導航:首頁 > 文檔加密 > linuxtcp編程pdf

linuxtcp編程pdf

發布時間:2023-05-11 03:27:44

㈠ 《linux高性能伺服器編程pdf下載在線閱讀全文,求百度網盤雲資源

《Linux高性能伺服器編程》(游雙)電子書網盤下載免費在線閱讀

鏈接:

提取碼: jxb9

書名:Linux高性能伺服器編程

作者:游雙

豆瓣評分:7.9

出版社:機械工業出版社

出版年份:2013-5-1

頁數:360

內容簡介:

本書是Linux伺服器編程領域的經典著作,由資深Linux軟體開發工程師撰寫,從網路協議、伺服器編程核心要素、原理機制、工具框架等多角度全面闡釋了編寫高性能Linux伺服器應用的方法、技巧和思想。不僅理論全面、深入,抓住了重點和難點,還包含兩個綜合性案例,極具實戰意義。

全書共17章,分為3個部分:第一部分對Linux伺服器編程的核心基礎——TCP/IP協議進行了深入的解讀和闡述,包括TCP/IP協議族、TCP/IP協議,以及一個經典的TCP/IP通信案例;第二部分對高性能伺服器編程的核心要素進行了全面深入的剖析,包含Linux網路編程API、高級I/O函數、Linux伺服器程序規范、高性能伺服器程序框架、I/O復用、信號、定時器、高性能I/O框架庫Libevent、多進程編程、多線程編程、進程池和線程池等內容,原理、技術與方法並重;第三部分從側重實戰的角度講解了高性能伺服器的優化與監測,包含伺服器的調制、調試和測試,以及各種實用系統監測工具的使用等內容。

作者簡介:

游雙,資深Linux軟體開發工程師,對Linux網路編程,尤其是伺服器端的編程,有非常深入的研究,實戰經驗也十分豐富。曾就職於摩托羅拉,擔任高級Linux軟體工程師。此外,他還精通C++、Android、QT等相關的技術。活躍於Chinaunix等專業技術社區,發表了大量關於Linux網路編程的文章,深受社區歡迎。


㈡ LINUX網路編程TCP的伺服器 客戶端 有亂碼怎麼解決

網一科技的代理伺服器正規專業.我朋友推薦我用了效果很好。希望對你有幫助您好!今後一起共勉!更多交流在CSDN,365testing,測評網

㈢ LINUX網路編程TCP伺服器 客戶端 有亂碼怎麼解決

解決辦法:
1.在客戶端n=read(socketfd,buff,1023);代碼之前加上memset(buff,0,sizeof(buff));,這是保證收到較短數據(使用TCP你不能保證每次接收的數據和發送的數據時等長的),列印也是正確的;
2.將客戶端buff[n+1]+='\0';修改為buff[n]='\0';,這是因為n是下標,已經是最後一個位置了;
3.將伺服器端buff[n+1]+='\0';修改為buff[n]='\0';,這是因為n是下標,已經是最後一個位置了,而且和第2)一樣,那個加號也要去掉,應該是筆誤吧;
4.最大的問題,將伺服器端write(connectfd,buff,1023);,你怎麼能夠保證收到1023個字元呢?也應該將while中條件移出作為WHILE中的一條語句,而且加上前面所述的memset語句,而將這里的write(connectfd,buff,1023);修改為write(connectfd,buff,strlen(buff))。
祝共同進步!

