導航:首頁 > 文檔加密 > 分裂加密技術

分裂加密技術

發布時間:2023-05-23 16:11:02

① 最早出現的加密演算法

最早出現的加密演算法是愷撒密碼,詳細介紹如下:

一、愷撒密碼簡介:

1、在密碼學中,愷撒密碼,或稱愷撒加密,愷撒變換,變換加密,是一種最簡單且最廣為人知的加密技術。它是一種替換加密的技術,明文中的所有字母都在字母表上向後或向前按照一個固定數目進行偏移後被替換成密文。

2、由於使用愷撒密碼進行加密的語言一般都是敬胡字母文字系統,因此密碼中可能是使用的偏移量也是有限的,例如使用26個字母的英語,它的偏移量最多就是25,因此可以通過窮舉法,很輕易地進行破解。

② 數據在網路上傳輸為什麼要加密現在常用的數據加密演算法主要有哪些

數據傳輸加密技術的目的是對傳輸中的數據流加密,通常有線路加密與端—端加密兩種。線路加密側重在線路上而不考慮信源與信宿,是對保密信息通過各線路採用不同的加密密鑰提供安全保護。

端—端加密指信息由發送端自動加密,並且由TCP/IP進行數據包封裝,然後作為不可閱讀和不可識別的數據穿過互聯網,當這些信息到達目的地,將被自動重組、解密,而成為可讀的數據。

數據存儲加密技術的目的是防止在存儲環節上的數據失密,數據存儲加密技術可分為密文存儲和存取控制兩種。前者一般是通過加密演算法轉換、附加密碼、加密模塊等方法實現;後者則是對用戶資格、許可權加以審查和限制,防止非法用戶存取數據或合法用戶越權存取數據。

常見加密演算法

1、DES(Data Encryption Standard):對稱演算法,數據加密標准,速度較快,適用於加密大量數據的場合;

2、3DES(Triple DES):是基於DES的對稱演算法,對一塊數據用三個不同的密鑰進行三次加密,強度更高;

3、RC2和RC4:對稱演算法,用變長密鑰對大量數據進行加密,比 DES 快;

4、IDEA(International Data Encryption Algorithm)國際數據加密演算法,使用 128 位密鑰提供非常強的安全性;

5、RSA:由 RSA 公司發明,是一個支持變長密鑰的公共密鑰演算法,需要加密的文件塊的長度也是可變的,非對稱演算法; 演算法如下:

首先, 找出三個數,p,q,r,其中 p,q 是兩個不相同的質數,r 是與 (p-1)(q-1) 互為質數的數。

p,q,r這三個數便是 private key。接著,找出 m,使得 rm == 1 mod (p-1)(q-1).....這個 m 一定存在,因為 r 與 (p-1)(q-1) 互質,用輾轉相除法就可以得到了。再來,計算 n = pq.......m,n 這兩個數便是 public key。

6、DSA(Digital Signature Algorithm):數字簽名演算法,是一種標準的 DSS(數字簽名標准),嚴格來說不算加密演算法;

7、AES(Advanced Encryption Standard):高級加密標准,對稱演算法,是下一代的加密演算法標准,速度快,安全級別高,在21世紀AES 標準的一個實現是 Rijndael 演算法。

8、BLOWFISH,它使用變長的密鑰,長度可達448位,運行速度很快;

9、MD5:嚴格來說不算加密演算法,只能說是摘要演算法;

對MD5演算法簡要的敘述可以為:MD5以512位分組來處理輸入的信息,且每一分組又被劃分為16個32位子分組,經過了一系列的處理後,演算法的輸出由四個32位分組組成,將這四個32位分組級聯後將生成一個128位散列值。

(2)分裂加密技術擴展閱讀

數據加密標准

傳統加密方法有兩種,替換和置換。上面的例子採用的就是替換的方法:使用密鑰將明文中的每一個字元轉換為密文中的一個字元。而置換僅將明文的字元按不同的順序重新排列。單獨使用這兩種方法的任意一種都是不夠安全的,但是將這兩種方法結合起來就能提供相當高的安全程度。

數據加密標准(Data Encryption Standard,簡稱DES)就採用了這種結合演算法,它由IBM制定,並在1977年成為美國官方加密標准。

DES的工作原理為:將明文分割成許多64位大小的塊,每個塊用64位密鑰進行加密,實際上,密鑰由56位數據位和8位奇偶校驗位組成,因此只有56個可能的密碼而不是64個。

