經很不安全了。

七、特殊的單向HASH演算法

由於單向HASH演算法在保護密碼方面不再安全,於是有些公司在單向HASH演算法基礎上進行了加鹽、多次HASH等擴展,這些方式可以在一定程度上增加破解難度,對於加了「固定鹽」的HASH演算法,需要保護「鹽」不能泄露,這就會遇到「保護對稱密鑰」一樣的問題,一旦「鹽」泄露,根據「鹽」重新建立彩虹表可以進行破解,對於多次HASH,也只是增加了破解的時間,並沒有本質上的提升。

八、PBKDF2

該演算法原理大致相當於在HASH演算法基礎上增加隨機鹽,並進行多次HASH運算,隨機鹽使得彩虹表的建表難度大幅增加,而多次HASH也使得建表和破解的難度都大幅增加。

九、BCrypt

BCrypt 在1999年就產生了,並且在對抗 GPU/ASIC 方面要優於 PBKDF2,但是我還是不建議你在新系統中使用它,因為它在離線破解的威脅模型分析中表現並不突出。

十、SCrypt

SCrypt 在如今是一個更好的選擇:比 BCrypt設計得更好(尤其是關於內存方面)並且已經在該領域工作了 10 年。另一方面,它也被用於許多加密貨幣,並且我們有一些硬體(包括 FPGA 和 ASIC)能實現它。 盡管它們專門用於采礦,也可以將其重新用於破解。

C. 非對稱加密演算法 (RSA、DSA、ECC、DH)

非對稱加密需要兩個密鑰:公鑰(publickey) 和私鑰 (privatekey)。公鑰和私鑰是一對,如果用公鑰對數據加密,那麼只能用對應的私鑰解密。如果用私鑰對數據加密,只能用對應的公鑰進行解密。因為加密和解密用的是不同的密鑰,所以稱為非對稱加密。

非對稱加密演算法的保密性好,它消除了最終用戶交換密鑰的需要。但是加解密速度要遠遠慢於對稱加密,在某些極端情況下,甚至能比對稱加密慢上1000倍。

演算法強度復雜、安全性依賴於演算法與密鑰但是由於其演算法復雜,而使得加密解密速度沒有對稱加密解密的速度快。對稱密碼體制中只有一種密鑰,並且是非公開的,如果要解密就得讓對方知道密鑰。所以保證其安全性就是保證密鑰的安全,而非對稱密鑰體制有兩種密鑰,其中一個是公開的,這樣就可以不需要像對稱密碼那樣傳輸對方的密鑰了。這樣安全性就大了很多。

RSA、Elgamal、背包演算法、Rabin、D-H、ECC (橢圓曲線加密演算法)。使用最廣泛的是 RSA 演算法,Elgamal 是另一種常用的非對稱加密演算法。

收信者是唯一能夠解開加密信息的人,因此收信者手裡的必須是私鑰。發信者手裡的是公鑰,其它人知道公鑰沒有關系,因為其它人發來的信息對收信者沒有意義。

客戶端需要將認證標識傳送給伺服器,此認證標識 (可能是一個隨機數) 其它客戶端可以知道,因此需要用私鑰加密,客戶端保存的是私鑰。伺服器端保存的是公鑰,其它伺服器知道公鑰沒有關系,因為客戶端不需要登錄其它伺服器。

數字簽名是為了表明信息沒有受到偽造,確實是信息擁有者發出來的,附在信息原文的後面。就像手寫的簽名一樣,具有不可抵賴性和簡潔性。

簡潔性:對信息原文做哈希運算,得到消息摘要,信息越短加密的耗時越少。

不可抵賴性:信息擁有者要保證簽名的唯一性,必須是唯一能夠加密消息摘要的人,因此必須用私鑰加密 (就像字跡他人無法學會一樣),得到簽名。如果用公鑰,那每個人都可以偽造簽名了。

問題起源:對1和3,發信者怎麼知道從網上獲取的公鑰就是真的?沒有遭受中間人攻擊?