㈣ linux tcp套接字編程,為什麼總是可以listen到一個ip在連接我的主機。

下面是完整的主機socket運行模式,你可以參考一下。
你可以用inet_atos()函數查看一下那個ip地址,就可以知道是什麼狀況了。如果是你自己游衡的本地IP的沒磨滲話,就是程序的問題了。

fd = socket(AF_INET, SOCK_STREAM, 0); //建立一個TCP socket
struct sockaddr_in ad; //聲明本機的地址,緊接著為這個ad賦值(ad.sin_family = xxx; ad.sin_port = ......)
bind(fd, ad); //把socket和本機地址捆綁到一起
listen(fd, max); //把socket轉為傾聽模式,用來接受最多max個連接請求
while(1){//准備工作結束,下枯脊面進入循環以接收請求
if(fd_client = accept(fd, (struct sockaddr*)&ad, &sizeof(struct sockaddr)))//如果收到連接請求
{
read(fd, buf, buf_length); //讀取收到的信息,保存在buf里
......;
}
}

㈤ 《Linux高級程序設計第三版》pdf下載在線閱讀全文,求百度網盤雲資源

《Linux高級程序設計第三版》網路網盤pdf最新全集下載:
鏈接:https://pan..com/s/1SzK9CKxuU6MKtyiIxWey4w

?pwd=e23v 提取碼:e23v
簡介:《Linux高級程序設計(第3版)》圍繞Linux操作系統「一切都是文件」的特點,講述了Linux操作系統下應用層「一段執行單元(進程)對系統資源(CPU資源、各類文件資源)的管理」。詳細介紹了Linux系統編程環境及編程工具(GCC/Makefile/GDB)、文件管理(文件屬性控制、ANSI以及POSIX標准下文件讀寫操作、終端編程)、進程管理(創建、退出、執行、等待、屬性控制)、進程間通信(管道、消息隊列、共享內存)、進程間同步機制(信號量)、進程間非同步機制(信號)、線程管理(創建、退出、取消等以及屬性控制)、線程間同步(互斥鎖、讀寫鎖、條件變數)、線程與信號以及BSD socket編程中的TCP、UDP、原始套介面、網路伺服器應用開發等內容,並對Linux系統下的音頻應用程序開發做了講解。

《Linux高級程序設計(第3版)》內容豐富、緊扣應用,適合從事Linux下C應用編程的人員閱讀,也適合從事嵌入式Linux開發的人員閱讀。

㈥ 《實戰Linux Socket編程》txt全集下載

實戰Linux Socket編程 txt全集小說附件已上傳到網路網盤,點擊免費下載:

㈦ 《TCP/IP詳解卷1:協議》pdf下載在線閱讀,求百度網盤雲資源

《TCP/IP詳解 卷1:協議》([美國] W·Richard Stevens)電子書網盤下載免費在線閱讀

鏈接:https://pan..com/s/1cD1DPld0vPtT7cUfY3Y2gg

提取碼:n64d

書名:TCP/IP詳解 卷1:協議

作者:[美國] W·Richard Stevens

譯者:范建華

豆瓣評分:9.2

出版社:機械工業出版社

出版年份:2000-4-1

頁數:423

內容簡介:

《TCP/IP詳解卷1:協議》是一本完整而詳細的TCP/IP協議指南。描述了屬於每一層的各個協議以及它們如何在不同操作系統中運行。作者W.Richard Stevens用Lawrence Berkeley實驗室的tcpmp程序來捕獲不同操作系統和TCP/IP實現之間傳輸的不同分組。對tcpmp輸出的研究可以幫助理解不同協議如何工作。 《TCP/IP詳解卷1:協議》適合作為計算機專業學生學習網路的教材和教師參考書。也適用於研究網路的技術人員。

作者簡介:

W.Richard Stevens,國際知名的UNIX和網路專家,備受贊譽的技術作家。他1951年2月5日出生於尚比亞,後隨父母回到美國。中學時就讀於弗吉尼亞菲什伯恩軍事學校,1973年獲得密歇根大學航空和航天工程學士學位。1975年至1982年,他在亞利桑那州圖森市的基特峰國家天文台從事計算機編程工作,業余時間喜愛飛行運動,做過兼職飛行教練。這期間他分別在1978年和1982年獲得亞利桑那大學系統工程碩士和博士學位。此後他去康涅狄格州紐黑文的健康系統國際公司任主管計算機服務的副總裁。1990年他回到圖森,從事專業技術寫作和咨詢工作。寫下了多種經典的傳世之作,包括《TCP/IP詳解》(三卷)、《UNlX環境高級編程》和《UNI×網路編程》(兩卷)。Stevens於1999年9月1日去世,年僅48歲。2000年他被國際權威機構USENIX追授「終身成就獎」。

