導航:首頁 > 文檔加密 > 光纖pdf

光纖pdf

發布時間:2023-06-01 09:15:43

❶ 光纖的種類

光纖按照ITU-T 建議分類

1、G.651 多模光纖(50/125μm,多模漸變型折射率光纖) 適用於波長為850nm/1310nm的短距離傳送

2、G.652 常規單模光纖(非色散位移光纖STD SMF):適用於1310-1550nm的接入網, 是應用最廣泛的光纖,目前除了光纖到戶(FTTH)的入戶光纜外,長途、城域使用的光纖幾乎全為G.652光纖,應用於數據通信和圖像傳輸。


3、G.653 光纖(色散位移光纖DSF):在λ=1310nm附近的零色散點,移至1550nm波長處,使其在λ=1550nm波長處的損耗系數和色散系數均很小。 適用於1550nm的長距離傳輸(主幹網/海底光纜)。

4、G.654 光纖(截止波長位移光纖):適用於1550nm長距離傳輸(海底光纜但是不支持DWDM)它在λ=1550nm處損耗系數很小,α=0.2dB/km,光纖的彎曲性能好。主要用於無需插入有源器件的長距離無再生海底光纜系統。其缺點是製造困難,價格貴。

5、G.655 光纖(非零色散位移光纖NZDSF,NonZero DispersionShifted Fiber):適用於1550nm的長距離傳輸(主幹網。海底光纜/支持DWDM)。

6、G.656光纖(低斜率非零色散位移光纖):是非色散位移光纖的一種,對於色散的速度有嚴格的要求,確保了DWDM系統中更大波長范圍內的傳輸,為了進一步擴展DWDM系統的可用波長范圍,在S(1460~1530 nm)、C(1 530~1 565 nm)和L(1 565~1 625 nm)波段均保持非零色散的一種新型光纖。

7、G657 光纖(彎曲損耗不明顯單模光纖):FTTx彎曲半徑大於G.652,所以用於光纖到戶中。

根據光纖接頭類型分類,光纖跳線可以分為FC LC SC ST MTRJ和MPO

上海態路通信技術有限公司回答,望採納,謝謝

❷ ODF比PDF有什麼優勢PDF有的功能,ODF是否也都具有

ODF全稱為Open Document Format,(ODF)是一個基於XML的開源文件格式,用來存儲和轉換文本,電子數據表格,圖表以及陳述文件。文件以ODF格式保存,稱作「開放文檔」,具有容易辨鏈裂認的擴展名,和微軟的文檔格式.doc 或 .xls相類似。遇到的最普遍的擴展名包括:
.odt用於字處理文件
.ods 用於電子數據表格
.odp 用於陳述文件
.odg 用於圖形文件
.odf 用於公式或其他的數學方程式

odf文檔是基於xml語言的純文本文檔。odf格式的文本文檔的擴展名常見為*.odt。一個odt文檔實質上是一個打包的文件,並且通常都經過了zip格式的壓縮。我們完全可以用現有的任意一款壓縮軟體棗返將odt文件解壓,查看其裡面的內容就會發現其本質。一個odt文件解壓後會得到一個與原文件名相同的文件夾,該文件夾裡面一般會含有以下子文件夾與文件:
Configurations2--文件夾
META-INF--文件夾
Pictures--文件夾
Thumbnails--文件夾
content.xml--文件
meta.xml--文件
mimetype--文件
setttings.xml--文件
styles.xml--文件
當前支凳喚飢持odf格式的辦公軟體
OpenOffice.org 2.0, staroffice, KDE環境下的Koffice, Corel WordPerfect, IBM Lotus Notes, 以及國內紅旗中文2000的Redoffice3.0等。

以上內容復制網路,我的理解,從支持odf的軟體可以看出其實大多是office軟體,也就是和微軟office有些類似。odf文件時可以像微軟的word、excel一樣可以任意修改的(如果不加保護的話)而PDF成型後就基本上只能閱讀,加備注等,版式固定不可修改。