這樣就需要第三方機構來保證公鑰的合法性,這個第三方機構就是 CA (Certificate Authority),證書中心。

CA 用自己的私鑰對信息原文所有者發布的公鑰和相關信息進行加密,得出的內容就是數字證書。

信息原文的所有者以後發布信息時,除了帶上自己的簽名,還帶上數字證書,就可以保證信息不被篡改了。信息的接收者先用 CA給的公鑰解出信息所有者的公鑰,這樣可以保證信息所有者的公鑰是真正的公鑰,然後就能通過該公鑰證明數字簽名是否真實了。

RSA 是目前最有影響力的公鑰加密演算法,該演算法基於一個十分簡單的數論事實:將兩個大素數相乘十分容易,但想要對其乘積進行因式分解卻極其困難,因此可以將乘積公開作為加密密鑰,即公鑰,而兩個大素數組合成私鑰。公鑰是可發布的供任何人使用,私鑰則為自己所有,供解密之用。

A 要把信息發給 B 為例,確定角色:A 為加密者,B 為解密者。首先由 B 隨機確定一個 KEY,稱之為私鑰,將這個 KEY 始終保存在機器 B 中而不發出來;然後,由這個 KEY 計算出另一個 KEY,稱之為公鑰。這個公鑰的特性是幾乎不可能通過它自身計算出生成它的私鑰。接下來通過網路把這個公鑰傳給 A,A 收到公鑰後,利用公鑰對信息加密,並把密文通過網路發送到 B,最後 B 利用已知的私鑰,就能對密文進行解碼了。以上就是 RSA 演算法的工作流程。

由於進行的都是大數計算,使得 RSA 最快的情況也比 DES 慢上好幾倍,無論是軟體還是硬體實現。速度一直是 RSA 的缺陷。一般來說只用於少量數據加密。RSA 的速度是對應同樣安全級別的對稱密碼演算法的1/1000左右。

比起 DES 和其它對稱演算法來說,RSA 要慢得多。實際上一般使用一種對稱演算法來加密信息,然後用 RSA 來加密比較短的公鑰,然後將用 RSA 加密的公鑰和用對稱演算法加密的消息發送給接收方。

這樣一來對隨機數的要求就更高了,尤其對產生對稱密碼的要求非常高,否則的話可以越過 RSA 來直接攻擊對稱密碼。

和其它加密過程一樣,對 RSA 來說分配公鑰的過程是非常重要的。分配公鑰的過程必須能夠抵擋中間人攻擊。假設 A 交給 B 一個公鑰,並使 B 相信這是A 的公鑰,並且 C 可以截下 A 和 B 之間的信息傳遞,那麼 C 可以將自己的公鑰傳給 B,B 以為這是 A 的公鑰。C 可以將所有 B 傳遞給 A 的消息截下來,將這個消息用自己的密鑰解密,讀這個消息,然後將這個消息再用 A 的公鑰加密後傳給 A。理論上 A 和 B 都不會發現 C 在偷聽它們的消息,今天人們一般用數字認證來防止這樣的攻擊。

(1) 針對 RSA 最流行的攻擊一般是基於大數因數分解。1999年,RSA-155 (512 bits) 被成功分解,花了五個月時間(約8000 MIPS 年)和224 CPU hours 在一台有3.2G 中央內存的 Cray C916計算機上完成。

RSA-158 表示如下:

2009年12月12日,編號為 RSA-768 (768 bits, 232 digits) 數也被成功分解。這一事件威脅了現通行的1024-bit 密鑰的安全性,普遍認為用戶應盡快升級到2048-bit 或以上。

RSA-768表示如下:

(2) 秀爾演算法
量子計算里的秀爾演算法能使窮舉的效率大大的提高。由於 RSA 演算法是基於大數分解 (無法抵抗窮舉攻擊),因此在未來量子計算能對 RSA 演算法構成較大的威脅。一個擁有 N 量子位的量子計算機,每次可進行2^N 次運算,理論上講,密鑰為1024位長的 RSA 演算法,用一台512量子比特位的量子計算機在1秒內即可破解。

DSA (Digital Signature Algorithm) 是 Schnorr 和 ElGamal 簽名演算法的變種,被美國 NIST 作為 DSS (DigitalSignature Standard)。 DSA 是基於整數有限域離散對數難題的。

簡單的說,這是一種更高級的驗證方式,用作數字簽名。不單單只有公鑰、私鑰,還有數字簽名。私鑰加密生成數字簽名,公鑰驗證數據及簽名,如果數據和簽名不匹配則認為驗證失敗。數字簽名的作用就是校驗數據在傳輸過程中不被修改,數字簽名,是單向加密的升級。