㈧ Linux下的簡單TCP編程 客戶端連接出錯

1.確定server端是否啟動缺芹了
2.確定server端開伏老畢啟的埠
3.IP地址和埠等是不是都已經轉化含茄成網路位元組序了

㈨ 如何看懂《Linux多線程服務端編程

一:進程和線程
每個進程有自己獨立的地址空間。「在同一個進程」還是「不在同一個進程」是系統功能劃分的重要決策點。《Erlang程序設計》[ERL]把進程比喻為人:
每個人有自己的記憶(內存),人與人通過談話(消息傳遞)來交流,談話既可以是面談(同一台伺服器),也可以在電話里談(不同的伺服器,有網路通信)。面談和電話談的區別在於,面談可以立即知道對方是否死了(crash,SIGCHLD),而電話談只能通過周期性的心跳來判斷對方是否還活著。
有了這些比喻,設計分布式系統時可以採取「角色扮演」,團隊里的幾個人各自扮演一個進程,人的角色由進程的代碼決定(管登錄的、管消息分發的、管買賣的等等)。每個人有自己的記憶,但不知道別人的記憶,要想知道別人的看法,只能通過交談(暫不考慮共享內存這種IPC)。然後就可以思考:
·容錯:萬一有人突然死了
·擴容:新人中途加進來
·負載均衡:把甲的活兒挪給乙做
·退休:甲要修復bug,先別派新任務,等他做完手上的事情就把他重啟
等等各種場景,十分便利。

線程的特點是共享地址空間,從而可以高效地共享數據。一台機器上的多個進程能高效地共享代碼段(操作系統可以映射為同樣的物理內存),但不能共享數據。如果多個進程大量共享內存,等於是把多進程程序當成多線程來寫,掩耳盜鈴。
「多線程」的價值,我認為是為了更好地發揮多核處理器(multi-cores)的效能。在單核時代,多線程沒有多大價值(個人想法:如果要完成的任務是CPU密集型的,那多線程沒有優勢,甚至因為線程切換的開銷,多線程反而更慢;如果要完成的任務既有CPU計算,又有磁碟或網路IO,則使用多線程的好處是,當某個線程因為IO而阻塞時,OS可以調度其他線程執行,雖然效率確實要比任務的順序執行效率要高,然而,這種類型的任務,可以通過單線程的」non-blocking IO+IO multiplexing」的模型(事件驅動)來提高效率,採用多線程的方式,帶來的可能僅僅是編程上的簡單而已)。Alan Cox說過:」A computer is a state machine.Threads are for people who can』t program state machines.」(計算機是一台狀態機。線程是給那些不能編寫狀態機程序的人准備的)如果只有一塊CPU、一個執行單元,那麼確實如Alan Cox所說,按狀態機的思路去寫程序是最高效的。

二:單線程伺服器的常用編程模型
據我了解,在高性能的網路程序中,使用得最為廣泛的恐怕要數」non-blocking IO + IO multiplexing」這種模型,即Reactor模式。
在」non-blocking IO + IO multiplexing」這種模型中,程序的基本結構是一個事件循環(event loop),以事件驅動(event-driven)和事件回調的方式實現業務邏輯:
[cpp] view plain
//代碼僅為示意,沒有完整考慮各種情況
while(!done)
{
int timeout_ms = max(1000, getNextTimedCallback());
int retval = poll(fds, nfds, timeout_ms);
if (retval<0){
處理錯誤,回調用戶的error handler
}else{
處理到期的timers,回調用戶的timer handler
if(retval>0){
處理IO事件,回調用戶的IO event handler
}
}
}

