導航:首頁 > 文檔加密 > 加密工人

加密工人

發布時間:2023-05-24 21:28:02

加密的意思加密的意思是什麼

加密的詞語解釋是:加密jiāmì。(1)把一份電報譯成密電碼。(2)使比原來的緻密。
加密的詞語解釋是:加密jiāmì。(1)把一份電報譯成密電碼。(2)使比原來的緻密。 拼音是:jiā mì。 結構是:加(左右結構)密(上下結構)。 詞性是:動詞。 注音是:ㄐ一ㄚㄇ一_。
加密的具體解釋是什麼呢,我們通過以下幾個方面為您介紹:
一、網路解釋【點此查看計劃詳細內容】
加密加密,是以某種特殊的演算法改變原有的信息數據,使得未授權的用戶即使獲得了已加密的信息,但因不知解密的方法,仍然無法了解信息的內容。在航空學中,指利用航空攝影像片上已知的少數控制點,通過對像片測量和計算的方法在像對或整條航攝帶上增加控制點的作業。
關於加密的成語
密密匝匝加油加醋沉密寡言密密層層公規密諫柔情密意密不可分密約偷期遏密八音密密麻麻
關於加密的詞語
機事不密細針密線密不可分私情密語遏密八音沉密寡言密約局羨如偷期百密一疏柔情密意公規密諫
關於加密的造句
1、這里派搜最簡單的方法就是對設備加密,然後再解密,本源代碼就是一個與此相關的例子,對盤數據加密,保護信息隱蔽,防止隱私泄露。
2、收件人沒有加密電子郵件的有效數字標識。
3、本文介紹了廈門市工人文化宮地下停車場內長距離消防卷簾降溫保護問題的方案比較,認為類似工點應當優先採用加密噴頭閉式自動噴水系統。
4、我們回到小孩的例子中,您的夥伴可以使用他的私鑰來加密進攻計劃。
5、這家公司位於加利弗尼亞洲的薩尼維爾市,該公司現在正著手研發它的第一款產品,該公司負責產品研發的副總裁帕特里克?貝德維爾表示,這款產品可以與加密軟體進桐啟行「互動」。
點此查看更多關於加密的詳細信息

Ⅱ 趙長鵬身價達900億美元,超出鍾睒睒 35%,他是如何登頂的

趙長鵬是加密貨幣平台幣安的創始人之一,他擁有幣安百分之三十的股份。而幣安僅成立四年就成為了全球最大的加密貨幣交易平台,日成交額就已經達到了760多億美元。據統計,加密貨幣平台幣安的估值將達到3000億美元 ,所以趙長鵬的身價為900多億美元。已經超過了農夫山泉董事長鍾睒睒 ,所以他成為了福布斯富豪榜的第一名。其實趙長鵬能夠登頂,主要原因是近年來加密貨幣的流行以及比特幣的大幅增值,所以小編覺得他能成為福布斯富豪榜第一名,主要有以下原因:

一、比特幣的流行

比特幣是加密貨幣中黃金,如今它價值310000人民幣一枚,而在最初它的價值只有幾毛錢,到如今已經漲幅超過了2600萬多倍。而且在世界各個國家中,為了應付未來的金融危機,有的國家已經把比特幣作為交易貨幣,允許企業把比特幣作為工資發放給工人了。而比特幣的數量是有限的,這就意味著它會越來越值錢。

以上就是小編的看法,各位有什麼看法,歡迎在下面評論啊。

Ⅲ 加密基礎知識二 非對稱加密RSA演算法和對稱加密

上述過程中,出現了公鑰(3233,17)和私鑰(3233,2753),這兩組數字是怎麼找出來的呢?參考 RSA演算法原理(二)
首字母縮寫說明:E是加密(Encryption)D是解密(Decryption)N是數字(Number)。

1.隨機選擇兩個不相等的質數p和q。
alice選擇了61和53。(實際應用中,這兩個質數越大,就越難破解。)

2.計算p和q的乘積n。
n = 61×53 = 3233
n的長度就是密鑰長度。3233寫成二進制是110010100001,一共有12位,所以這個密鑰就是12位。實際應用中,RSA密鑰一般是1024位,重要場合則為2048位。