每塊先用初始置換方法進行加密,再連續進行16次復雜的替換,最後再對其施用初始置換的逆。第i步的替換並不是直接利用原始的密鑰K,而是由K與i計算出的密鑰Ki。

DES具有這樣的特性,其解密演算法與加密演算法相同,除了密鑰Ki的施加順序相反以外。

參考資料來源:網路-加密演算法

參考資料來源:網路-數據加密

③ 目前常用的加密解密演算法有哪些

加密演算法

加密技術是對信息進行編碼和解碼的技術,編碼是把原來可讀信息(又稱明文)譯成代碼形式(又稱密文),其逆過程就是解碼(解密)。加密技術的要點是加密演算法,加密演算法可以分為對稱加密、不對稱加密和不可逆加密三類演算法。

對稱加密演算法 對稱加密演算法是應用較早的加密演算法,技術成熟。在對稱加密演算法中,數據發信方將明文(原始數據)和加密密鑰一起經過特殊加密演算法處理後,使其變成復雜的加密密文發送出去。收信方收到密文後,若想解讀原文,則需要使用加密用過的密鑰及相同演算法的逆演算法對密文進行解密,才能使其恢復成可讀明文。在對稱加密演算法中,使用的密鑰只有一個,發收信雙方都使用這個密鑰對數據進行加密和解密,這就要求解密方事先必須知道加密密鑰。對稱加密演算法的特點是演算法公開、計算量小、加密速度快、加密效率高。不足之處是,交易雙方都使用同樣鑰匙,安全性得不到保證。此外,每對用戶每次使用對稱加密演算法時,都需要使用其他人不知道的惟一鑰匙,這會使得發收信雙方所擁有的鑰匙數量成幾何級數增長,密鑰管理成為用戶的負擔。對稱加密演算法在分布式網路系統上使用較為困難,主要是因為密鑰管理困難,使用成本較高。在計算機專網系統中廣泛使用的對稱加密演算法有DES和IDEA等。美國國家標准局倡導的AES即將作為新標准取代DES。

不對稱加密演算法不對稱加密演算法使用兩把完全不同但又是完全匹配的一對鑰匙—公鑰和私鑰。在使用不對稱加密演算法加密文件時,只有使用匹配的一對公鑰和私鑰,才能完成對明文的加密和解密過程。加密明文時採用公鑰加密,解密密文時使用私鑰才能完成,而且發信方(加密者)知道收信方的公鑰,只有收信方(解密者)才是唯一知道自己私鑰的人。不對稱加密演算法的基本原理是,如果發信方想發送只有收信方才能解讀的加密信息,發信方必須首先知道收信方的公鑰,然後利用收信方的公鑰來加密原文;收信方收到加密密文後,使用自己的私鑰才能解密密文。顯然,採用不對稱加密演算法,收發信雙方在通信之前,收信方必須將自己早已隨機生成的公鑰送給發信方,而自己保留私鑰。由於不對稱演算法擁有兩個密鑰,因而特別適用於分布式系統中的數據加密。廣泛應用的不對稱加密演算法有RSA演算法和美國國家標准局提出的DSA。以不對稱加密演算法為基礎的加密技術應用非常廣泛。

不可逆加密演算法 不可逆加密演算法的特徵是加密過程中不需要使用密鑰,輸入明文後由系統直接經過加密演算法處理成密文,這種加密後的數據是無法被解密的,只有重新輸入明文,並再次經過同樣不可逆的加密演算法處理,得到相同的加密密文並被系統重新識別後,才能真正解密。顯然,在這類加密過程中,加密是自己,解密還得是自己,而所謂解密,實際上就是重新加一次密,所應用的「密碼」也就是輸入的明文。不可逆加密演算法不存在密鑰保管和分發問題,非常適合在分布式網路系統上使用,但因加密計算復雜,工作量相當繁重,通常只在數據量有限的情形下使用,如廣泛應用在計算機系統中的口令加密,利用的就是不可逆加密演算法。近年來,隨著計算機系統性能的不斷提高,不可逆加密的應用領域正在逐漸增大。在計算機網路中應用較多不可逆加密演算法的有RSA公司發明的MD5演算法和由美國國家標准局建議的不可逆加密標准SHS(Secure Hash Standard:安全雜亂信息標准)等。