❸ 光纖通信的特徵是由什麼媒體決定的

光導纖維通信就是利用光導纖維傳輸信號,以實現信息傳遞的一種通信方式。光導纖維通信簡稱光纖通信。可以把光纖通信看成是以光導纖維為傳輸媒介的「有線」光通信。光纖由內芯和包層組成,內芯一般為幾十微米或幾微米,比一根頭發絲還細;外面層稱為包層,包層的作用就是保護光纖。實際上光纖通信系統使用的不是單根的光纖,而是許多光纖聚集在一起的組成的光纜。
光纖通信是利用光波作載波,以光纖作為傳輸媒質將信息從一處傳至另一處的通信方式。1966年英籍華人高錕博士發表了一篇劃時代性的論文,他提出利用帶有包層材料的石英玻璃光學纖維,能作為通信媒質。從此,開創了光纖通信領域的研究工作。1977年美國在芝加哥相距7000米的兩電話局之間,首次用多模光纖成功地進行了光纖通信試驗。85微米波段的多模光纖為第一代光纖通信系統。1981年又實現了兩電話局間使用1.3微米多模光纖的通信系統,為第二代光纖通信系統。1984年實現了1.3微米單模光纖的通信系統,即第三代光纖通信系統。80年代中後期又實現了1.55微米單模光纖通信系統,即第四代光纖通信系統。用光波分復用提高速率,用光波放大增長傳輸距離的系統,為第五代光纖通信系統。新系統中,相干光纖通信系統,已達現場實驗水平,將得到應用。光孤子通信系統可以獲得極高的速率,20世紀末或21世紀初可能達到實用化。在該系統中加上光纖放大器有可能實現極高速率和極長距離的光纖通信。
就光纖通信技術本身來說,應該包括以下幾個主要部分:光纖光纜技術、傳輸技術、光有源器件、光無源器件以及光網路技術等。
光纖光纜技術
光纖技術的進步可以從兩個方面來說明: 一是通信系統所用的光纖; 二是特種光纖。早期光纖的傳輸窗口只有3個,即850nm(第一窗口)、1310nm(第二窗口)以及1550nm(第三窗口)。近幾年相繼開發出第四窗口(L波段)、第五窗口(全波光纖)以及S波段窗口。其中特別重要的是無水峰的全波窗口。這些窗口開發成功的巨大意義就在於從1280nm到1625nm的廣闊的光頻范圍內,都能實現低損耗、低色散傳輸,使傳輸容量幾百倍、幾千倍甚至上萬倍的增長。這一技術成果將帶來巨大的經濟效益。另一方面是特種光纖的開發及其產業化,這是一個相當活躍的領域。
特種光纖具體有以下幾種:
1. 有源光纖
這類光纖主要是指摻有稀土離子的光纖。如摻鉺(Er3+)、摻釹(Nb3+)、摻鐠(Pr3+)、摻鐿(Yb3+)、摻銩(Tm3+)等,以此構成激光活性物質。這是製造光纖光放大器的核心物質。不同摻雜的光纖放大器應用於不同的工作波段,如摻餌光纖放大器(EDFA)應用於1550nm附近(C、L波段);摻鐠光纖放大器(PDFA)主要應用於1310nm波段;摻銩光纖放大器(TDFA)主要應用於S波段等。這些摻雜光纖放大器與喇曼(Raman)光纖放大器一起給光纖通信技術帶來了革命性的變化。它的顯著作用是:直接放大光信號,延長傳輸距離;在光纖通信網和有線電視網(CATV網)中作分配損耗補償;此外,在波分復用(WDM)系統中及光孤子通信系統中是不可缺少的關鍵元器件。正因為有了光纖放大器,才能實現無中繼器的百萬公里的光孤子傳輸。也正是有了光纖放大器,不僅能使WDM傳輸的距離大幅度延長,而且也使得傳輸的性能最佳化。
2. 色散補償光纖(Dispersion Compesation Fiber,DCF)