3.計算n的歐拉函數φ(n)。稱作L
根據公式φ(n) = (p-1)(q-1)
alice算出φ(3233)等於60×52,即3120。

4.隨機選擇一個整數e,也就是公鑰當中用來加密的那個數字
條件是1< e < φ(n),且e與φ(n) 互質。
alice就在1到3120之間,隨機選擇了17。(實際應用中,常常選擇65537。)

5.計算e對於φ(n)的模反元素d。也就是密鑰當中用來解密的那個數字
所謂"模反元素"就是指有一個整數d,可以使得ed被φ(n)除的余數為1。ed ≡ 1 (mod φ(n))
alice找到了2753,即17*2753 mode 3120 = 1

6.將n和e封裝成公鑰,n和d封裝成私鑰。
在alice的例子中,n=3233,e=17,d=2753,所以公鑰就是 (3233,17),私鑰就是(3233, 2753)。

上述故事中,blob為了偷偷地傳輸移動位數6,使用了公鑰做加密,即6^17 mode 3233 = 824。alice收到824之後,進行解密,即824^2753 mod 3233 = 6。也就是說,alice成功收到了blob使用的移動位數。

再來復習一下整個流程:
p=17,q=19
n = 17 19 = 323
L = 16 18 = 144
E = 5(E需要滿足以下兩個條件:1<E<144,E和144互質)
D = 29(D要滿足兩個條件,1<D<144,D mode 144 = 1)
假設某個需要傳遞123,則加密後:123^5 mode 323 = 225
接收者收到225後,進行解密,225^ 29 mode 323 = 123

回顧上面的密鑰生成步驟,一共出現六個數字:
p
q
n
L即φ(n)
e
d
這六個數字之中,公鑰用到了兩個(n和e),其餘四個數字都是不公開的。其中最關鍵的是d,因為n和d組成了私鑰,一旦d泄漏,就等於私鑰泄漏。那麼,有無可能在已知n和e的情況下,推導出d?
(1)ed≡1 (mod φ(n))。只有知道e和φ(n),才能算出d。
(2)φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。
(3)n=pq。只有將n因數分解,才能算出p和q。
結論:如果n可以被因數分解,d就可以算出,也就意味著私鑰被破解。
可是,大整數的因數分解,是一件非常困難的事情。目前,除了暴力破解,還沒有發現別的有效方法。維基網路這樣寫道:"對極大整數做因數分解的難度決定了RSA演算法的可靠性。換言之,對一極大整數做因數分解愈困難,RSA演算法愈可靠。假如有人找到一種快速因數分解的演算法,那麼RSA的可靠性就會極度下降。但找到這樣的演算法的可能性是非常小的。今天只有短的RSA密鑰才可能被暴力破解。到2008年為止,世界上還沒有任何可靠的攻擊RSA演算法的方式。只要密鑰長度足夠長,用RSA加密的信息實際上是不能被解破的。"

然而,雖然RSA的安全性依賴於大數的因子分解,但並沒有從理論上證明破譯RSA的難度與大數分解難度等價。即RSA的重大缺陷是無法從理論上把握它的保密性能如何。此外,RSA的缺點還有:
A)產生密鑰很麻煩,受到素數產生技術的限制,因而難以做到一次一密。
B)分組長度太大,為保證安全性,n 至少也要 600bits以上,使運算代價很高,尤其是速度較慢,較對稱密碼演算法慢幾個數量級;且隨著大數分解技術的發展,這個長度還在增加,不利於數據格式的標准化。因此, 使用RSA只能加密少量數據,大量的數據加密還要靠對稱密碼演算法

加密和解密是自古就有技術了。經常看到偵探電影的橋段,勇敢又機智的主角,拿著一長串毫無意義的數字苦惱,忽然靈光一閃,翻出一本厚書,將第一個數字對應頁碼數,第二個數字對應行數,第三個數字對應那一行的某個詞。數字變成了一串非常有意義的話:
Eat the beancurd with the peanut. Taste like the ham.

