古典加密演算法分為替代演算法和置換移位法。
1、替代演算法
替代演算法用明文的字母由其他字母或數字或符號所代替。最著名的替代演算法是愷撒密碼。凱撒密碼的原理很簡單,其實就是單字母替換。
例子:
明文:abcdefghijklmnopq
密文:defghijklmnopqrst
2、置換移位法
使用置換移位法的最著名的一種密碼稱為維吉尼亞密碼。它以置換移位為基礎的周期替換密碼。
在維吉尼亞密碼中,加密密鑰是一個可被任意指定的字元串。加密密鑰字元依次逐個作用於明文信息字元。明文信息長度往往會大於密鑰字元串長度,而明文的每一個字元都需要有一個對應的密鑰字元,因此密鑰就需要不斷循環,直至明文每一個字元都對應一個密鑰字元。
其他常見的加密演算法
1、DES演算法是密碼體制中的對稱密碼體制,把64位的明文輸入塊變為64位的密文輸出塊,它所使用的密鑰也是64位。
2、3DES是基於DES的對稱演算法,對一塊數據用三個不同的密鑰進行三次加密,強度更高。
3、RC2和RC4是對稱演算法,用變長密鑰對大量數據進行加密,比DES快。
4、IDEA演算法是在DES演算法的基礎上發展出來的,是作為迭代的分組密碼實現的,使用128位的密鑰和8個循環。
5、RSA是由RSA公司發明,是一個支持變長密鑰的公共密鑰演算法,需要加密的文件塊的長度也是可變的,非對稱演算法。
6、DSA,即數字簽名演算法,是一種標準的 DSS(數字簽名標准),嚴格來說不算加密演算法。
7、AES是高級加密標准對稱演算法,是下一代的加密演算法標准,速度快,安全級別高,在21世紀AES 標準的一個實現是 Rijndael演算法。
⑵ 換位密碼的加密方法
加密換位密碼通過密鑰只需要對明文進行加密,並且重新排列裡面的字母位置即可。具體方法如下
1、基於二維數組移位的加密演算法
給定一個二維數組的列數,即該二維數組每行可以保存的字元個數。再將明文字元串按行依次排列到該二維數組中。最後按列讀出該二維數組中的字元,這樣便可得到密文。
2、換位解密演算法(基於二維數組移位的解密演算法)
先給定一個二維數組的列數,即該二維數組每行可以保存的字元個數,並且這個數應該和加密演算法中的一致。接下來將密文字元串按列一次性排列到該二維數組中。最後按行讀出該二維數組中的字元即可。
3、換位加密演算法
首先按照密鑰排列順序:將想要加密的明文加密,然後列出表格,找出對應的字母,就是密鑰。然後對他們進行換位加密,就是將表格的第二行依據密鑰排列順序進行排序以便得到加密後的密文。
(2)現有某移位加密演算法擴展閱讀
數據加密技術的分類
1、專用密鑰
又稱為對稱密鑰或單密鑰,加密和解密時使用同一個密鑰,即同一個演算法。單密鑰是最簡單方式,通信雙方必須交換彼此密鑰,當需給對方發信息時,用自己的加密密鑰進行加密,而在接收方收到數據後,用對方所給的密鑰進行解密。當一個文本要加密傳送時,該文本用密鑰加密構成密文,密文在信道上傳送,收到密文後用同一個密鑰將密文解出來,形成普通文體供閱讀。
2、對稱密鑰
對稱密鑰是最古老的,一般說「密電碼」採用的就是對稱密鑰。由於對稱密鑰運算量小、速度快、安全強度高,因而如今仍廣泛被採用。它將數據分成長度為64位的數據塊,其中8位用作奇偶校驗,剩餘的56位作為密碼的長度。首先將原文進行置換,得到64位的雜亂無章的數據組,然後將其分成均等兩段;第三步用加密函數進行變換,並在給定的密鑰參數條件下,進行多次迭代而得到加密密文。
3、公開密鑰
又稱非對稱密鑰,加密和解密時使用不同的密鑰,即不同的演算法,雖然兩者之間存在一定的關系,但不可能輕易地從一個推導出另一個。非對稱密鑰由於兩個密鑰(加密密鑰和解密密鑰)各不相同,因而可以將一個密鑰公開,而將另一個密鑰保密,同樣可以起到加密的作用。公開密鑰的加密機制雖提供了良好的保密性,但難以鑒別發送者,即任何得到公開密鑰的人都可以生成和發送報文。
4、非對稱加密技術
數字簽名一般採用非對稱加密技術(如RSA),通過對整個明文進行某種變換,得到一個值,作為核實簽名。接收者使用發送者的公開密鑰對簽名進行解密運算,如其結果為明文,則簽名有效,證明對方的身份是真實的。數字簽名不同於手寫簽字,數字簽名隨文本的變化而變化,手寫簽字反映某個人個性特徵,是不變的;數字簽名與文本信息是不可分割的,而手寫簽字是附加在文本之後的,與文本信息是分離的。
⑶ 文件移位加密與解密。
你要干什麼!