常規G.652光纖在1550nm波長附近的色散為17ps/nm×km。當速率超過2.5Gb/s時,隨著傳輸距離的增加,會導致誤碼。若在CATV系統中使用,會使信號失真。其主要原因是正色散值的積累引起色散加劇,從而使傳輸特性變壞。為了克服這一問題,必須採用色散值為負的光纖,即將反色散光纖串接入系統中以抵消正色散值,從而控制整個系統的色散大小。這里的反色散光纖就是所謂的色散補償光纖。在1550nm處,反色散光纖的色散值通常在-50~200ps/nm×km。為了得到如此高的負色散值,必須將其芯徑做得很小,相對折射率差做得很大,而這種作法往往又會導致光纖的衰耗增加(0.5~1dB/km)。色散補償光纖是利用基模波導色散來獲得高的負色散值,通常將其色散與衰減之比稱作質量因數,質量因數當然越大越好。為了能在整個波段均勻補償常規單模光纖的色散,最近又開發出一種既補償色散又能補償色散斜率的"雙補償"光纖(DDCF)。該光纖的特點是色散斜率之比(RDE)與常規光纖相同,但符號相反,所以更適合在整個波形內的均衡補償。
3. 光纖光柵(Fiber Grating)
光纖光柵是利用光纖材料的光敏性在紫外光的照射(通常稱為紫外光"寫入")下,於光纖芯部產生周期性的折射率變化(即光柵)而製成的。使用的是摻鍺光纖,在相位掩膜板的掩蔽下,用紫外光照射(在載氫氣氛中),使纖芯的折射率產生周期性的變化,然後經退火處理後可長期保存。相位掩膜板實際上為一塊特殊設計的光柵,其正負一級衍射光相交形成干涉條紋,這樣就在纖芯逐漸產生成光柵。光柵周期模板周期的二分之一。眾所周知,光柵本身是一種選頻器件,利用光纖光柵可以製作成許多重要的光無源器件及光有源器件。例如:色散補償器、增益均衡器、光分插復用器、光濾波器、光波復用器、光模或轉換器、光脈沖壓縮器、光纖感測器以及光纖激光器等。
4. 多芯單模光纖(Multi-Coremono-Mode Fiber,MCF)
多芯光纖是一個共用外包層、內含有多根纖芯、而每根纖芯又有自己的內包層的單模光纖。這種光纖的明顯優勢是成本較低,生產成本較普通的光纖約低50%。此外,這種光纖可以提高成纜的集成密度,同時也可降低施工成本。以上是光纖技術在近幾年裡所取得的主要成就。至於光纜方面的成就,我們認為主要表現在帶狀光纜的開發成功及批量化生產方面。這種光纜是光纖接入網及區域網中必備的一種光纜。目前光纜的含纖數量達千根以上,有力地保證了接入網的建設。
光有源器件
光有源器件的研究與開發本來是一個最為活躍的領域,但由於前幾年已取得輝煌的成果,所以當今的活動空間已大大縮小。超晶格結構材料與量子阱器件,目前已完全成熟,而且可以大批量生產,已完全商品化,如多量子阱激光器(MQW-LD,MQW-DFBLD)。
除此之外,目前已在下列幾方面取得重大成就。
1. 集成器件
這里主要指光電集成(OEIC)已開始商品化,如分布反饋激光器(DFB-LD)與電吸收調制器(EAMD)的集成,即DFB-EA,已開始商品化;其它發射器件的集成,如DFB-LD、MQW-LD分別與MESFET或HBT或HEMT的集成;接收器件的集成主要是PIN、金屬、半導體、金屬探測器分別與MESFET或HBT或HEMT的前置放大電路的集成。雖然這些集成都已獲得成功,但還沒有商品化。
2. 垂直腔面發射激光器(VCSEL)
由於便於集成和高密度應用,垂直腔面發射激光器受到廣泛重視。這種結構的器件已在短波長(ALGaAs/GaAs)方面取得巨大的成功,並開始商品化;在長波長(InGaAsF/InP)方面的研製工作早已開始進行,目前也有少量商品。可以斷言,垂直腔面發射激光器將在接入網、區域網中發揮重大作用。
3. 窄帶響應可調諧集成光子探測器
由於DWDM光網路系統信道間隔越來越小,甚至到0.1nm。為此,探測器的響應譜半寬也應基本上達到這個要求。恰好窄帶探測器有陡銳的響應譜特性,能夠滿足這一要求。集F-P腔濾波器和光吸收有源層於一體的共振腔增強(RCE)型探測器能提供一個重要的全面解決方案。