這種加密方法是將原來的某種信息按照某個規律打亂。某種打亂的方式就叫做密鑰(cipher code)。發出信息的人根據密鑰來給信息加密,而接收信息的人利用相同的密鑰,來給信息解密。 就好像一個帶鎖的盒子。發送信息的人將信息放到盒子里,用鑰匙鎖上。而接受信息的人則用相同的鑰匙打開。加密和解密用的是同一個密鑰,這種加密稱為對稱加密(symmetric encryption)。

如果一對一的話,那麼兩人需要交換一個密鑰。一對多的話,比如總部和多個特工的通信,依然可以使用同一套密鑰。 但這種情況下,對手偷到一個密鑰的話,就知道所有交流的信息了。 二戰中盟軍的情報戰成果,很多都來自於破獲這種對稱加密的密鑰。

為了更安全,總部需要給每個特工都設計一個不同的密鑰。如果是FBI這樣龐大的機構,恐怕很難維護這么多的密鑰。在現代社會,每個人的信用卡信息都需要加密。一一設計密鑰的話,銀行怕是要跪了。

對稱加密的薄弱之處在於給了太多人的鑰匙。如果只給特工鎖,而總部保有鑰匙,那就容易了。特工將信息用鎖鎖到盒子里,誰也打不開,除非到總部用唯一的一把鑰匙打開。只是這樣的話,特工每次出門都要帶上許多鎖,太容易被識破身份了。總部老大想了想,乾脆就把造鎖的技術公開了。特工,或者任何其它人,可以就地取材,按照圖紙造鎖,但無法根據圖紙造出鑰匙。鑰匙只有總部的那一把。

上面的關鍵是鎖和鑰匙工藝不同。知道了鎖,並不能知道鑰匙。這樣,銀行可以將「造鎖」的方法公布給所有用戶。 每個用戶可以用鎖來加密自己的信用卡信息。即使被別人竊聽到,也不用擔心:只有銀行才有鑰匙呢!這樣一種加密演算法叫做非對稱加密(asymmetric encryption)。非對稱加密的經典演算法是RSA演算法。它來自於數論與計算機計數的奇妙結合。

1976年,兩位美國計算機學家Whitfield Diffie 和 Martin Hellman,提出了一種嶄新構思,可以在不直接傳遞密鑰的情況下,完成解密。這被稱為"Diffie-Hellman密鑰交換演算法"。這個演算法啟發了其他科學家。人們認識到,加密和解密可以使用不同的規則,只要這兩種規則之間存在某種對應關系即可,這樣就避免了直接傳遞密鑰。這種新的加密模式被稱為"非對稱加密演算法"。

1977年,三位數學家Rivest、Shamir 和 Adleman 設計了一種演算法,可以實現非對稱加密。這種演算法用他們三個人的名字命名,叫做RSA演算法。從那時直到現在,RSA演算法一直是最廣為使用的"非對稱加密演算法"。毫不誇張地說,只要有計算機網路的地方,就有RSA演算法。

1.能「撞」上的保險箱(非對稱/公鑰加密體制,Asymmetric / Public Key Encryption)

數據加密解密和門鎖很像。最開始的時候,人們只想到了那種只能用鑰匙「鎖」數據的鎖。如果在自己的電腦上自己加密數據,當然可以用最開始這種門鎖的形式啦,方便快捷,簡單易用有木有。

但是我們現在是通信時代啊,雙方都想做安全的通信怎麼辦呢?如果也用這種方法,通信就好像互相發送密碼保險箱一樣…而且雙方必須都有鑰匙才能進行加密和解密。也就是說,兩個人都拿著保險箱的鑰匙,你把數據放進去,用鑰匙鎖上發給我。我用同樣的鑰匙把保險箱打開,再把我的數據鎖進保險箱,發送給你。

這樣看起來好像沒什麼問題。但是,這裡面 最大的問題是:我們兩個怎麼弄到同一個保險箱的同一個鑰匙呢? 好像僅有的辦法就是我們兩個一起去買個保險箱,然後一人拿一把鑰匙,以後就用這個保險箱了。可是,現代通信社會,絕大多數情況下別說一起去買保險箱了,連見個面都難,這怎麼辦啊?