加密技術

加密演算法是加密技術的基礎,任何一種成熟的加密技術都是建立多種加密演算法組合,或者加密演算法和其他應用軟體有機結合的基礎之上的。下面我們介紹幾種在計算機網路應用領域廣泛應用的加密技術。

非否認(Non-repudiation)技術 該技術的核心是不對稱加密演算法的公鑰技術,通過產生一個與用戶認證數據有關的數字簽名來完成。當用戶執行某一交易時,這種簽名能夠保證用戶今後無法否認該交易發生的事實。由於非否認技術的操作過程簡單,而且直接包含在用戶的某類正常的電子交易中,因而成為當前用戶進行電子商務、取得商務信任的重要保證。

PGP(Pretty Good Privacy)技術 PGP技術是一個基於不對稱加密演算法RSA公鑰體系的郵件加密技術,也是一種操作簡單、使用方便、普及程度較高的加密軟體。PGP技術不但可以對電子郵件加密,防止非授權者閱讀信件;還能對電子郵件附加數字簽名,使收信人能明確了解發信人的真實身份;也可以在不需要通過任何保密渠道傳遞密鑰的情況下,使人們安全地進行保密通信。PGP技術創造性地把RSA不對稱加密演算法的方便性和傳統加密體系結合起來,在數字簽名和密鑰認證管理機制方面採用了無縫結合的巧妙設計,使其幾乎成為最為流行的公鑰加密軟體包。

數字簽名(Digital Signature)技術 數字簽名技術是不對稱加密演算法的典型應用。數字簽名的應用過程是,數據源發送方使用自己的私鑰對數據校驗和或其他與數據內容有關的變數進行加密處理,完成對數據的合法「簽名」,數據接收方則利用對方的公鑰來解讀收到的「數字簽名」,並將解讀結果用於對數據完整性的檢驗,以確認簽名的合法性。數字簽名技術是在網路系統虛擬環境中確認身份的重要技術,完全可以代替現實過程中的「親筆簽字」,在技術和法律上有保證。在公鑰與私鑰管理方面,數字簽名應用與加密郵件PGP技術正好相反。在數字簽名應用中,發送者的公鑰可以很方便地得到,但他的私鑰則需要嚴格保密。

PKI(Public Key Infrastructure)技術 PKI技術是一種以不對稱加密技術為核心、可以為網路提供安全服務的公鑰基礎設施。PKI技術最初主要應用在Internet環境中,為復雜的互聯網系統提供統一的身份認證、數據加密和完整性保障機制。由於PKI技術在網路安全領域所表現出的巨大優勢,因而受到銀行、證券、政府等核心應用系統的青睞。PKI技術既是信息安全技術的核心,也是電子商務的關鍵和基礎技術。由於通過網路進行的電子商務、電子政務等活動缺少物理接觸,因而使得利用電子方式驗證信任關系變得至關重要,PKI技術恰好能夠有效解決電子商務應用中的機密性、真實性、完整性、不可否認性和存取控制等安全問題。一個實用的PKI體系還必須充分考慮互操作性和可擴展性。PKI體系所包含的認證中心(CA)、注冊中心(RA)、策略管理、密鑰與證書管理、密鑰備份與恢復、撤銷系統等功能模塊應該有機地結合在一起。

加密的未來趨勢

盡管雙鑰密碼體制比單鑰密碼體制更為可靠,但由於計算過於復雜,雙鑰密碼體制在進行大信息量通信時,加密速率僅為單鑰體制的1/100,甚至是 1/1000。正是由於不同體制的加密演算法各有所長,所以在今後相當長的一段時期內,各類加密體制將會共同發展。而在由IBM等公司於1996年聯合推出的用於電子商務的協議標准SET(Secure Electronic Transaction)中和1992年由多國聯合開發的PGP技術中,均採用了包含單鑰密碼、雙鑰密碼、單向雜湊演算法和隨機數生成演算法在內的混合密碼系統的動向來看,這似乎從一個側面展示了今後密碼技術應用的未來。

在單鑰密碼領域,一次一密被認為是最為可靠的機制,但是由於流密碼體制中的密鑰流生成器在演算法上未能突破有限循環,故一直未被廣泛應用。如果找到一個在演算法上接近無限循環的密鑰流生成器,該體制將會有一個質的飛躍。近年來,混沌學理論的研究給在這一方向產生突破帶來了曙光。此外,充滿生氣的量子密碼被認為是一個潛在的發展方向,因為它是基於光學和量子力學理論的。該理論對於在光纖通信中加強信息安全、對付擁有量子計算能力的破譯無疑是一種理想的解決方法。

