不可逆加密演算法不存在密鑰保管和分發問題,非常適合在分布式網路系統上使用,但因加密計算復雜,工作量相當繁重,通常只在數據量有限的情形下使用,如廣泛應用在計算機系統中的口令加密,利用的就是不可逆加密演算法。近年來,隨著計算機系統性能的不斷提高,不可逆加密的應用領域正在逐漸增大。在計算機網路中應用較多不可逆加密演算法的有RSA公司發明的MD5演算法和由美國國家標准局建議的不可逆加密標准SHS(Secure Hash Standard:安全雜亂信息標准)等。
⑵ 什麼是對稱密碼和非對密碼,分析這兩種密碼體系的特點和應用領域
一、對稱密碼
1、定義:採用單鑰密碼系統的加密方法,同一個密鑰可以同時用作信息的加密和解密,這種加密方法稱為對稱加密,也稱為單密鑰加密。
2、特點:演算法公開、計算量小、加密速度快、加密效率高。
3、應用領域:由於其速度快,對稱性加密通常在消息發送方需要加密大量數據時使用。
二、非對密碼
1、定義:非對稱密碼指的是非對稱密碼體制中使用的密碼。
2、特點:
(1)是加密密鑰和解密密鑰不同 ,並且難以互推 。
(2)是有一個密鑰是公開的 ,即公鑰 ,而另一個密鑰是保密的 ,即私鑰。
3、應用領域:很好的解決了密鑰的分發和管理的問題 ,並且它還能夠實現數字簽名。
(2)加密演算法應用在什麼領域擴展閱讀
對稱加密演算法特徵
1、加密方和解密方使用同一個密鑰;
2、加密解密的速度比較快,適合數據比較長時的使用;
3、密鑰傳輸的過程不安全,且容易被破解,密鑰管理也比較麻煩
⑶ 數據加密技術可以應用在網路及系統安全的哪些方面
至少我知道的現在加密軟體就是用到了數據加密技術,例如免費透明加密軟體紅線隱私保護系統,採用高強度加密演算法AES256,512,SM2、SM3等國家保密局商業級加密標准演算法,很多類,橢圓曲線演算法,例如win rara,不對稱演算法,公鑰密鑰,都是。而對於企業和很多行業來說,文件加密保護都是不可忽視的問題,也是剛需,所以呀個人覺得只要是關於機密保護方面的,都可以用到數據加密技術。
⑷ 幾種加密演算法在java中的應用
簡單的Java加密演算法有:
第一種. BASE
Base是網路上最常見的用於傳輸Bit位元組代碼的編碼方式之一,大家可以查看RFC~RFC,上面有MIME的詳細規范。Base編碼可用於在HTTP環境下傳遞較長的標識信息。例如,在Java Persistence系統Hibernate中,就採用了Base來將一個較長的唯一標識符(一般為-bit的UUID)編碼為一個字元串,用作HTTP表單和HTTP GET URL中的參數。在其他應用程序中,也常常需要把二進制數據編碼為適合放在URL(包括隱藏表單域)中的形式。此時,採用Base編碼具有不可讀性,即所編碼的數據不會被人用肉眼所直接看到。
第二種. MD
MD即Message-Digest Algorithm (信息-摘要演算法),用於確保信息傳輸完整一致。是計算機廣泛使用的雜湊演算法之一(又譯摘要演算法、哈希演算法),主流編程語言普遍已有MD實現。將數據(如漢字)運算為另一固定長度值,是雜湊演算法的基礎原理,MD的前身有MD、MD和MD。廣泛用於加密和解密技術,常用於文件校驗。校驗?不管文件多大,經過MD後都能生成唯一的MD值。好比現在的ISO校驗,都是MD校驗。怎麼用?當然是把ISO經過MD後產生MD的值。一般下載linux-ISO的朋友都見過下載鏈接旁邊放著MD的串。就是用來驗證文件是否一致的。
MD演算法具有以下特點:
壓縮性:任意長度的數據,算出的MD值長度都是固定的。
容易計算:從原數據計算出MD值很容易。
抗修改性:對原數據進行任何改動,哪怕只修改個位元組,所得到的MD值都有很大區別。
弱抗碰撞:已知原數據和其MD值,想找到一個具有相同MD值的數據(即偽造數據)是非常困難的。
強抗碰撞:想找到兩個不同的數據,使它們具有相同的MD值,是非常困難的。