於是,人們想到了「撞門」的方法。我這有個可以「撞上」的保險箱,你那裡自己也買一個這樣的保險箱。通信最開始,我把保險箱打開,就這么開著把保險箱發給你。你把數據放進去以後,把保險箱「撞」上發給我。撞上以後,除了我以外,誰都打不開保險箱了。這就是RSA了,公開的保險箱就是公鑰,但是我有私鑰,我才能打開。

2.數字簽名
這種鎖看起來好像很不錯,但是鎖在運輸的過程中有這么一個嚴重的問題:你怎麼確定你收到的開著的保險箱就是我發來的呢?對於一個聰明人,他完全可以這么干:
(a)裝作運輸工人。我現在把我開著的保險箱運給對方。運輸工人自己也弄這么一個保險箱,運輸的時候把保險箱換成他做的。
(b)對方收到保險箱後,沒法知道這個保險箱是我最初發過去的,還是運輸工人替換的。對方把數據放進去,把保險箱撞上。
(c)運輸工人往回運的時候,用自己的鑰匙打開自己的保險箱,把數據拿走。然後復印也好,偽造也好,弄出一份數據,把這份數據放進我的保險箱,撞上,然後發給我。
從我的角度,從對方的角度,都會覺得這數據傳輸過程沒問題。但是,運輸工人成功拿到了數據,整個過程還是不安全的,大概的過程是這樣:

這怎麼辦啊?這個問題的本質原因是,人們沒辦法獲知,保險箱到底是「我」做的,還是運輸工人做的。那乾脆,我們都別做保險箱了,讓權威機構做保險箱,然後在每個保險箱上用特殊的工具刻上一個編號。對方收到保險箱的時候,在權威機構的「公告欄」上查一下編號,要是和保險箱上的編號一樣,我就知道這個保險箱是「我」的,就安心把數據放進去。大概過程是這樣的:

如何做出刻上編號,而且編號沒法修改的保險箱呢?這涉及到了公鑰體制中的另一個問題:數字簽名。
要知道,刻字這種事情吧,誰都能幹,所以想做出只能自己刻字,還沒法讓別人修改的保險箱確實有點難度。那麼怎麼辦呢?這其實困擾了人們很長的時間。直到有一天,人們發現:我們不一定非要在保險箱上刻規規矩矩的字,我們乾脆在保險箱上刻手寫名字好了。而且,刻字有點麻煩,乾脆我們在上面弄張紙,讓人直接在上面寫,簡單不費事。具體做法是,我們在保險箱上嵌進去一張紙,然後每個出產的保險箱都讓權威機構的CEO簽上自己的名字。然後,CEO把自己的簽名公開在權威機構的「公告欄」上面。比如這個CEO就叫「學酥」,那麼整個流程差不多是這個樣子:

這個方法的本質原理是,每個人都能夠通過筆跡看出保險箱上的字是不是學酥CEO簽的。但是呢,這個字體是學酥CEO唯一的字體。別人很難模仿。如果模仿我們就能自己分辨出來了。要是實在分辨不出來呢,我們就請一個筆跡專家來分辨。這不是很好嘛。這個在密碼學上就是數字簽名。

上面這個簽字的方法雖然好,但是還有一個比較蛋疼的問題。因為簽字的樣子是公開的,一個聰明人可以把公開的簽字影印一份,自己造個保險箱,然後把這個影印的字也嵌進去。這樣一來,這個聰明人也可以造一個相同簽字的保險箱了。解決這個問題一個非常簡單的方法就是在看保險箱上的簽名時,不光看字體本身,還要看字體是不是和公開的字體完全一樣。要是完全一樣,就可以考慮這個簽名可能是影印出來的。甚至,還要考察字體是不是和其他保險櫃上的字體一模一樣。因為聰明人為了欺騙大家,可能不影印公開的簽名,而影印其他保險箱上的簽名。這種解決方法雖然簡單,但是驗證簽名的時候麻煩了一些。麻煩的地方在於我不僅需要對比保險箱上的簽名是否與公開的筆跡一樣,還需要對比得到的簽名是否與公開的筆跡完全一樣,乃至是否和所有發布的保險箱上的簽名完全一樣。有沒有什麼更好的方法呢?