由於電子商務等民用系統的應用需求,認證加密演算法也將有較大發展。此外,在傳統密碼體制中,還將會產生類似於IDEA這樣的新成員,新成員的一個主要特徵就是在演算法上有創新和突破,而不僅僅是對傳統演算法進行修正或改進。密碼學是一個正在不斷發展的年輕學科,任何未被認識的加/解密機制都有可能在其中佔有一席之地。

目前,對信息系統或電子郵件的安全問題,還沒有一個非常有效的解決方案,其主要原因是由於互聯網固有的異構性,沒有一個單一的信任機構可以滿足互聯網全程異構性的所有需要,也沒有一個單一的協議能夠適用於互聯網全程異構性的所有情況。解決的辦法只有依靠軟體代理了,即採用軟體代理來自動管理用戶所持有的證書(即用戶所屬的信任結構)以及用戶所有的行為。每當用戶要發送一則消息或一封電子郵件時,代理就會自動與對方的代理協商,找出一個共同信任的機構或一個通用協議來進行通信。在互聯網環境中,下一代的安全信息系統會自動為用戶發送加密郵件,同樣當用戶要向某人發送電子郵件時,用戶的本地代理首先將與對方的代理交互,協商一個適合雙方的認證機構。當然,電子郵件也需要不同的技術支持,因為電子郵件不是端到端的通信,而是通過多個中間機構把電子郵件分程傳遞到各自的通信機器上,最後到達目的地。

④ 數據怎麼加密比較好

數據加密,透明加密是現在企事業單位用的最好的管理方案,也是企業用的最多的管理方案
數據透明加密方案的功能介紹如下::
透明加密
安裝安秉網盾加密客戶端的計算機,其生成的文檔自動加密,加密文檔在內部授權環境內可正常使用,未經授權解密,私自帶到外部或未經授權的內部環境均無法打開。
解密審批
管理員可以設置客戶端解密審批流程。設置好後,客戶端選擇被加密的文件,滑鼠右鍵,選擇申請解密,審批人計算機右下角就會彈出審批請求。如同意審批,則客戶端以明文形式外發文件。
分級加密
管理員可以設置不同計算機具有不同的級別,級別低的終端,無法查看級別高的終端生成的文件。
自定義策略
針對非通用軟體,系統提供了人性化自定義策略功能,使用者可以很方便的自定義加密策略。
解密UKey
管理員可以製作多個解密UKey,同時可以給解密UKey分配相應的許可權,包括解密的許可權,修改文件級別的許可權等.
打包外發
外發文件時,申請者可以設置外發文件的使用許可權,包括外發出去的文件的打開次數,打開時間等信息。
剪切板加密
剪切板加密:禁止終端用戶將數據通過復制粘貼的方式外發出去
截屏控制
禁止截屏:禁止終端用戶使用截屏軟體將屏幕數據外發出去。
列印水印
對於加密的文件,列印出來的紙張,背景會有列印水印信息。管理者可以設置水印的內容、位置等信息。
老闆客戶端
管理員可以給企業負責人安裝老闆客戶端,老闆客戶端可以打開全部加密文件,同時自己使用的文件不加密。
離線策略
用於管理不能跟伺服器通信的終端電腦如出差,伺服器故障等,在授權時間內,終端可以正常工作,超過離線時間,將無法打開加密文檔。
審批日誌
終端使用者的一切申請解密日誌,以及審批日誌都會記錄在系統內,管理員可以進行查詢。所有申請解密的文件,均會保存在伺服器上,管理員可以打開查看。
加密文件備份
對於已經加密過的文件,系統提供備份策略,將文件備份到伺服器上。

