導航:首頁 > 文檔加密 > 摘要加密目的

摘要加密目的

發布時間:2023-06-30 17:12:10

⑴ 對稱加密、非對稱加密、摘要、數字簽名、數字證書

作為一個開發人員,或多或少都聽說過對稱加密、非對稱加密、摘要、數字簽名、數字證書這幾個概念,它們是用來保證在互聯網通信過程中數據傳輸安全的。有人可能會有疑惑,我給傳輸數據加個密不就安全了,為什麼還要搞這么多花樣出來?本文主要通過一個案例來講解這幾個概念的實際作用。

在此之前,我先簡單介紹一下這幾個概念。

對稱加密是指用來加密和解密的是同一個秘鑰。其特點是加密速度快,但是秘鑰容易被黑客截獲,所以安全性不高。常見的有AES、DES演算法

非對稱加密是指用來加密和解密的是不同的秘鑰,它們是成對出現的,稱為公鑰和私鑰,知道其中一個秘鑰是無法推導出另外一個秘鑰的。用公鑰加密的內容需要用私鑰才能解密,用私鑰加密的內容需要用公鑰才能解密。非對稱加密的特點是安全性高,缺點是加密速度慢。常見的有RSA演算法。

所謂的摘要就是一段信息或者一個文件通過某個哈希演算法(也叫摘要演算法)而得到的一串字元。摘要演算法的特點就是不同的文件計算出的摘要是不同的(也有可能相同,但是可能性非常非常低),比如一個1G的視頻文件,哪怕只是改動其中一個位元組,最後計算得到的摘要也是完全不同的,所以摘要演算法通常是用來判斷文件是否被篡改過。其還有一個特點就是通過摘要是無法推導出源文件的信息的。常用的摘要演算法有MD5、SHA等。

數字簽名就是一個文件的摘要加密後的信息。數字簽名是和源文件一起發送給接收方的,接收方收到後對文件用摘要演算法算出一個摘要,然後和數字簽名中的摘要進行比對,兩者不一致的話說明文件被篡改了。

數字證書是一個經證書授權中心生成的文件,數字證書里一般會包含公鑰、公鑰擁有者名稱、CA的數字簽名、有效期、授權中心名稱、證書序列號等信息。其中CA的數字簽名是驗證證書是否被篡改的關鍵,它其實就是對證書裡面除了CA的數字簽名以外的內容進行摘要演算法得到一個摘要,然後CA機構用他自己的私鑰對這個摘要進行加密就生成了CA的數字簽名,CA機構會公開它的公鑰,驗證證書時就是用這個公鑰解密CA的數字簽名,然後用來驗證證書是否被篡改。

場景:

張三要找人裝修一個房子,原則是誰的出價便宜就給誰裝修,所以對於報價文件就是屬於機密文件。下面我們來看下不同的方式傳輸報價文件都會有什麼風險。

現在李四想接這個裝修的活,他做了一份報價文件(文件名: lisi.txt ,文件內容: 報價50萬 )。然後李四用一個對稱秘鑰 123 對這個文件進行加密。最後李四將這個秘鑰和加密的文件發給張三,張三收到後用這個秘鑰解密,知道了李四的報價是50萬。

同時王五也想接這個裝修的活,他本來是想報價55萬的,但是又擔心報價太高而丟掉這個活。恰巧王五是個黑客高手,於是他截獲了李四發給張三的秘鑰和加密文件,知道了李四報價是50萬。最後王五將自己的報價改成了49萬發給張三,結果王五接下了這個裝修活。

結論:
用對稱加密的話,一旦秘鑰被黑客截獲,加密就形同虛設,所以安全性比較低。

首先張三會生成一對秘鑰,私鑰是 zhangsan1 ,公鑰是 zhangsan2 ,私鑰張三自己保存,將公鑰公布出去。

李四將報價文件 list.txt 用張三公布的公鑰 zhangsan2 進行加密後傳給張三,然後張三用私鑰 zhangsan1 進行解密得到李四的報價是50萬。

這個時候即使王五截獲到了李四發給張三的報價文件,由於王五沒有張三的私鑰,所以他是無法解密文件的,也就無法知道李四的報價。最後王五因為報價55萬而丟掉了這個裝修的機會。

所以用非對稱加密是可以保證數據傳輸安全的。不過這里說一句題外話,既然非對稱加密安全性高,那為什麼不淘汰掉對稱加密呢?其實關鍵就在於加密速度,非對稱加密計算量很大,所以加密速度是很慢的,如果發送消息非常頻繁,使用非對稱加密的話就會對性能造成很大影響。所以在實際開發過程中通常是對稱加密和非對稱加密結合使用的。也就是對稱加密的秘鑰是用非對稱加密後發送的,這樣能保證對稱加密的秘鑰不被黑客截獲,然後在發送業務數據時就用對稱加密。這樣既保證了安全性也保證了加密速度。

結論:
非對稱加密可以防止黑客截獲加密後的內容,安全性高。

前面都說了非對稱加密是安全的,那為什麼還要數字簽名呢?