當然有,人們想到了一個比較好的方法。那就是,學酥CEO簽字的時候吧,不光把名字簽上,還得帶上簽字得日期,或者帶上這個保險箱的編號。這樣一來,每一個保險箱上的簽字就唯一了,這個簽字是學酥CEO的簽名+學酥CEO寫上的時間或者編號。這樣一來,就算有人偽造,也只能偽造用過的保險箱。這個問題就徹底解決了。這個過程大概是這么個樣子:

3 造價問題(密鑰封裝機制,Key Encapsulation Mechanism)
解決了上面的各種問題,我們要考慮考慮成本了… 這種能「撞」門的保險箱雖然好,但是這種鎖造價一般來說要比普通的鎖要高,而且鎖生產時間也會變長。在密碼學中,對於同樣「結實」的鎖,能「撞」門的鎖的造價一般來說是普通鎖的上千倍。同時,能「撞」門的鎖一般來說只能安裝在小的保險櫃裡面。畢竟,這么復雜的鎖,裝起來很費事啊!而普通鎖安裝在多大的保險櫃上面都可以呢。如果兩個人想傳輸大量數據的話,用一個大的保險櫃比用一堆小的保險櫃慢慢傳要好的多呀。怎麼解決這個問題呢?人們又想出了一個非常棒的方法:我們把兩種鎖結合起來。能「撞」上的保險櫃裡面放一個普通鎖的鑰匙。然後造一個用普通的保險櫃來鎖大量的數據。這樣一來,我們相當於用能「撞」上的保險櫃發一個鑰匙過去。對方收到兩個保險櫃後,先用自己的鑰匙把小保險櫃打開,取出鑰匙。然後在用這個鑰匙開大的保險櫃。這樣做更棒的一個地方在於,既然對方得到了一個鑰匙,後續再通信的時候,我們就不再需要能「撞」上的保險櫃了啊,在以後一定時間內就用普通保險櫃就好了,方便快捷嘛。

以下參考 數字簽名、數字證書、SSL、https是什麼關系?
4.數字簽名(Digital Signature)
數據在瀏覽器和伺服器之間傳輸時,有可能在傳輸過程中被冒充的盜賊把內容替換了,那麼如何保證數據是真實伺服器發送的而不被調包呢,同時如何保證傳輸的數據沒有被人篡改呢,要解決這兩個問題就必須用到數字簽名,數字簽名就如同日常生活的中的簽名一樣,一旦在合同書上落下了你的大名,從法律意義上就確定是你本人簽的字兒,這是任何人都沒法仿造的,因為這是你專有的手跡,任何人是造不出來的。那麼在計算機中的數字簽名怎麼回事呢?數字簽名就是用於驗證傳輸的內容是不是真實伺服器發送的數據,發送的數據有沒有被篡改過,它就干這兩件事,是非對稱加密的一種應用場景。不過他是反過來用私鑰來加密,通過與之配對的公鑰來解密。
第一步:服務端把報文經過Hash處理後生成摘要信息Digest,摘要信息使用私鑰private-key加密之後就生成簽名,伺服器把簽名連同報文一起發送給客戶端。
第二步:客戶端接收到數據後,把簽名提取出來用public-key解密,如果能正常的解密出來Digest2,那麼就能確認是對方發的。
第三步:客戶端把報文Text提取出來做同樣的Hash處理,得到的摘要信息Digest1,再與之前解密出來的Digist2對比,如果兩者相等,就表示內容沒有被篡改,否則內容就是被人改過了。因為只要文本內容哪怕有任何一點點改動都會Hash出一個完全不一樣的摘要信息出來。