⑤ 現在資料庫加密的方式有哪幾種

資料庫加密的方式從最早到現在有4種技術,首先是前置代理加密技術,該技術的思路是在資料庫之前增加一道安全代理服務,所有訪問資料庫的行為都必須經過該安全代理服務,在此服務中實現如數據加解密、存取控制等安全策略,安全代理服務通過資料庫的訪問介面實現數據存儲。安全代理服務存在於客戶端應用與資料庫存儲引擎之間,負責完成數據的加解密工作,加密數據存儲在安全代理服務中。
然後是應用加密技術,該技術是應用系統通過加密API對敏感數據進行加密,將加密數據存儲到資料庫的底層文件中;在進行數據檢索時,將密文數據取回到客戶端,再進行解密,應用系統自行管理密鑰體系。
其次是文件系統加解密技術,該技術不與資料庫自身原理融合,只是對數據存儲的載體從操作系統或文件系統層面進行加解密。這種技術通過在操作系統中植入具有一定入侵性的「鉤子」進程,在數據存儲文件被打開的時候進行解密動作,在數據落地的時候執行加密動作,具備基礎加解密能力的同時,能夠根據操作系統用戶或者訪問文件的進程ID進行基本的訪問許可權控制。
最後後置代理技術,該技術是使用「視圖」+「觸發器」+「擴展索引」+「外部調用」的方式實現數據加密,同時保證應用完全透明。核心思想是充分利用資料庫自身提供的應用定製擴展能力,分別使用其觸發器擴展能力、索引擴展能力、自定義函數擴展能力以及視圖等技術來滿足數據存儲加密,加密後數據檢索,對應用無縫透明等核心需求。安華金和的加密技術在國內是唯一支持TDE的資料庫加密產品廠商。

⑥ 加密技術有哪幾種

採用密碼技術對信息加密,是最常用的安全交易手段。在電子商務中獲得廣泛應用的加密技術有以下兩種:

(1)公共密鑰和私用密鑰(public key and private key)

這一加密方法亦稱為RSA編碼法,是由Rivest、Shamir和Adlernan三人所研究發明的。它利用兩個很大的質數相乘所產生的乘積來加密。這兩個質數無論哪一個先與原文件編碼相乘,對文件加密,均可由另一個質數再相乘來解密。但要用一個質數來求出另一個質數,則是十分困難的。因此將這一對質數稱為密鑰對(Key Pair)。在加密應用時,某個用戶總是將一個密鑰公開,讓需發信的人員將信息用其公共密鑰加密後發給該用戶,而一旦信息加密後,只有用該用戶一個人知道的私用密鑰才能解密。具有數字憑證身份的人員的公共密鑰可在網上查到,亦可在請對方發信息時主動將公共密鑰傳給對方,這樣保證在Internet上傳輸信息的保密和安全。

(2)數字摘要(digital digest)

這一加密方法亦稱安全Hash編碼法(SHA:Secure Hash Algorithm)或MD5(MD Standards for Message Digest),由Ron Rivest所設計。該編碼法採用單向Hash函數將需加密的明文「摘要」成一串128bit的密文,這一串密文亦稱為數字指紋(Finger Print),它有固定的長度,且不同的明文摘要成密文,其結果總是不同的,而同樣的明文其摘要必定一致。這樣這摘要便可成為驗證明文是否是「真身」的「指紋」了。

上述兩種方法可結合起來使用,數字簽名就是上述兩法結合使用的實例。

3.2數字簽名(digital signature)

在書面文件上簽名是確認文件的一種手段,簽名的作用有兩點,一是因為自己的簽名難以否認,從而確認了文件已簽署這一事實;二是因為簽名不易仿冒,從而確定了文件是真的這一事實。數字簽名與書面文件簽名有相同之處,採用數字簽名,也能確認以下兩點:

a. 信息是由簽名者發送的。

b. 信息在傳輸過程中未曾作過任何修改。

這樣數字簽名就可用來防止電子信息因易被修改而有人作偽;或冒用別人名義發送信息;或發出(收到)信件後又加以否認等情況發生。

數字簽名採用了雙重加密的方法來實現防偽、防賴。其原理為:

(1) 被發送文件用SHA編碼加密產生128bit的數字摘要(見上節)。

(2) 發送方用自己的私用密鑰對摘要再加密,這就形成了數字簽名。

(3) 將原文和加密的摘要同時傳給對方。

(4) 對方用發送方的公共密鑰對摘要解密,同時對收到的文件用SHA編碼加密產生又一摘要。

(5) 將解密後的摘要和收到的文件在接收方重新加密產生的摘要相互對比。如兩者一致,則說明傳送過程中信息沒有被破壞或篡改過。否則不然。

3.3數字時間戳(digital time-stamp)

交易文件中,時間是十分重要的信息。在書面合同中,文件簽署的日期和簽名一樣均是十分重要的防止文件被偽造和篡改的關鍵性內容。

在電子交易中,同樣需對交易文件的日期和時間信息採取安全措施,而數字時間戳服務(DTS:digital time-stamp service)就能提供電子文件發表時間的安全保護。