橢圓加密演算法(ECC)是一種公鑰加密演算法,最初由 Koblitz 和 Miller 兩人於1985年提出,其數學基礎是利用橢圓曲線上的有理點構成 Abel 加法群上橢圓離散對數的計算困難性。公鑰密碼體制根據其所依據的難題一般分為三類:大整數分解問題類、離散對數問題類、橢圓曲線類。有時也把橢圓曲線類歸為離散對數類。

ECC 的主要優勢是在某些情況下它比其他的方法使用更小的密鑰 (比如 RSA),提供相當的或更高等級的安全。ECC 的另一個優勢是可以定義群之間的雙線性映射,基於 Weil 對或是 Tate 對;雙線性映射已經在密碼學中發現了大量的應用,例如基於身份的加密。不過一個缺點是加密和解密操作的實現比其他機制花費的時間長。

ECC 被廣泛認為是在給定密鑰長度的情況下,最強大的非對稱演算法,因此在對帶寬要求十分緊的連接中會十分有用。

比特幣錢包公鑰的生成使用了橢圓曲線演算法,通過橢圓曲線乘法可以從私鑰計算得到公鑰, 這是不可逆轉的過程。

https://github.com/esxgx/easy-ecc

Java 中 Chipher、Signature、KeyPairGenerator、KeyAgreement、SecretKey 均不支持 ECC 演算法。

https://www.jianshu.com/p/58c1750c6f22

DH,全稱為"Diffie-Hellman",它是一種確保共享 KEY 安全穿越不安全網路的方法,也就是常說的密鑰一致協議。由公開密鑰密碼體制的奠基人 Diffie 和 Hellman 所提出的一種思想。簡單的說就是允許兩名用戶在公開媒體上交換信息以生成"一致"的、可以共享的密鑰。也就是由甲方產出一對密鑰 (公鑰、私鑰),乙方依照甲方公鑰產生乙方密鑰對 (公鑰、私鑰)。

以此為基線,作為數據傳輸保密基礎,同時雙方使用同一種對稱加密演算法構建本地密鑰 (SecretKey) 對數據加密。這樣,在互通了本地密鑰 (SecretKey) 演算法後,甲乙雙方公開自己的公鑰,使用對方的公鑰和剛才產生的私鑰加密數據,同時可以使用對方的公鑰和自己的私鑰對數據解密。不單單是甲乙雙方兩方,可以擴展為多方共享數據通訊,這樣就完成了網路交互數據的安全通訊。

具體例子可以移步到這篇文章: 非對稱密碼之DH密鑰交換演算法

參考:
https://blog.csdn.net/u014294681/article/details/86705999

https://www.cnblogs.com/wangzxblog/p/13667634.html

https://www.cnblogs.com/taoxw/p/15837729.html

https://www.cnblogs.com/fangfan/p/4086662.html

https://www.cnblogs.com/utank/p/7877761.html

https://blog.csdn.net/m0_59133441/article/details/122686815

https://www.cnblogs.com/muliu/p/10875633.html

https://www.cnblogs.com/wf-zhang/p/14923279.html

https://www.jianshu.com/p/7a927db713e4

https://blog.csdn.net/ljx1400052550/article/details/79587133

https://blog.csdn.net/yuanjian0814/article/details/109815473

D. 密碼技術

密碼演算法的特性
1、是否需要事先配送私鑰:對稱密碼需要考慮
2、是否會遭到中間人攻擊:非對稱密碼分發公鑰時需要考慮
3、不可抵賴(可被雙方 和 第三方 用原理證明):非對稱密碼分發公鑰時需要考慮
4、能否保證消息的機密性:即不可破譯
5、能否保證消息的完整性(一致性):即不可篡改
6、不可冒充(偽造)

總結:對稱密碼(解決456)--非對稱密碼之單向通信--> 混合密碼(解決1) --非對稱密碼之數字簽名--> 公鑰證書(解決23)

概念
密碼演算法:加密演算法 + 密鑰 + 解密演算法,簡稱密碼
密鑰空間:密鑰的所有取值
隱蔽式安全性:以密碼演算法不為人所知,來保證機密性
分組密碼:對明文進行分組加密,而非以全文作為輸入
流密碼:不分組,整體加密

破解密文的方法
1、竊聽 + 破譯
2、社會工程學
破解密鑰的方法
1、暴力破解(密鑰窮舉),例如破譯凱撒密碼
2、頻率分析,例如破譯簡單替換密碼
3、選擇明文攻擊(對分組進行明文窮舉)