5.數字證書(Certificate Authority)
數字證書簡稱CA,它由權威機構給某網站頒發的一種認可憑證,這個憑證是被大家(瀏覽器)所認可的,為什麼需要用數字證書呢,難道有了數字簽名還不夠安全嗎?有這樣一種情況,就是瀏覽器無法確定所有的真實伺服器是不是真的是真實的,舉一個簡單的例子:A廠家給你們家安裝鎖,同時把鑰匙也交給你,只要鑰匙能打開鎖,你就可以確定鑰匙和鎖是配對的,如果有人把鑰匙換了或者把鎖換了,你是打不開門的,你就知道肯定被竊取了,但是如果有人把鎖和鑰匙替換成另一套表面看起來差不多的,但質量差很多的,雖然鑰匙和鎖配套,但是你卻不能確定這是否真的是A廠家給你的,那麼這時候,你可以找質檢部門來檢驗一下,這套鎖是不是真的來自於A廠家,質檢部門是權威機構,他說的話是可以被公眾認可的(呵呵)。
同樣的, 因為如果有人(張三)用自己的公鑰把真實伺服器發送給瀏覽器的公鑰替換了,於是張三用自己的私鑰執行相同的步驟對文本Hash、數字簽名,最後得到的結果都沒什麼問題,但事實上瀏覽器看到的東西卻不是真實伺服器給的,而是被張三從里到外(公鑰到私鑰)換了一通。那麼如何保證你現在使用的公鑰就是真實伺服器發給你的呢?我們就用數字證書來解決這個問題。數字證書一般由數字證書認證機構(Certificate Authority)頒發,證書裡麵包含了真實伺服器的公鑰和網站的一些其他信息,數字證書機構用自己的私鑰加密後發給瀏覽器,瀏覽器使用數字證書機構的公鑰解密後得到真實伺服器的公鑰。這個過程是建立在被大家所認可的證書機構之上得到的公鑰,所以這是一種安全的方式。

常見的對稱加密演算法有DES、3DES、AES、RC5、RC6。非對稱加密演算法應用非常廣泛,如SSH,
HTTPS, TLS,電子證書,電子簽名,電子身份證等等。
參考 DES/3DES/AES區別

Ⅳ 區塊鏈中現代密碼學

1983年 - David Chaum描述的盲簽
1997年 - Adam Back發明的HashCash(工作證明制度的一個例子)
2001年 - Ron Rivest,Adi Shamir和Yael Tauman向加密社區提出了環簽名
2004年 - Patrick P. Tsang和Victor K.提出使用環簽名系統進行投票和電子現金;
2008年 - 由Satoshi Nakamoto出版的Bitcoin白皮書
2011年 - 比特幣系統中的匿名分析,Fergal Reid和Martin Harrigan
2012 - 目的地址比特幣匿名(CryptoNote中的一次性地址)。

安全多方計算起源於1982年姚期智的百萬富翁問題。後來Oded Goldreich有比較細致系統的論述。

姚氏百萬富翁問題是由華裔計算機科學家、圖靈獎獲得者姚啟智教授首先提出的。該問題表述為:兩個百萬富翁Alice和Bob想知道他們兩個誰更富有,但他們都不想讓對方知道自己財富的任何信息。該問題有一些實際應用:假設Alice希望向Bob購買一些商品,但她願意支付的最高金額為x元;Bob希望的最低賣出價為y元。Alice和Bob都非常希望知道x與y哪個大。如果x>y,他們都可以開始討價還價;如果z<y,他們就不用浪費口舌。但他們都不想告訴對方自己的出價,以免自己在討價還價中處於不利地位。

該方案用於對兩個數進行比較,以確定哪一個較大。Alice知道一個整數i;Bob知道一個整數j, Alice與B0b希望知道究竟i>=j還是j>i,但都不想讓對方知道自己的數。為簡單起見,假設j與i的范圍為[1,100】。Bob有一個公開密鑰Eb和私有密鑰Db。

安全多方計算(Secure Multi-Party Computation)的研究主要是針對無可信第三方的情況下, 如何安全地計算一個約定函數的問題. 安全多方計算在電子選舉、電子投票、電子拍賣、秘密共享、門限簽名等場景中有著重要的作用。

同態加密(Homomorphic Encryption)是很久以前密碼學界就提出來的一個Open Problem。早在1978年,Ron Rivest, Leonard Adleman, 以及Michael L. Dertouzos就以銀行為應用背景提出了這個概念[RAD78]。對,你沒有看錯,Ron Rivest和Leonard Adleman分別就是著名的RSA演算法中的R和A。

什麼是同態加密?提出第一個構造出全同態加密(Fully Homomorphic Encryption)[Gen09]的Craig Gentry給出的直觀定義最好:A way to delegate processing of your data, without giving away access to it.