這里select(2)/poll(2)有伸縮性方面的不足(描述符過多時,效率較低),Linux下可替換為epoll(4),其他操作系統也有對應的高性能替代品。
Reactor模型的優點很明顯,編程不難,效率也不錯。不僅可以用於讀寫socket,連接的建立(connect(2)/accept(2)),甚至DNS解析都可以用非阻塞方式進行,以提高並發度和吞吐量(throughput),對於IO密集的應用是個不錯的選擇。lighttpd就是這樣,它內部的fdevent結構十分精妙,值得學習。
基於事件驅動的編程模型也有其本質的缺點,它要求事件回調函數必須是非阻塞的。對於涉及網路IO的請求響應式協議,它容易割裂業務邏輯,使其散布於多個回調函數之中,相對不容易理解和維護。

三:多線程伺服器的常用編程模型
大概有這么幾種:
a:每個請求創建一個線程,使用阻塞式IO操作。在Java 1.4引人NIO之前,這是Java網路編程的推薦做法。可惜伸縮性不佳(請求太多時,操作系統創建不了這許多線程)。
b:使用線程池,同樣使用阻塞式IO操作。與第1種相比,這是提高性能的措施。
c:使用non-blocking IO + IO multiplexing。即Java NIO的方式。
d:Leader/Follower等高級模式。
在默認情況下,我會使用第3種,即non-blocking IO + one loop per thread模式來編寫多線程C++網路服務程序。

1:one loop per thread
此種模型下,程序里的每個IO線程有一個event loop,用於處理讀寫和定時事件(無論周期性的還是單次的)。代碼框架跟「單線程伺服器的常用編程模型」一節中的一樣。
libev的作者說:
One loop per thread is usually a good model. Doing this is almost never wrong, some times a better-performance model exists, but it is always a good start.

這種方式的好處是:
a:線程數目基本固定,可以在程序啟動的時候設置,不會頻繁創建與銷毀。
b:可以很方便地在線程間調配負載。
c:IO事件發生的線程是固定的,同一個TCP連接不必考慮事件並發。

Event loop代表了線程的主循環,需要讓哪個線程幹活,就把timer或IO channel(如TCP連接)注冊到哪個線程的loop里即可:對實時性有要求的connection可以單獨用一個線程;數據量大的connection可以獨佔一個線程,並把數據處理任務分攤到另幾個計算線程中(用線程池);其他次要的輔助性connections可以共享一個線程。
比如,在dbproxy中,一個線程用於專門處理客戶端發來的管理命令;一個線程用於處理客戶端發來的MySQL命令,而與後端資料庫通信執行該命令時,是將該任務分配給所有事件線程處理的。

對於non-trivial(有一定規模)的服務端程序,一般會採用non-blocking IO + IO multiplexing,每個connection/acceptor都會注冊到某個event loop上,程序里有多個event loop,每個線程至多有一個event loop。
多線程程序對event loop提出了更高的要求,那就是「線程安全」。要允許一個線程往別的線程的loop里塞東西,這個loop必須得是線程安全的。
在dbproxy中,線程向其他線程分發任務,是通過管道和隊列實現的。比如主線程accept到連接後,將表示該連接的結構放入隊列,並向管道中寫入一個位元組。計算線程在自己的event loop中注冊管道的讀事件,一旦有數據可讀,就嘗試從隊列中取任務。

2:線程池
不過,對於沒有IO而光有計算任務的線程,使用event loop有點浪費。可以使用一種補充方案,即用blocking queue實現的任務隊列:
[cpp] view plain
typedef boost::function<void()>Functor;
BlockingQueue<Functor> taskQueue; //線程安全的全局阻塞隊列