加密系統的可選技術
隱寫術:將消息藏在更大的數據中,例如藏頭詩
偽隨機數生成器
散列值(摘要,哈希值,指紋):原文經過散列函數(摘要函數,哈希函數,雜湊函數,單向加密)計算出來的值
對稱密碼(共享密鑰密碼):加密和解密用同一個私鑰
非對稱密碼(公鑰密碼):公鑰加密,私鑰解密
消息認證碼
數字簽名
公鑰證書

碰撞:兩個消息的散列值相同
弱抗碰撞性:給定一條消息,很難找到另一條消息與其散列值相同。防止以下情形,Bob持有一個消息A,計算其摘要;Alice找到與A散列值相同的另一條消息B,用B將A調包;由於摘要不變,不被Bob發覺
強抗碰撞性:很難找到兩條散列值相同的消息。防止以下情形,Alice拿兩個摘要相同的消息A和B,將A發給Bob;Bob計算其摘要;Alice再用B將A調包;由於摘要不變,不被Bob發覺
MD5(Message Digest 5)
歷史:1991年Ronald Rivest 設計出MD5
現狀:2004年王小雲提出了MD5碰撞攻擊演算法
SHA
歷史:1993年NIST發布SHA,1995年發布SHA-1,2002年發布SHA-2
現狀:2004年王小雲提出了SHA-0的碰撞攻擊演算法;2005年王小雲提出了SHA-1的碰撞攻擊演算法
SHA-3
歷史:2007年NIST發起選拔SHA-3,2012年Joan Daemen等人設計的Keccak演算法被選定為SHA-3

弱偽隨機數:隨機性
強偽隨機數:不可預測性
真隨機數:不可重現性

隨機數生成器:硬體可以通過熱雜訊實現真隨機數
偽隨機數生成器:軟體只能生成偽隨機數,需要一種子seed來初始化

偽隨機數演算法:線性同餘法、散列法、密碼法等

好的對稱密碼解決:不可破譯
缺點:需要事先配送密鑰
凱撒密碼
加密演算法:字母平移
密鑰:平移位數
解密演算法:逆向平移
破解密鑰:窮舉可能的密鑰
簡單替換密碼
加密演算法:一個字母替換成另一個字母
密鑰:替換表
解密演算法:逆向替換
破解密鑰:對密文的字母 和 字母組合進行頻率分析,與通用頻率表對比;用破譯出來的明文字母,代入密文,循環分析
Enigma密碼
發明者:德國人Arthur Sherbius
加密演算法:雙重加密,每日密鑰作為密鑰1,想一個密鑰2;用密鑰1加密密鑰2,得到密鑰2密文;用密鑰2加密消息;將密鑰2密文和消息密文一起發出
密鑰:密鑰冊子記錄的每天不同的密鑰
解密演算法:用每日密鑰解密密鑰2密文,得到密鑰2;用密鑰2解密消息密文
破譯者:Alan Turing 圖靈

DES密碼(Data Encryption Standard)
歷史:1974年IBM公司的Horst Feistel開發出了Lucifer密碼,1977年被美國國家標准學會(American National Standards Institute,ANSI)確定為DES標准
加密演算法:以64比特為一組,進行16輪運算。在一輪中,把一組分為左側和右側,並從密鑰中提取子密鑰;輪函數用一側和子密鑰生成一個比特序列,用這個比特序列對另一側進行異或運算(XOR)
密鑰:長度56位
破譯:可在現實時間內被暴力破解

三重DES密碼(triple-DES,TDEA,3DES)
加密演算法:將DES重復三次
密鑰:長度 56 * 3

AES密碼(Advanced Encryption Standard)
歷史:1997年,美國國家標准與技術研究院(National Institute of Standards and Technology,NIST)公開募集AES,2000年比利時密碼學家Joan Daemen 和 Vincent Rijmen提交的Rijndael方案,被選為標准
加密演算法:以128比特為一組,進行多輪的替換、平移、矩陣運算
密鑰:有128,192,256三種長度