這是什麼意思呢?一般的加密方案關注的都是數據存儲安全。即,我要給其他人發個加密的東西,或者要在計算機或者其他伺服器上存一個東西,我要對數據進行加密後在發送或者存儲。沒有密鑰的用戶,不可能從加密結果中得到有關原始數據的任何信息。只有擁有密鑰的用戶才能夠正確解密,得到原始的內容。我們注意到,這個過程中用戶是不能對加密結果做任何操作的,只能進行存儲、傳輸。對加密結果做任何操作,都將會導致錯誤的解密,甚至解密失敗。

同態加密方案最有趣的地方在於,其關注的是數據處理安全。同態加密提供了一種對加密數據進行處理的功能。也就是說,其他人可以對加密數據進行處理,但是處理過程不會泄露任何原始內容。同時,擁有密鑰的用戶對處理過的數據進行解密後,得到的正好是處理後的結果。

有點抽象?我們舉個實際生活中的例子。有個叫Alice的用戶買到了一大塊金子,她想讓工人把這塊金子打造成一個項鏈。但是工人在打造的過程中有可能會偷金子啊,畢竟就是一克金子也值很多錢的說… 因此能不能有一種方法,讓工人可以對金塊進行加工(delegate processing of your data),但是不能得到任何金子(without giving away access to it)?當然有辦法啦,Alice可以這么做:Alice將金子鎖在一個密閉的盒子裡面,這個盒子安裝了一個手套。工人可以帶著這個手套,對盒子內部的金子進行處理。但是盒子是鎖著的,所以工人不僅拿不到金塊,連處理過程中掉下的任何金子都拿不到。加工完成後。Alice拿回這個盒子,把鎖打開,就得到了金子。

這裡面的對應關系是:盒子:加密演算法盒子上的鎖:用戶密鑰將金塊放在盒子裡面並且用鎖鎖上:將數據用同態加密方案進行加密加工:應用同態特性,在無法取得數據的條件下直接對加密結果進行處理開鎖:對結果進行解密,直接得到處理後的結果同態加密哪裡能用?這幾年不是提了個雲計算的概念嘛。同態加密幾乎就是為雲計算而量身打造的!我們考慮下面的情景:一個用戶想要處理一個數據,但是他的計算機計算能力較弱。這個用戶可以使用雲計算的概念,讓雲來幫助他進行處理而得到結果。但是如果直接將數據交給雲,無法保證安全性啊!於是,他可以使用同態加密,然後讓雲來對加密數據進行直接處理,並將處理結果返回給他。這樣一來:用戶向雲服務商付款,得到了處理的結果;雲服務商掙到了費用,並在不知道用戶數據的前提下正確處理了數據;

聚合簽名由Boneh等人提出,主要是通過聚合多個簽名為一個簽名,來提高簽名與驗證的效率。要對多個用戶的數據進行簽名,聚合簽名能夠極大地降低簽名計算復雜度。CL就是聚合簽名。

零知識證明過程有兩個參與方,一方叫證明者,一方叫驗證者。證明者掌握著某個秘密,他想讓驗證者相信他掌握著秘密,但是又不想泄漏這個秘密給驗證者。

雙方按照一個協議,通過一系列交互,最終驗證者會得出一個明確的結論,證明者是或不掌握這個秘密。

對於比特幣的例子,一筆轉帳交易合法與否,其實只要證明三件事:

發送的錢屬於發送交易的人
發送者發送的金額等於接收者收到金額
發送者的錢確實被銷毀了
整個證明過程中,礦工其實並不關心具體花掉了多少錢,發送者具體是誰,接受者具體是誰。礦工只關心系統的錢是不是守恆的。

zcash 就是用這個思路實現了隱私交易。

零知識證明的三條性質對應:

(1)完備性。如果證明方和驗證方都是誠實的,並遵循證明過程的每一步,進行正確的計算,那麼這個證明一定是成功的,驗證方一定能夠接受證明方。
(2)合理性。沒有人能夠假冒證明方,使這個證明成功。
(3)零知識性。證明過程執行完之後,驗證方只獲得了「證明方擁有這個知識」這條信息,而沒有獲得關於這個知識本身的任何一點信息。

只有環成員,沒有管理者,不需要環成員之間的合作,簽名者利用自己的私鑰和集合中其他成員的公鑰就能獨立的進行簽名,不需要其他人的幫助,集合中的其他成員可能不知道自己被包含在了其中。
環簽名可以被用作成一種泄露秘密的方式,例如,可以使用環形簽名來提供來自「白宮高級官員」的匿名簽名,而不會透露哪個官員簽署了該消息。 環簽名適用於此應用程序,因為環簽名的匿名性不能被撤銷,並且因為用於環簽名的組可以被即興創建。