4. 基於硅基的異質材料的多量子阱器件與集成(SiGe/Si MQW)
這方面的研究是一大熱點。眾所周知,硅(Si)、鍺(Ge)是簡接帶源材料,發光效率很低,不適合作光電子器件,但是Si材料的半導體工藝非常成熟。於是人們設想,利用能帶剪裁工程使物質改性,以達到在硅基基礎上製作光電子器件及其集成(主要是實現光電集成,即OEIC)的目的,這方面已取得巨大成就。在理論上有眾多的創新,在技術上有重大的突破,器件水平日趨完善。
光無源器件
光無源器件與光有源器件同樣是不可缺少的。由於光纖接入網及全光網路的發展,導致光無源器件的發展空前地熱門。常規的常用器件已達到一定的產業規模,品種和性能也得到了極大的擴展和改善。所謂光無源器件就是指光能量消耗型器件、其種類繁多、功能各異,在光通信系統及光網路中主要的作用是: 連接光波導或光路; 控制光的傳播方向;控制光功率的分配; 控制光波導之間、器件之間和光波導與器件之間的光耦合; 合波與分波; 光信道的上下與交叉連接等。早期的幾種光無源器件已商品化。其中光纖活動連接器無論在品種和產量方面都已有相當大的規模,不僅滿足國內需要,而且有少量出口。光分路器(功分器)、光衰減器和光隔離器已有小批量生產。隨著光纖通信技術的發展,相繼又出現了許多光無源器件,如環行器、色散補償器、增益平衡器、光的上下復用器、光交叉連接器、陣列波導光柵CAWG等等。這些都還處於研發階段或試生產階段,有的也能提供少量商品。按光纖通信技術發展的一般規律來看,當光纖接入網大規模興建時,光無源器件的需求量遠遠大於對光有源器件的需求。這主要是由於接入網的特點所決定的。接入網的市場約為整個通信市場的三分之一。因而,接入網產品有巨大的市場及潛在的市場。
光復用技術
光復用技術種類很多,其中最為重要的是波分復用(WDM)技術和光時分復用(OTDM)技術。光復用技術是當今光纖通信技術中最為活躍的一個領域,它的技術進步極大地推動光纖通信事業的發展,給傳輸技術帶來了革命性的變革。波分復用當前的商業水平是273個或更多的波長,研究水平是1022個波長(能傳輸368億路電話),近期的潛在水平為幾千個波長,理論極限約為15000個波長(包括光的偏振模色散復用,OPDM)。據1999年5月多倫多的Light Management Group Inc ofToronto演示報導,在一根光纖中傳送了65536個光波,把PC數字信號傳送到200m的廣告板上,並採用聲光控制技術,這說明了密集波分復用技術的潛在能力是巨大的。OTDM是指在一個光頻率上,在不同的時刻傳送不同的信道信息。這種復用的傳輸速度已達到320Gb/s的水平。若將DWDM與OTDM相結合,則會使復用的容量增加得更大,如虎添翼。
光放大技術
光放大器的開發成功及其產業化是光纖通信技術中的一個非常重要的成果,它大大地促進了光復用技術、光孤子通信以及全光網路的發展。顧名思義,光放大器就是放大光信號。在此之前,傳送信號的放大都是要實現光電變換及電光變換,即O/E/O變換。有了光放大器後就可直接實現光信號放大。 光放大器主要有3種:光纖放大器、拉曼放大器以及半導體光放大器。光纖放大器就是在光纖中摻雜稀土離子(如鉺、鐠、銩等)作為激光活性物質。每一種摻雜劑的增益帶寬是不同的。摻鉺光纖放大器的增益帶較寬,覆蓋S、C、L頻帶; 摻銩光纖放大器的增益帶是S波段;摻鐠光纖放大器的增益帶在1310nm附近。而喇曼光放大器則是利用喇曼散射效應製作成的光放大器,即大功率的激光注入光纖後,會發生非線性效應?喇曼散射。在不斷發生散射的過程中,把能量轉交給信號光,從而使信號光得到放大。由此不難理解,喇曼放大是一個分布式的放大過程,即沿整個線路逐漸放大的。其工作帶寬可以說是很寬的,幾乎不受限制。這種光放大器已開始商品化了,不過相當昂貴。半導體光放大器(S0A)一般是指行波光放大器,工作原理與半導體激光器相類似。其工作帶寬是很寬的。但增益幅度稍小一些,製造難度較大。這種光放大器雖然已實用了,但產量很小。