數字時間戳服務(DTS)是網上安全服務項目,由專門的機構提供。時間戳(time-stamp)是一個經加密後形成的憑證文檔,它包括三個部分:1)需加時間戳的文件的摘要(digest),2)DTS收到文件的日期和時間,3)DTS的數字簽名。

時間戳產生的過程為:用戶首先將需要加時間戳的文件用HASH編碼加密形成摘要,然後將該摘要發送到DTS,DTS在加入了收到文件摘要的日期和時間信息後再對該文件加密(數字簽名),然後送回用戶。由Bellcore創造的DTS採用如下的過程:加密時將摘要信息歸並到二叉樹的數據結構;再將二叉樹的根值發表在報紙上,這樣更有效地為文件發表時間提供了佐證。注意,書面簽署文件的時間是由簽署人自己寫上的,而數字時間戳則不然,它是由認證單位DTS來加的,以DTS收到文件的時間為依據。因此,時間戳也可作為科學家的科學發明文獻的時間認證。

3.4數字憑證(digital certificate, digital ID)

數字憑證又稱為數字證書,是用電子手段來證實一個用戶的身份和對網路資源的訪問的許可權。在網上的電子交易中,如雙方出示了各自的數字憑證,並用它來進行交易操作,那麼雙方都可不必為對方身份的真偽擔心。數字憑證可用於電子郵件、電子商務、群件、電子基金轉移等各種用途。

數字憑證的內部格式是由CCITT X.509國際標准所規定的,它包含了以下幾點:

(1) 憑證擁有者的姓名,

(2) 憑證擁有者的公共密鑰,

(3) 公共密鑰的有效期,

(4) 頒發數字憑證的單位,

(5) 數字憑證的序列號(Serial number),

(6) 頒發數字憑證單位的數字簽名。

數字憑證有三種類型:

(1) 個人憑證(Personal Digital ID):它僅僅為某一個用戶提供憑證,以幫助其個人在網上進行安全交易操作。個人身份的數字憑證通常是安裝在客戶端的瀏覽器內的。並通過安全的電子郵件(S/MIME)來進行交易操作。

(2) 企業(伺服器)憑證(Server ID):它通常為網上的某個Web伺服器提供憑證,擁有Web伺服器的企業就可以用具有憑證的萬維網站點(Web Site)來進行安全電子交易。有憑證的Web伺服器會自動地將其與客戶端Web瀏覽器通信的信息加密。

(3) 軟體(開發者)憑證(Developer ID):它通常為Internet中被下載的軟體提供憑證,該憑證用於和微軟公司Authenticode技術(合法化軟體)結合的軟體,以使用戶在下載軟體時能獲得所需的信息。