分組密碼的迭代模式
ECB模式:Electronic CodeBook mode,電子密碼本模式;明文分組 和 密文分組 順序對應。主動攻擊者可以改變密文分組的順序,復制 或 刪除密文分組,使得接受者解密後得到錯誤的明文
CBC模式:Cipher Block Chaining mode,密碼分組鏈接模式;將本組明文 和 上組密文 進行異或運算後,在進行加密;如果被篡改,則不能正常解密
CFB模式:Cipher Feedback mode,密文反饋模式;將本組明文 和 上組密文 進行異或運算後,就得到本組的密文
OFB模式:Output Feedback mode,輸出反饋模式;用隨機比特序列作為初始化組(初始化向量);用初始化組的密文和 明文分組 異或運算,得到密文分組;再次對初始化組密文進行加密運算,得到新的初始化組密文,跟下組明文進行異或運算,以此類推
CTR模式:CounTeR mode,計數器模式;用隨機比特序列作為計數器的初始值,加密後與明文分組進行異或操作,得到密文分組;計數器加一,對下組明文進行加密

對稱密碼中,發送方發送密文時,帶上消息的MAC值A;接收方用相同方法計算出MAC值B;對比A和B,確保消息不被篡改
Encrypt-then-MAC:MAC值為消息密文的散列值
Encrypt-and-MAC:MAC值為消息明文的散列值
MAC-then-Encrypt:MAC值為明文散列值的密文

重放攻擊:攻擊者竊聽到Alice給Bob發送的消息後,重復給Bob發送,Bob以為都是Alice發的
預防重放攻擊:消息里帶有一個id

比對稱密碼:不可篡改、不可偽造
缺點:需要實現配送私鑰

基於口令的密碼:Password Based Encryption,PBE
解決:密鑰(會話密鑰)保存問題
CEK:會話密鑰
KEK:用來加密CEK的密鑰
方案
1、隨機數作為鹽salt,口令 + 鹽 的散列值作為KEK
2、用KEK加密CEK,得到CEK密文
3、只保存鹽和CEK密文,人腦記住口令,丟棄KEK

字典攻擊:如果沒有鹽參與生成KEK,那麼口令決定了KEK,常用的口令對應一個常用KEK字典,攻擊者直接拿常用KEK去解密CEK密文
鹽的作用:KEK由鹽參與形成,不可能有KEK字典包含這樣的KEK

非對稱密碼單向通信,不能單獨用於通信,只用在混合密碼中
方案:Alice 給 Bob 分發加密密鑰(公鑰);Bob用公鑰加密消息,發送給Alice;Alice用解密密鑰(私鑰)解密
總結:消息接收者是密鑰對主人,即私鑰持有人;公鑰用於加密,私鑰用於解密

RSA密碼
歷史:1978年,Ron Rivest、Adi Shamir、Reonard Adleman共同發表了RSA
加密演算法:密文 = 明文 E mode N
公鑰:E 和 N的組合
解密演算法:明文 = 密文 D mode N
私鑰:D 和 N的組合

生成密鑰對
生成質數:用偽隨機數生成隨機數,通過Miller-Rabin測試法測試它是不是質數,直到得到質數
求最大公約數:歐幾里得的輾轉相除法
1、求N
生成兩個512位的質數p和q,N = p * q
2、求L
L是p-1 和 q-1 的最小公倍數
3、求E
用偽隨機數生成(1,L)范圍內的隨機數,直到滿足E和L的最大公約數為1
4、求D
用偽隨機數生成(1,L)范圍內的隨機數,直到滿足(E * D) mod L = 1

破解:對N進行質因數分解,得到p和q,從而求出D。但是對大數的質因數分解,未有快速有效的方法

首次通信為混合密碼,後續通信為對稱密碼
比消息認證碼:無需事先配送私鑰
總體思路:Bob 用會話密鑰加密消息,用Alice的公鑰加密會話密鑰,一起發給Alice;Alice用私鑰解密會話密鑰,用會話密鑰解密消息
會話密鑰:用來加密消息的 對稱密碼的密鑰
1、Alice 給 Bob 發送公鑰
2、Bob隨機生成會話密鑰,用會話密鑰加密消息,得到消息密文
3、Bob用公鑰加密會話密鑰,得到會話密鑰密文
4、Bob將會話密鑰密文和消息密文一起發給Alice
5、Alice用私鑰解密會話密鑰,再用會話密鑰解密消息
6、雙方都有了會話密鑰,從此以後,可以用對稱密碼通信了,帶上消息認證碼

缺點:分發公鑰時,可能遭受中間人攻擊;Alice可能對給Bob發送公鑰這件事進行抵賴
中間人攻擊:中間人從一開始Alice向Bob發放公鑰時,就攔截了消息,得到Alice的公鑰;然後偽裝成Alice,向Bob發送自己的公鑰;從而Bob打算發給Alice的消息,能被中間人解密