到此,我們系統、全面地評論了光纖通信技術的重大進展,至於光纖通信技術的發展方向,可以概括為兩個方面: 一是超大容量、超長距離的傳輸與交換技術; 二是全光網路技術。
</B>中國光纖通信發展史
光纖通信的發展極其迅速,至1991年底,全球已敷設光纜563萬千米,到1995年已超過1100萬千米。光纖通信在單位時間內能傳輸的信息量大。一對單模光纖可同時開通35000個電話,而且它還在飛速發展。光纖通信的建設費用正隨著使用數量的增大而降低,同時它具有體積小,重量輕,使用金屬少,抗電磁干擾、抗輻射性強,保密性好,頻帶寬,抗干擾性好,防竊聽、價格便宜等優點。
1973年,世界光纖通信尚未實用。郵電部武漢郵電科學研究院(當時是武漢郵電學院)就開始研究光纖通信。由於武漢郵電科學研究院採用了石英光纖、半導體激光器和編碼制式通信機正確的技術路線,使我國在發展光纖通信技術上少走了不少彎路,從而使我國光纖通信在高新技術中與發達國家有較小的差距。
我國研究開發光纖通信正處於十年動亂時期,處於封閉狀態。國外技術基本無法借鑒,純屬自己摸索,一切都要自己搞,包括光纖、光電子器件和光纖通信系統。就研製光纖來說,原料提純、熔煉車床、拉絲機,還包括光纖的測試儀表和接續工具也全都要自己開發,困難極大。武漢郵電科學研究院,考慮到保證光纖通信最終能為經濟建設所用,開展了全面研究,除研製光纖外,還開展光電子器件和光纖通信系統的研製,使我國至今具有了完整的光纖通信產業。
1978年改革開放後,光纖通信的研發工作大大加快。上海、北京、武漢和桂林都研製出光纖通信試驗系統。1982年郵電部重點科研工程「八二工程」在武漢開通。該工程被稱為實用化工程,要求一切是商用產品而不是試驗品,要符合國際CCITT標准,要由設計院設計、工人施工,而不是科技人員施工。從此中國的光纖通信進入實用階段。
在20世紀80年代中期,數字光纖通信的速率已達到144Mb/s,可傳送1980路電話,超過同軸電纜載波。於是,光纖通信作為主流被大量採用,在傳輸干線上全面取代電纜。經過國家「六五」、「七五」、「八五」和「九五」計劃,中國已建成「八縱八橫」干線網,連通全國各省區市。現在,中國已敷設光纜總長約250萬公里。光纖通信已成為中國通信的主要手段。在國家科技部、計委、經委的安排下,1999年中國生產的8×2.5Gb/sWDM系統首次在青島至大連開通,隨之沈陽至大連的32×2.5Gb/sWDM光纖通信系統開通。2005年3.2Tbps超大容量的光纖通信系統在上海至杭州開通,是至今世界容量最大的實用線路。
中國已建立了一定規模的光纖通信產業。中國生產的光纖光纜、半導體光電子器件和光纖通信系統能供國內建設,並有少量出口。
有人認為,我國光纖通信主要干線已經建成,光纖通信容量達到Tbps,幾乎用不完,再則2000年的IT泡沫,使光纖的價格低到每公里100元,幾乎無利可圖。因此不要發展光纖通信技術了。
但光纖本身製造屬性決定,光纖仍然有較大的發展空間:新光纖研製,光子晶體。
實際上,特別是中國,省內農村有許多空白需要建設;3G移動通信網的建設也需要光纖網來支持;隨著寬頻業務的發展、網路需要擴容等,光纖通信仍有巨大的市場。現在每年光纖通信設備和光纜的銷售量是上升的。