上述三類憑證中前二類是常用的憑證,第三類則用於較特殊的場合,大部分認證中心提供前兩類憑證,能提供各類憑證的認證中心並不普遍

⑦ 數據加密主要有哪些方式

主要有兩種方式:「對稱式」和「非對稱式」。
對稱式加密就是加密和解密使用同一個密鑰,通常稱之為「Session Key 」這種加密技術目前被廣泛採用,如美國政府所採用的DES加密標准就是一種典型的「對稱式」加密法,它的Session Key長度為56Bits。
非對稱式加密就是加密和解密所使用的不是同一個密鑰,通常有兩個密鑰,稱為「公鑰」和「私鑰」,它們兩個必需配對使用,否則不能打開加密文件。這里的「公鑰」是指可以對外公布的,「私鑰」則不能,只能由持有人一個人知道。它的優越性就在這里,因為對稱式的加密方法如果是在網路上傳輸加密文件就很難把密鑰告訴對方,不管用什麼方法都有可能被別竊聽到。而非對稱式的加密方法有兩個密鑰,且其中的「公鑰」是可以公開的,也就不怕別人知道,收件人解密時只要用自己的私鑰即可以,這樣就很好地避免了密鑰的傳輸安全性問題。
一般的數據加密可以在通信的三個層次來實現:鏈路加密、節點加密和端到端加密。(3)
鏈路加密
對於在兩個網路節點間的某一次通信鏈路,鏈路加密能為網上傳輸的數據提供安全證。對於鏈路加密(又稱在線加密),所有消息在被傳輸之前進行加密,在每一個節點對接收到消息進行解密,然後先使用下一個鏈路的密鑰對消息進行加密,再進行傳輸。在到達目的地之前,一條消息可能要經過許多通信鏈路的傳輸。
由於在每一個中間傳輸節點消息均被解密後重新進行加密,因此,包括路由信息在內的鏈路上的所有數據均以密文形式出現。這樣,鏈路加密就掩蓋了被傳輸消息的源點與終點。由於填充技術的使用以及填充字元在不需要傳輸數據的情況下就可以進行加密,這使得消息的頻率和長度特性得以掩蓋,從而可以防止對通信業務進行分析。
盡管鏈路加密在計算機網路環境中使用得相當普遍,但它並非沒有問題。鏈路加密通常用在點對點的同步或非同步線路上,它要求先對在鏈路兩端的加密設備進行同步,然後使用一種鏈模式對鏈路上傳輸的數據進行加密。這就給網路的性能和可管理性帶來了副作用。
在線路/信號經常不通的海外或衛星網路中,鏈路上的加密設備需要頻繁地進行同步,帶來的後果是數據丟失或重傳。另一方面,即使僅一小部分數據需要進行加密,也會使得所有傳輸數據被加密。
在一個網路節點,鏈路加密僅在通信鏈路上提供安全性,消息以明文形式存在,因此所有節點在物理上必須是安全的,否則就會泄漏明文內容。然而保證每一個節點的安全性需要較高的費用,為每一個節點提供加密硬體設備和一個安全的物理環境所需要的費用由以下幾部分組成:保護節點物理安全的雇員開銷,為確保安全策略和程序的正確執行而進行審計時的費用,以及為防止安全性被破壞時帶來損失而參加保險的費用。
在傳統的加密演算法中,用於解密消息的密鑰與用於加密的密鑰是相同的,該密鑰必須被秘密保存,並按一定規則進行變化。這樣,密鑰分配在鏈路加密系統中就成了一個問題,因為每一個節點必須存儲與其相連接的所有鏈路的加密密鑰,這就需要對密鑰進行物理傳送或者建立專用網路設施。而網路節點地理分布的廣闊性使得這一過程變得復雜,同時增加了密鑰連續分配時的費用。
節點加密
盡管節點加密能給網路數據提供較高的安全性,但它在操作方式上與鏈路加密是類似的:兩者均在通信鏈路上為傳輸的消息提供安全性;都在中間節點先對消息進行解密,然後進行加密。因為要對所有傳輸的數據進行加密,所以加密過程對用戶是透明的。
然而,與鏈路加密不同,節點加密不允許消息在網路節點以明文形式存在,它先把收到的消息進行解密,然後採用另一個不同的密鑰進行加密,這一過程是在節點上的一個安全模塊中進行。
節點加密要求報頭和路由信息以明文形式傳輸,以便中間節點能得到如何處理消息的信息。因此這種方法對於防止攻擊者分析通信業務是脆弱的。
端到端加密
端到端加密允許數據在從源點到終點的傳輸過程中始終以密文形式存在。採用端到端加密,消息在被傳輸時到達終點之前不進行解密,因為消息在整個傳輸過程中均受到保護,所以即使有節點被損壞也不會使消息泄露。
端到端加密系統的價格便宜些,並且與鏈路加密和節點加密相比更可靠,更容易設計、實現和維護。端到端加密還避免了其它加密系統所固有的同步問題,因為每個報文包均是獨立被加密的,所以一個報文包所發生的傳輸錯誤不會影響後續的報文包。此外,從用戶對安全需求的直覺上講,端到端加密更自然些。單個用戶可能會選用這種加密方法,以便不影響網路上的其他用戶,此方法只需要源和目的節點是保密的即可。
端到端加密系統通常不允許對消息的目的地址進行加密,這是因為每一個消息所經過的節點都要用此地址來確定如何傳輸消息。由於這種加密方法不能掩蓋被傳輸消息的源點與終點,因此它對於防止攻擊者分析通信業務是脆弱的。

⑧ 有哪些加密方法比較經典或者說說加密的歷史.