//計算線程
void workerThread()
{
while (running) //running變數是個全局標志
{
Functor task = taskQueue.take(); //this blocks
task(); //在產品代碼中需要考慮異常處理
}
}

// 創建容量(並發數)為N的線程池
int N = num_of_computing_threads;
for (int i = 0; i < N; ++i)
{
create_thread(&workerThread); //啟動線程
}

//向任務隊列中追加任務
Foo foo; //Foo有calc()成員函數
boost::function<void()> task = boost::bind(&Foo::calc,&foo);
taskQueue.post(task);

除了任務隊列,還可以用BlockingQueue<T>實現數據的生產者消費者隊列,即T是數據類型而非函數對象,queue的消費者從中拿到數據進行處理。其實本質上是一樣的。

3:總結
總結而言,我推薦的C++多線程服務端編程模式為:one (event) loop per thread + thread pool:
event loop用作IO multiplexing,配合non-blockingIO和定時器;
thread pool用來做計算,具體可以是任務隊列或生產者消費者隊列。

以這種方式寫伺服器程序,需要一個優質的基於Reactor模式的網路庫來支撐,muo正是這樣的網路庫。比如dbproxy使用的是libevent。
程序里具體用幾個loop、線程池的大小等參數需要根據應用來設定,基本的原則是「阻抗匹配」(解釋見下),使得CPU和IO都能高效地運作。所謂阻抗匹配原則:
如果池中線程在執行任務時,密集計算所佔的時間比重為 P (0 < P <= 1),而系統一共有 C 個 CPU,為了讓這 C 個 CPU 跑滿而又不過載,線程池大小的經驗公式 T = C/P。(T 是個 hint,考慮到 P 值的估計不是很准確,T 的最佳值可以上下浮動 50%)
以後我再講這個經驗公式是怎麼來的,先驗證邊界條件的正確性。
假設 C = 8,P = 1.0,線程池的任務完全是密集計算,那麼T = 8。只要 8 個活動線程就能讓 8 個 CPU 飽和,再多也沒用,因為 CPU 資源已經耗光了。
假設 C = 8,P = 0.5,線程池的任務有一半是計算,有一半等在 IO 上,那麼T = 16。考慮操作系統能靈活合理地調度 sleeping/writing/running 線程,那麼大概 16 個「50%繁忙的線程」能讓 8 個 CPU 忙個不停。啟動更多的線程並不能提高吞吐量,反而因為增加上下文切換的開銷而降低性能。
如果 P < 0.2,這個公式就不適用了,T 可以取一個固定值,比如 5*C。

另外,公式里的 C 不一定是 CPU 總數,可以是「分配給這項任務的 CPU 數目」,比如在 8 核機器上分出 4 個核來做一項任務,那麼 C=4。

四:進程間通信只用TCP
Linux下進程間通信的方式有:匿名管道(pipe)、具名管道(FIFO)、POSIX消息隊列、共享內存、信號(signals),以及Socket。同步原語有互斥器(mutex)、條件變數(condition variable)、讀寫鎖(reader-writer lock)、文件鎖(record locking)、信號量(semaphore)等等。

進程間通信我首選Sockets(主要指TCP,我沒有用過UDP,也不考慮Unix domain協議)。其好處在於:
可以跨主機,具有伸縮性。反正都是多進程了,如果一台機器的處理能力不夠,很自然地就能用多台機器來處理。把進程分散到同一區域網的多台機器上,程序改改host:port配置就能繼續用;
TCP sockets和pipe都是操作文件描述符,用來收發位元組流,都可以read/write/fcntl/select/poll等。不同的是,TCP是雙向的,Linux的pipe是單向的,進程間雙向通信還得開兩個文件描述符,不方便;而且進程要有父子關系才能用pipe,這些都限制了pipe的使用;
TCP port由一個進程獨占,且進程退出時操作系統會自動回收文件描述符。因此即使程序意外退出,也不會給系統留下垃圾,程序重啟之後能比較容易地恢復,而不需要重啟操作系統(用跨進程的mutex就有這個風險);而且,port是獨占的,可以防止程序重復啟動,後面那個進程搶不到port,自然就沒法初始化了,避免造成意料之外的結果;
與其他IPC相比,TCP協議的一個天生的好處是「可記錄、可重現」。tcpmp和Wireshark是解決兩個進程間協議和狀態爭端的好幫手,也是性能(吞吐量、延遲)分析的利器。我們可以藉此編寫分布式程序的自動化回歸測試。也可以用tcp之類的工具進行壓力測試。TCP還能跨語言,服務端和客戶端不必使用同一種語言。