1)密鑰生成。為環中每個成員產生一個密鑰對(公鑰PKi,私鑰SKi)
2)簽名。簽名者用自己的私鑰和任意n個環成員的公鑰為消息m生成簽名a
3)簽名驗證。簽名者根據環簽名和消息m,驗證簽名是否是環中成員所簽。如果有效就接收,如果無效就丟棄。

群簽名的一般流程

盲數字簽名(Blind Signature)簡稱盲簽名——是一種數字簽名的方式,在消息內容被簽名之前,對於簽名者來說消息內容是不可見的。1982年大衛·喬姆首先提出了盲簽名的概念。盲簽名因為具有盲性這一特點,可以有效保護所簽署消息的具體內容,所以在電子商務和電子選舉等領域有著廣泛的應用。

類比例子:對文件簽名就是通過在信封里放一張復寫紙,簽名者在信封上簽名時,他的簽名便透過復寫紙簽到文件上。

所謂盲簽名,就是先將隱蔽的文件放進信封里,而除去盲因子的過程就是打開這個信封,當文件在一個信封中時,任何人不能讀它。對文件簽名就是通過在信封里放一張復寫紙,簽名者在信封上簽名時,他的簽名便透過復寫紙簽到文件上。

一般來說,一個好的盲簽名應該具有以下的性質:

不可偽造性。除了簽名者本人外,任何人都不能以他的名義生成有效的盲簽名。這是一條最基本的性質。
不可抵賴性。簽名者一旦簽署了某個消息,他無法否認自己對消息的簽名。
盲性。簽名者雖然對某個消息進行了簽名,但他不可能得到消息的具體內容。
不可跟蹤性。一旦消息的簽名公開後,簽名者不能確定自己何時簽署的這條消息。
滿足上面幾條性質的盲簽名,被認為是安全的。這四條性質既是我們設計盲簽名所應遵循的標准,又是我們判斷盲簽名性能優劣的根據。

另外,方案的可操作性和實現的效率也是我們設計盲簽名時必須考慮的重要

因素。一個盲簽名的可操作性和實現速度取決於以下幾個方面:

1,密鑰的長度;
2,盲簽名的長度;
3,盲簽名的演算法和驗證演算法。
盲簽名具體步驟
1,接收者首先將待簽數據進行盲變換,把變換後的盲數據發給簽名者。
2,經簽名者簽名後再發給接收者。
3,接收者對簽名再作去盲變換,得出的便是簽名者對原數據的盲簽名。
4,這樣便滿足了條件①。要滿足條件②,必須使簽名者事後看到盲簽名時不能與盲數據聯系起來,這通常是依靠某種協議來實現的。

Ⅳ 【加密資料庫】怎麼進行「模糊查詢」,總體思路怎麼樣的

加密後怎麼模糊查詢!
可行的一種方法是,你先把需查詢的欄位全取出來解密,放到一個list裡面。用linq模糊查詢。
如果記錄過多可以象分頁處理一樣分段查詢。
當然,如果你的加密演算法不可逆。那就換可逆的演算法

閱讀全文

與加密工人相關的資料

熱點內容
單片機編程取反 瀏覽:894
51單片機課程設計課題 瀏覽:897
手機淘寶登錄怎麼加密碼 瀏覽:484
linux快捷方式圖標 瀏覽:37
陽光車險的app叫什麼名字 瀏覽:461
購買單片機的器件時需要給商家啥 瀏覽:534
並行編譯技術的發展 瀏覽:549
阿里雲伺服器安裝管理 瀏覽:550
java手機開發教程 瀏覽:674
我的世界怎麼刪除伺服器數據 瀏覽:671
linux內存子系統 瀏覽:972
加密思維幣 瀏覽:690
魅族訪客文件夾 瀏覽:52
添加的文件夾怎麼找 瀏覽:617
程序員涉黃 瀏覽:700
maven編譯resources下的js 瀏覽:521
ubuntu文件移動命令 瀏覽:229
安卓i怎麼查找蘋果手機 瀏覽:951
雲伺服器宕機概率 瀏覽:232
在線買葯用什麼app知乎 瀏覽:815