加密之所以安全,絕非因不知道加密解密演算法方法,而是加密的密鑰是絕對的隱藏,流行的RSA和AES加密演算法都是完全公開的,一方取得已加密的數據,就算知道加密演算法也好,若沒有加密的密鑰,也不能打開被加密保護的信息。

加密作為保障數據安全的一種方式,它不是才有的,它產生的歷史相當久遠,它是起源於要追溯於公元前2000年(幾個世紀了),雖然它不是我們所講的加密技術(甚至不叫加密),但作為一種加密的概念,確實早在幾個世紀前就誕生了。

當時埃及人是最先使用特別的象形文字作為信息編碼的,隨著時間推移,巴比倫、美索不達米亞和希臘文明都開始使用一些方法來保護他們的書面信息。

近期加密技術主要應用於軍事領域,如美國獨立戰爭、美國內戰和兩次世界大戰。最廣為人知的編碼機器是German Enigma機,在第二次世界大戰中德國人利用它創建了加密信息。此後,由於Alan Turing和Ultra計劃以及其他人的努力,終於對德國人的密碼進行了破解。



(8)分裂加密技術擴展閱讀:

相關標准

最早、最著名的保密密鑰或對稱密鑰加密演算法DES(Data Encryption Standard)是由IBM公司在70年代發展起來的,並經政府的加密標准篩選後,於1976年11月被美國政府採用,DES隨後被美國國家標准局和美國國家標准協會(American National Standard Institute,ANSI)承認。

DES使用56位密鑰對64位的數據塊進行加密,並對64位的數據塊進行16輪編碼。與每輪編碼時,一個48位的"每輪"密鑰值由56位的完整密鑰得出來。

DES用軟體進行解碼需用很長時間,而用硬體解碼速度非常快。幸運的是,當時大多數黑客並沒有足夠的設備製造出這種硬體設備。

在1977年,人們估計要耗資兩千萬美元才能建成一個專門計算機用於DES的解密,而且需要12個小時的破解才能得到結果。當時DES被認為是一種十分強大的加密方法。



⑨ 加密技術分為哪兩類

加密技術分為:

1、對稱加密

對稱加密採用了對稱密碼編碼技術,它的特點是文件加密和解密使用相同的密鑰,即加密密鑰也可以用作解密密鑰,這種方法在密碼學中叫做對稱加密演算法,對稱加密演算法使用起來簡單快捷,密鑰較短,且破譯困難

2、非對稱

1976年,美國學者Dime和Henman為解決信息公開傳送和密鑰管理問題,提出一種新的密鑰交換協議,允許在不安全的媒體上的通訊雙方交換信息,安全地達成一致的密鑰,這就是「公開密鑰系統」。

加密技術的功能:

原有的單密鑰加密技術採用特定加密密鑰加密數據,而解密時用於解密的密鑰與加密密鑰相同,這稱之為對稱型加密演算法。採用此加密技術的理論基礎的加密方法如果用於網路傳輸數據加密,則不可避免地出現安全漏洞。

區別於原有的單密鑰加密技術,PKI採用非對稱的加密演算法,即由原文加密成密文的密鑰不同於由密文解密為原文的密鑰,以避免第三方獲取密鑰後將密文解密。

以上內容參考:網路—加密技術

⑩ 加密技術有哪幾種分類

加密技術分為私用密鑰加密技術和公開密鑰加密技術。其中私用密鑰加密技術中最具有代表性的演算法是IBM公司提出的DES演算法、三重DES演算法(是DES加強版)、日本密碼學家提出隨機化數據加密標准(RDES)、瑞士學者發明的IDEA國際信息加密演算法;公開密鑰加密技術的核心是運用一種特殊的數學函數(單向陷門函數)。演算法有很多,比如著名的背包演算法等。目前公認比較安全的是RSA演算法及其變種和離散對數演算法等等。
數據來源《小議數據加密技術》

閱讀全文

與分裂加密技術相關的資料

熱點內容
單片機編程取反 瀏覽:897
51單片機課程設計課題 瀏覽:900
手機淘寶登錄怎麼加密碼 瀏覽:486
linux快捷方式圖標 瀏覽:38
陽光車險的app叫什麼名字 瀏覽:462
購買單片機的器件時需要給商家啥 瀏覽:535
並行編譯技術的發展 瀏覽:550
阿里雲伺服器安裝管理 瀏覽:551
java手機開發教程 瀏覽:675
我的世界怎麼刪除伺服器數據 瀏覽:672
linux內存子系統 瀏覽:973
加密思維幣 瀏覽:691
魅族訪客文件夾 瀏覽:53
添加的文件夾怎麼找 瀏覽:618
程序員涉黃 瀏覽:701
maven編譯resources下的js 瀏覽:522
ubuntu文件移動命令 瀏覽:230
安卓i怎麼查找蘋果手機 瀏覽:952
雲伺服器宕機概率 瀏覽:233
在線買葯用什麼app知乎 瀏覽:816