❹ 光纖通信 第三版 Gerd Keiser著 PDF下載

十分感謝,,,,,,,,,,,,,,,,,,

❺ 光纖的化學成分是什麼

光纖有很多種,成分也不同。
一 石英光纖
石英光纖(Silica Fiber)是以二氧化硅(SiO2)為主要原料,並按不同的摻雜量,來控制纖芯和包層的折射率分布的光纖。石英(玻璃)系列光纖,具有低耗、寬頻的特點,已廣泛應用於有線電視和通信系統。
石英玻璃光導纖維的優點是損耗低,當光波長為1.0~1.7μm(約1.4μm附近),損耗只有1dB/km,在1.55μm處最低,只有0.2dB/km。
二 摻氟光纖
摻氟光纖(Fluorine Doped Fiber)為石英光纖的典型產品之一。通常,作為1.3μm波域的通信用光纖中,控制纖芯的摻雜物為二氧化鍺(GeO2),包層是用SiO2作成的。但接氟光纖的纖芯,大多使用SiO2,而在包層中卻是摻入氟素的。由於,瑞利散射損耗是因折射率的變動而引起的光散射現象。所以,希望形成折射率變動因素的摻雜物,以少為佳。氟素的作用主要是可以降低SIO2的折射率。因而,常用於包層的摻雜。
石英光纖與其它原料的光纖相比,還具有從紫外線光到近紅外線光的透光廣譜,除通信用途之外,還可用於導光和圖像傳導等領域。
三 紅外光纖
作為光通信領域所開發的石英系列光纖的工作波長,盡管用在較短的傳輸距離,也只能用於2μm。為虧大碼此,能在更長的紅外波長領域工作,所開發的光纖稱為紅外光纖。紅外光纖(Infrared Optical Fiber)主要用於光能傳送。例如有:溫度計量、熱圖像傳輸、激光手術刀醫療、熱能加工等等,普及率尚低。
四 復合光纖
復合光纖(Compound Fiber)是在SiO2原料中,再適當混合諸如氧化鈉(Na2O)、氧化硼(B2O3)、氧化鉀(K2O)等氧化物製作成多組分玻璃光纖,特點是多組分玻璃比石英玻璃的軟化點低且纖芯與包層的折射率差很大。主要用在醫療業務的光纖內窺鏡。
五 氟氯化物光纖
氟化物光纖氯化物光纖(Fluoride Fiber)是由氟化物玻璃作成的光纖。這種光纖原料又簡稱 ZBLAN(即銷哪將氟化鋯(ZrF2)、氟化鋇(BaF2)、氟化鑭(LaF3)、氟化鋁(AlF3)、氟化鈉(NaF)等氯化物玻璃原料簡化成的縮語。主要工作在2~10μm波長的光傳輸業務。由於ZBLAN具有超低損耗光纖的可能性,正在進行著用於長距離通信光纖的可行性開發,例如:其理論上的最低損耗,在3μm波長時可達10-2~10-3dB/km,而石英光纖在1.55μm時卻在0.15-0.16dB/Km之間。ZBLAN光纖由於難於降低散射損耗,只能用在2.4~2.7μm的溫敏器和熱圖像傳輸,尚未廣泛實用。最近,為了利用ZBLAN進行長距離傳輸,正在研製1.3μm的摻鐠光纖放大器(PDFA)。
六 塑包光纖
塑包光纖(Plastic Clad Fiber)是將高純度的石英玻璃作成纖芯,而將折射率比石英稍低的如硅膠等塑料作為包層的階躍型光纖。它與石英光纖相比較,具有纖芯租、數值孔徑(NA)高的特點。因此,易與發光二極體LED光源結合,損耗也較小。所以,非常適用於區域網(LAN)和近距離通信。
七 塑料光纖
這是將纖芯和包層都用塑料(聚合物)作成的光纖。早期產品主要用於裝飾和導光照明及近距離光鍵路的光通信中。原料主要是有機玻璃(PMMA)、聚苯乙稀(PS)和聚碳酸酯(PC)。損耗受到塑料固有的C-H結合結構制約,一般每km可達幾十dB。為了降低損耗正在開發應用氟索系列塑料。由於塑料光纖(Plastic Optical fiber)的纖芯直徑為1000μm,比單模石英光纖大100倍,接續簡單,而且易於彎曲施工容易。近年來,加上寬頻化的進度,作為漸變型(GI)折射率的多模塑料光纖的發展受到了社會的重視。最近,在汽車仿銀內部LAN中應用較快,未來在家庭LAN中也可能得到應用。

閱讀全文

與光纖pdf相關的資料

熱點內容
linux內存子系統 瀏覽:968
加密思維幣 瀏覽:688
魅族訪客文件夾 瀏覽:50
添加的文件夾怎麼找 瀏覽:615
程序員涉黃 瀏覽:698
maven編譯resources下的js 瀏覽:519
ubuntu文件移動命令 瀏覽:227
安卓i怎麼查找蘋果手機 瀏覽:949
雲伺服器宕機概率 瀏覽:231
在線買葯用什麼app知乎 瀏覽:813
ubuntu解壓xz文件 瀏覽:674
宏傑加密時電腦關機 瀏覽:388
自己寫單片機編譯器 瀏覽:599
單片機按鍵閃爍 瀏覽:380
為什麼icloud總是顯連接伺服器失敗 瀏覽:890
如何設置域控伺服器 瀏覽:740
想在上海租房子什麼app好 瀏覽:186
編譯程序各部分是必不可少的嗎 瀏覽:887
編程不超過十行 瀏覽:765
數電編譯器的作用 瀏覽:339