分布式系統的軟體設計和功能劃分一般應該以「進程」為單位。從宏觀上看,一個分布式系統是由運行在多台機器上的多個進程組成的,進程之間採用TCP長連接通信。
使用TCP長連接的好處有兩點:一是容易定位分布式系統中的服務之間的依賴關系。只要在機器上運行netstat -tpna|grep <port>就能立刻列出用到某服務的客戶端地址(Foreign Address列),然後在客戶端的機器上用netstat或lsof命令找出是哪個進程發起的連接。TCP短連接和UDP則不具備這一特性。二是通過接收和發送隊列的長度也較容易定位網路或程序故障。在正常運行的時候,netstat列印的Recv-Q和Send-Q都應該接近0,或者在0附近擺動。如果Recv-Q保持不變或持續增加,則通常意味著服務進程的處理速度變慢,可能發生了死鎖或阻塞。如果Send-Q保持不變或持續增加,有可能是對方伺服器太忙、來不及處理,也有可能是網路中間某個路由器或交換機故障造成丟包,甚至對方伺服器掉線,這些因素都可能表現為數據發送不出去。通過持續監控Recv-Q和Send-Q就能及早預警性能或可用性故障。以下是服務端線程阻塞造成Recv-Q和客戶端Send-Q激增的例子:
[cpp] view plain
$netstat -tn
Proto Recv-Q Send-Q Local Address Foreign
tcp 78393 0 10.0.0.10:2000 10.0.0.10:39748 #服務端連接
tcp 0 132608 10.0.0.10:39748 10.0.0.10:2000 #客戶端連接
tcp 0 52 10.0.0.10:22 10.0.0.4:55572

五:多線程伺服器的適用場合
如果要在一台多核機器上提供一種服務或執行一個任務,可用的模式有:
a:運行一個單線程的進程;
b:運行一個多線程的進程;
c:運行多個單線程的進程;
d:運行多個多線程的進程;

考慮這樣的場景:如果使用速率為50MB/s的數據壓縮庫,進程創建銷毀的開銷是800微秒,線程創建銷毀的開銷是50微秒。如何執行壓縮任務?
如果要偶爾壓縮1GB的文本文件,預計運行時間是20s,那麼起一個進程去做是合理的,因為進程啟動和銷毀的開銷遠遠小於實際任務的耗時。
如果要經常壓縮500kB的文本數據,預計運行時間是10ms,那麼每次都起進程 似乎有點浪費了,可以每次單獨起一個線程去做。
如果要頻繁壓縮10kB的文本數據,預計運行時間是200微秒,那麼每次起線程似 乎也很浪費,不如直接在當前線程搞定。也可以用一個線程池,每次把壓縮任務交給線程池,避免阻塞當前線程(特別要避免阻塞IO線程)。
由此可見,多線程並不是萬靈丹(silver bullet)。