MD的作用是讓大容量信息在用數字簽名軟體簽署私人密鑰前被」壓縮」成一種保密的格式(就是把一個任意長度的位元組串變換成一定長的十六進制數字串)。除了MD以外,其中比較有名的還有sha-、RIPEMD以及Haval等。
第三種.SHA
安全哈希演算法(Secure Hash Algorithm)主要適用於數字簽名標准(Digital Signature Standard DSS)裡面定義的數字簽名演算法(Digital Signature Algorithm DSA)。對於長度小於^位的消息,SHA會產生一個位的消息摘要。該演算法經過加密專家多年來的發展和改進已日益完善,並被廣泛使用。該演算法的思想是接收一段明文,然後以一種不可逆的方式將它轉換成一段(通常更小)密文,也可以簡單的理解為取一串輸入碼(稱為預映射或信息),並把它們轉化為長度較短、位數固定的輸出序列即散列值(也稱為信息摘要或信息認證代碼)的過程。散列函數值可以說是對明文的一種「指紋」或是「摘要」所以對散列值的數字簽名就可以視為對此明文的數字簽名。
SHA-與MD的比較
因為二者均由MD導出,SHA-和MD彼此很相似。相應的,他們的強度和其他特性也是相似,但還有以下幾點不同:
對強行攻擊的安全性:最顯著和最重要的區別是SHA-摘要比MD摘要長 位。使用強行技術,產生任何一個報文使其摘要等於給定報摘要的難度對MD是^數量級的操作,而對SHA-則是^數量級的操作。這樣,SHA-對強行攻擊有更大的強度。
對密碼分析的安全性:由於MD的設計,易受密碼分析的攻擊,SHA-顯得不易受這樣的攻擊。
速度:在相同的硬體上,SHA-的運行速度比MD慢。
第四種.HMAC
HMAC(Hash Message Authentication Code,散列消息鑒別碼,基於密鑰的Hash演算法的認證協議。消息鑒別碼實現鑒別的原理是,用公開函數和密鑰產生一個固定長度的值作為認證標識,用這個標識鑒別消息的完整性。使用一個密鑰生成一個固定大小的小數據塊,即MAC,並將其加入到消息中,然後傳輸。接收方利用與發送方共享的密鑰進行鑒別認證等。
⑸ AES演算法應用范圍 AES演算法具體的應用范圍是哪些,軟、硬體都可以嗎
AES演算法的基本功能是把16位元組(128bit)的原文輸入,加上16位元組的密鑰(通俗講的密碼)
變成16位元組的密文(通俗講的亂碼)
和這一過程的逆過程——解碼, 把16位元組的密文加上密碼後還原成原文。
這個基本的演算法功能應用太廣泛了,信用證、數字簽名、文檔加密,比如pdf,doc,
壓縮加密,比如rar和7zip, 郵件加密,傳輸加密。
AES演算法在PC上一直都是軟體存在,在intel core2之後的cpu整合了AES的機器指令,有了硬體加速。軟體硬體無處不在。
AES是美國的商業密碼演算法,在中國大陸還是最好用國密局頒布的商業密碼SMS4編碼,符合國家標准。
⑹ 加密演算法和技術在生活中的應用
RSA演算法主要是在建立HTTP保密通信的時候來用,微軟先在windows上保存了自己用的公鑰,然後通過微軟認證的人給我們發了一個認證的信息,我們就可以用windows上的公鑰來解密同時確認那個認證是不是有效的。HHTP保密通信建立了以後,我們主要是通過AES加密演算法來做數據通信。
我們平時都是用用戶名和密碼來登陸網站,但是如果將用戶名和密碼直接發送到網站是有風險的,如果網站被別人攻擊,人家就會拿到我們的用戶和密碼,一般的做法是將密碼用SHA演算法處理以後,將sha演算法的結果發給網站。因為通過sha的結果不能算出輸入的數據。所以攻擊的人只能是拿到用戶,他拿不到密碼。
⑺ 加密演算法對計算機網路安全的意義和應用
可以網路啊
1,SSL協議一般用於網上支付,認證協議
2,安全會話密鑰可以從密鑰保管與管理,加密入手