不能單獨用於通信,只用在公鑰證書中
明文簽名:Alice用簽名密鑰(私鑰)加密消息的摘要,把摘要密文和消息明文一起發給Bob;Bob解密摘要密文,得到摘要A;算出明文摘要B,對比A和B
總結:私鑰用於加密,公鑰用於解密,與 非對稱加密之單向通信,剛好反過來

公鑰證書:Public-Key Certificate,PKC,簡稱證書
認證機構:Certification Authority,CA
證書標准:國際電信聯盟ITU 和 國際標准化組織ISO指定的X.509標准
流程:
1、Alice在CA登記
2、CA生成Alice的證書明文,包含Alice登記的信息、Alice的公鑰、CA信息
3、CA用自己的私鑰加密證書明文部分,得到數字簽名
4、證書明文部分 和 數字簽名 組成PKC,頒發給Alice
5、Bob向Alice獲取這個PKC,拿本地已有的CA公鑰去驗證證書,就得到了可信的Alice的公鑰
6、從此Alice 和 Bob之間可以進行混合密碼通信

首次通信為從CA獲取PKC,後續通信為混合密碼
比混合密碼:防止了中間人攻擊;CA不能抵賴自己的證書

歷史:1994年網景公司設計出SSL,2014年SSL 3.0被發現安全漏洞,1999年IEIF發布TLS
TLS(Transport Layer Security)是SSL(Secure Socket Layer)的後續版本,在tcp和http之間加一層TLS,就是https
OpenSSL:OpenSSL是實現SSL/TLS協議的工具包
以https為例
0、瀏覽器安裝時,存有幾個CA公鑰;伺服器在CA登記,拿到證書
1、瀏覽器訪問一個https地址,伺服器返回自己的證書
2、瀏覽器根據證書上的CA信息,拿對應的CA公鑰驗證證書,得到可信的伺服器公鑰
3、瀏覽器生成對稱密碼的密鑰(會話密鑰),用伺服器公鑰加密後發給伺服器
4、伺服器解密後得到會話密鑰,從此用對稱密碼通信,帶上消息認證碼

1、生成JKS證書:keytool -genkeypair -alias "別名" -keyalg "RSA" -keystore "D:app.jks"
2、將JKS轉換成PKCS12:keytool -importkeystore -srckeystore D:app.jks -destkeystore D:app.p12 -deststoretype pkcs12
3、將PKCS12轉成pem:openssl pkcs12 -in ./app.p12 -out app.pem
4、提取加密後的私鑰:將pem中 「—–BEGIN ENCRYPTED PRIVATE KEY—–」 至 「—–END ENCRYPTED PRIVATE KEY—–」 的內容拷貝出來,保存為ciphertext.key
5、將密文私鑰轉成明文私鑰:openssl rsa -in ciphertext.key -out plaintext.key

.jks(Java Key Storage):二進制格式,包含證書和私鑰,有密碼保護
.pfx 或 .p12(Predecessor of PKCS#12):二進制格式,包含證書和私鑰,有密碼保護
.pem(Privacy Enhanced Mail):文本格式,包含證書,可包含私鑰,私鑰有密碼保護
.der 或 .cer:二進制格式,只包含證書
.crt(Certificate):可以是der格式,也可以是pem格式,只包含證書

SSL證書:SSL證書必須綁定域名,不能綁定IP
加密服務、密鑰管理服務

閱讀全文

與用於加密消息摘要的密鑰是相關的資料

熱點內容
蘋果app網路驗證在哪裡 瀏覽:12
博科清空命令 瀏覽:384
簡愛英文pdf 瀏覽:376
cnc編程有前途嗎 瀏覽:586
聯想app怎麼聯網 瀏覽:722
linuxftp命令登錄 瀏覽:1000
android獲取圖片縮略圖 瀏覽:646
神戶制鋼螺桿壓縮機 瀏覽:29
差分演化演算法 瀏覽:567
中山市加密軟體 瀏覽:446
mc反編譯源碼 瀏覽:139
企業商城網站源碼 瀏覽:411
shell腳本編程是什麼 瀏覽:762
單片機led閃爍匯編 瀏覽:203
點淘app怎麼沒金蛋了 瀏覽:878
app拉新哪裡找推廣碼 瀏覽:935
哪個app生活服務好 瀏覽:108
mht安卓用什麼軟體打開 瀏覽:320
html5即時通訊源碼 瀏覽:144
python編程基礎豆瓣 瀏覽:710