1:必須使用單線程的場合
據我所知,有兩種場合必須使用單線程:
a:程序可能會fork(2);
實際編程中,應該保證只有單線程程序能進行fork(2)。多線程程序不是不能調用fork(2),而是這么做會遇到很多麻煩:
fork一般不能在多線程程序中調用,因為Linux的fork只克隆當前線程的thread of control,不可隆其他線程。fork之後,除了當前線程之外,其他線程都消失了。
這就造成一種危險的局面。其他線程可能正好處於臨界區之內,持有了某個鎖,而它突然死亡,再也沒有機會去解鎖了。此時如果子進程試圖再對同一個mutex加鎖,就會立即死鎖。因此,fork之後,子進程就相當於處於signal handler之中(因為不知道調用fork時,父進程中的線程此時正在調用什麼函數,這和信號發生時的場景一樣),你不能調用線程安全的函數(除非它是可重入的),而只能調用非同步信號安全的函數。比如,fork之後,子進程不能調用:
malloc,因為malloc在訪問全局狀態時幾乎肯定會加鎖;
任何可能分配或釋放內存的函數,比如snprintf;
任何Pthreads函數;
printf系列函數,因為其他線程可能恰好持有stdout/stderr的鎖;
除了man 7 signal中明確列出的信號安全函數之外的任何函數。

因此,多線程中調用fork,唯一安全的做法是fork之後,立即調用exec執行另一個程序,徹底隔斷子進程與父進程的聯系。

在多線程環境中調用fork,產生子進程後。子進程內部只存在一個線程,也就是父進程中調用fork的線程的副本。
使用fork創建子進程時,子進程通過繼承整個地址空間的副本,也從父進程那裡繼承了所有互斥量、讀寫鎖和條件變數的狀態。如果父進程中的某個線程佔有鎖,則子進程同樣佔有這些鎖。問題是子進程並不包含佔有鎖的線程的副本,所以子進程沒有辦法知道它佔有了哪些鎖,並且需要釋放哪些鎖。
盡管Pthread提供了pthread_atfork函數試圖繞過這樣的問題,但是這回使得代碼變得混亂。因此《Programming With Posix Threads》一書的作者說:」Avoid using fork in threaded code except where the child process will immediately exec a new program.」。

b:限製程序的CPU佔用率;
這個很容易理解,比如在一個8核的伺服器上,一個單線程程序即便發生busy-wait,占滿1個core,其CPU使用率也只有12.5%,在這種最壞的情況下,系統還是有87.5%的計算資源可供其他服務進程使用。
因此對於一些輔助性的程序,如果它必須和主要服務進程運行在同一台機器的話,那麼做成單線程的能避免過分搶奪系統的計算資源。

㈩ C語言Linux系統下TCP編程,connect 錯誤

你的client有問題,連接之前沒有指定server的ip。
你只指定了埠。
struct sockaddr_in servaddr;
bzero(&servaddr,sizeof(servaddr));
servaddr.sin_family=AF_INET;
servaddr.sin_port=htons(HELLO_WORLD_SERVER_PORT);
servaddr.sin_addr.s_addr=inet_addr(serverip);//加上server的ip即可

閱讀全文

與linuxtcp編程pdf相關的資料

熱點內容
伺服器端渲染的數據怎麼爬 瀏覽:163
壓縮空氣噴射器 瀏覽:488
python提高效率 瀏覽:796
華為文件管理怎麼樣輸入解壓碼 瀏覽:800
深思加密狗初始化 瀏覽:566
黃金崩潰pdf 瀏覽:309
華為特定簡訊息加密 瀏覽:375
微機原理與單片機技術李精華答案 瀏覽:816
pic12c508單片機 瀏覽:309
androidgps調用 瀏覽:226
金文編pdf 瀏覽:445
14乘87減147的簡便演算法 瀏覽:473
怎麼創建edu文件夾 瀏覽:721
演算法的基礎問題 瀏覽:256
蘋果手機怎麼選擇app支付 瀏覽:856
訪問加密伺服器失敗怎麼回事 瀏覽:439
程序員每天跑步5公里 瀏覽:789
黨員對程序員有幫助么 瀏覽:550
慢跑穿壓縮衣還是緊身衣 瀏覽:214
什麼伺服器引擎最好 瀏覽:497