⑷ C語言凱撒加密是一種移位替代加密演算法,即將字母表A-Z向左移位,然後用移位後的字母表替原來的明文得到密文
#include<iostream>
#include<string>
usingnamespacestd;
intmain()
{
stringcode;//儲存初始字元串
stringd_code;//加密後的字元串
inti;
intn;//移位的個數
cout<<"Enterthestring"<<endl;
cin>>code;
cout<<"howmanystepdoyouwanttomove?"<<endl;
cin>>n;
for(i=0;i<code.size();++i)
{
if(int(code[i])>97)
{
if(int(code[i])+n>122)
d_code[i]=int(code[i])+n-26;
else
d_code[i]=int(code[i])+n;
}
elseif(int(code[i])+n>90)
d_code[i]=char(int(code[i])+n-26);
else
d_code[i]=char(int(code[i]+n));
}
for(i=0;i<code.size();++i)
{
cout<<d_code[i];
}
cout<<endl;
cout<<"Code="<<code<<endl;
return0;
}
⑸ 加密演算法總結
iOS加密相關演算法框架:CommonCrypto
明文: 明文指的是未被加密過的原始數據。
密文: 明文被某種加密演算法加密之後,會變成密文,從而確保原始數據的安全。密文也可以被解密,得到原始的明文。
密鑰: 密鑰是一種參數,它是在明文轉換為密文或將密文轉換為明文的演算法中輸入的參數。密鑰分為對稱密鑰與非對稱密鑰,分別應用在對稱加密和非對稱加密上。
對稱加密又叫做私鑰加密 ,即信息的發送方和接收方使用 同一個密鑰 去加密和解密數據。
對稱加密的特點是 演算法公開、計算量少、加密和解密速度快效率高 ,適合於對大數據量進行加密;
缺點是 雙方使用相同的密鑰、密鑰傳輸的過程不安全、易被破解、因此為了保密其密鑰需要經常更換
常見的對稱加密演算法有 AES、DES 、3DES、TDEA、Blowfish、RC5和IDEA。【不過DES被認為是不安全的】
加密過程:明文 + 加密演算法 + 私鑰 => 密文
解密過程: 密文 + 解密演算法 + 私鑰 => 明文
對稱加密中用到的密鑰叫做 私鑰 ,私鑰表示個人私有的密鑰,即該密鑰不能被泄露。
其 加密過程中的私鑰與解密過程中用到的私鑰是同一個密鑰 ,這也是稱加密之所以稱之為「對稱」的原因。由於對稱加密的 演算法是公開 的,所以一旦私鑰被泄露,那麼密文就很容易被破解,所以對稱加密的 缺點是密鑰安全管理困難 。
3DES是DES加密演算法的一種模式,它使用3條64位的密鑰對數據進行三次加密。是DES像AES過渡的加密演算法,是DES的一個更安全的變形,它以DES為基本模塊,通過組合分組方法設計出分組加密演算法。
非對稱加密也叫做公鑰加密 。非對稱加密與對稱加密相比,其安全性更好。對稱加密的通信雙方使用相同的密鑰,如果一方的密鑰遭泄露,那麼整個通信就會被破解。而 非對稱加密使用一對密鑰,即公鑰和私鑰 , 且二者成對出現 。私鑰被自己保存,不能對外泄露。公鑰指的是公共的密鑰,任何人都可以獲得該密鑰。用公鑰或私鑰中的任何一個進行加密,用另一個進行解密。兩種使用方法:
哈希演算法加密是通過哈希演算法對數據加密、加密後的結果不可逆,即加密後不能在解密。
SHA加密,安全哈希演算法,主要適用於數字簽名簽名標准( DSS )裡面定義的數字簽名演算法( DSA )。對於長度小於 2^64 位的消息, SHA1 會產生一個160位的消息摘要。當接收消息的時候,這個消息摘要可以用來驗證數據的完整性。在傳輸的過程中,數據很可能會發生變化,那麼這時候就會產生不同的消息摘要。當然除了 SHA1 還有 SHA256 以及 SHA512 等。
HMAC加密,給定一個密鑰,對明文加密,做兩次「散列」,得到的結果還是32位字元串。
就是或、與、異或、或者加上某個數據
特點:可逆、原始數據和加密數據長度保持一致