3,加密演算法對計算機網路的意義,保障網路安全通信,防止被竊聽
4,應用嘛,就多了,加密演算法也多,DES,RSA,3DES,MD5等,其中DES最常見
⑻ 密碼技術在信息安全方面有哪些應用
對用戶密碼或者重要數據的處理如:md5、hash演算法、sm2,可自行查找這些常用演算法的應用場景
⑼ 公鑰加密演算法可用於下面哪些方面
公鑰密碼體制的核心思想是:加密和解密採用不同的密鑰。這是公鑰密碼體制和傳統的對稱密碼體制最大的區別。對於傳統對稱密碼而言,密文的安全性完全依賴於 密鑰的保密性,一旦密鑰泄漏,將毫無保密性可言。但是公鑰密碼體制徹底改變了這一狀況。在公鑰密碼體制中,公鑰是公開的,只有私鑰是需要保密的。知道公鑰 和密碼演算法要推測出私鑰在計算上是不可行的。這樣,只要私鑰是安全的,那麼加密就是可信的。
顯然,對稱密碼和公鑰密碼都需要保證密鑰的安全,不同之處在於密鑰的管理和分發上面。在對稱密碼中,必須要有一種可靠的手段將加密密鑰(同時也是解密密 鑰)告訴給解密方;而在公鑰密碼體制中,這是不需要的。解密方只需要保證自己的私鑰的保密性即可,對於公鑰,無論是對加密方而言還是對密碼分析者而言都是 公開的,故無需考慮採用可靠的通道進行密碼分發。這使得密鑰管理和密鑰分發的難度大大降低了。
加密和解密:發送方利用接收方的公鑰對要發送的明文進行加密,接受方利用自己的
私鑰進行解密,其中公鑰和私鑰匙相對的,任何一個作為公鑰,則另一個
就為私鑰.但是因為非對稱加密技術的速度比較慢,所以,一般採用對稱
加密技術加密明文,然後用非對稱加密技術加密對稱密鑰,即數字信封 技術.
簽名和驗證:發送方用特殊的hash演算法,由明文中產生固定長度的摘要,然後利用
自己的私鑰對形成的摘要進行加密,這個過程就叫簽名。接受方利用
發送方的公鑰解密被加密的摘要得到結果A,然後對明文也進行hash操
作產生摘要B.最後,把A和B作比較。此方式既可以保證發送方的身份不
可抵賴,又可以保證數據在傳輸過程中不會被篡改。
首先要分清它們的概念:
加密和認證
首先我們需要區分加密和認證這兩個基本概念。
加密是將數據資料加密,使得非法用戶即使取得加密過的資料,也無法獲取正確的資料內容, 所以數據加密可以保護數據,防止監聽攻擊。其重點在於數據的安全性。身份認證是用來判斷某個身份的真實性,確認身份後,系統才可以依不同的身份給予不同的 許可權。其重點在於用戶的真實性。兩者的側重點是不同的。
公鑰和私鑰
其次我們還要了解公鑰和私鑰的概念和作用。
在現代密碼體制中加密和解密是採用不同的密鑰(公開密鑰),也就是非對稱密鑰密碼系統,每個通信方均需要兩個密鑰,即公鑰和私鑰,這兩把密鑰可以互為加解密。公鑰是公開的,不需要保密,而私鑰是由個人自己持有,並且必須妥善保管和注意保密。
公鑰私鑰的原則:
一個公鑰對應一個私鑰。
密鑰對中,讓大家都知道的是公鑰,不告訴大家,只有自己知道的,是私鑰。
如果用其中一個密鑰加密數據,則只有對應的那個密鑰才可以解密。
如果用其中一個密鑰可以進行解密數據,則該數據必然是對應的那個密鑰進行的加密。
非對稱密鑰密碼的主要應用就是公鑰加密和公鑰認證,而公鑰加密的過程和公鑰認證的過程是不一樣的,下面我就詳細講解一下兩者的區別。
事例說明下:
例如:比如有兩個用戶Alice和Bob,Alice想把一段明文通過雙鑰加密的技術發送給Bob,Bob有一對公鑰和私鑰,那麼加密解密的過程如下:
Bob將他的公開密鑰傳送給Alice。
Alice用Bob的公開密鑰加密她的消息,然後傳送給Bob。
Bob用他的私人密鑰解密Alice的消息。
那麼Bob怎麼可以辨認Alice是不是真人還是冒充的.我們只要和上面的例子方法相反就可以了.
Alice用她的私人密鑰對文件加密,從而對文件簽名。
Alice將簽名的文件傳送給Bob。
Bob用Alice的公鑰解密文件,從而驗證簽名。
通過例子大家應該有所了解吧!