設想一下,王五截獲了李四的報價文件,王五雖然無法知道李四的實際報價,但是他完全可以偽造一份李四的報價(文件名: lisi.txt ,文件內容: 報價60萬 ),然後將這份偽造文件用張三公布的公鑰 zhangsan2 進行加密後替換原來的報價文件。張三收到後解密發現報價是60萬,於是張三就以為李四報的價是60萬,最後決定將裝修的活給報價55萬的王五來做。

發生這個問題的關鍵就在於張三無法知道報價文件是否被篡改過。要解決這個問題就需要用到數字簽名。

首先李四需要自己生成一對非對稱加密的秘鑰,私鑰 lisi1 自己保存,公鑰 lisi2 發給張三。然後李四對自己的報價文件通過摘要演算法得到一個摘要(假設摘要是 aaa ),再用自己的私鑰 lisi1 加密這個摘要就得到了報價文件的數字簽名,最後將加密的報價文件和數字簽名一起發給張三,張三收到後先用李四發過來的公鑰 lisi2 解密數字簽名得到摘要 aaa ,然後用自己的私鑰 zhangsan1 解密加密的文件得到報價源文件,然後對報價源文件進行摘要演算法,看計算得到的結果是不是 aaa ,如果不是 aaa 的話就說明報價文件被篡改了。

在這種情況下,如果王五截獲了李四發給張三的文件。王五是無法解密報價文件的。如果王五偽造一份報價文件的話,等張三收到後就會發現報價文件和數字簽名不匹配。那王五能不能偽造報價文件的同時也偽造簽名呢?因為王五沒有李四的私鑰,所以沒法對偽造的報價文件的摘要進行加密,所以也就沒法偽造簽名。

結論:
非對稱加密雖然能確保加密文件內容不被竊取,但不能保證文件不被篡改。數字簽名就是用來驗證文件是否被篡改過。

既然非對稱加密可以保證文件內容的安全性,數字簽名又可以保證文件不被篡改,那還要數字證書有什麼用呢?

我們再來設想一下,王五自己也生成了一對用於非對稱加密的秘鑰,私鑰是 wangwu1 ,公鑰是 wangwu2 。前面李四將自己的公鑰 lisi2 發給張三的過程中被王五給截獲了,王五用自己的公鑰 wangwu2 替換了李四的公鑰 lisi2 ,所以張三最後收到的公鑰實際上是王五的,但張三對這並不知情。後面李四發的數字簽名和加密的報價文件都被王五截獲,並且王五偽造了一份報價文件,同時用自己的私鑰加密報價文件的摘要生成偽造的簽名並發給張三,張三收到後進行驗證發現數字簽名和報價文件是匹配的,就以為這份報價文件是真實的。

出現這個問題的關鍵就在於張三沒法確認收到的公鑰到底是不是李四發的,這個時候數字證書就起到作用了。李四到權威的數字證書機構申請數字證書,證書裡麵包含了公鑰( lisi2 )和公鑰的擁有者( 李四 )等相關信息,然後李四將證書發給張三,張三通過證書裡面的信息就可以知道公鑰到底是不是李四的了。

那證書在發送過程中有沒有可能被王五截獲並篡改呢?要知道證書裡面還包含CA的數字簽名,這個簽名是證書機構用他們自己的私鑰對證書的摘要進行加密的,而公鑰是公開的。所以即便王五截獲並篡改了證書內容,他也無法偽造證書機構的簽名,張三在收到證書後通過驗證簽名也會發現證書被篡改了。所以到這一步才能保證數據傳輸的真正安全。

⑵ 數據在網路上傳輸為什麼要加密現在常用的數據加密演算法主要有哪些

數據傳輸加密技術的目的是對傳輸中的數據流加密,通常有線路加密與端—端加密兩種。線路加密側重在線路上而不考慮信源與信宿,是對保密信息通過各線路採用不同的加密密鑰提供安全保護。

端—端加密指信息由發送端自動加密,並且由TCP/IP進行數據包封裝,然後作為不可閱讀和不可識別的數據穿過互聯網,當這些信息到達目的地,將被自動重組、解密,而成為可讀的數據。

數據存儲加密技術的目的是防止在存儲環節上的數據失密,數據存儲加密技術可分為密文存儲和存取控制兩種。前者一般是通過加密演算法轉換、附加密碼、加密模塊等方法實現;後者則是對用戶資格、許可權加以審查和限制,防止非法用戶存取數據或合法用戶越權存取數據。

常見加密演算法

1、DES(Data Encryption Standard):對稱演算法,數據加密標准,速度較快,適用於加密大量數據的場合;

2、3DES(Triple DES):是基於DES的對稱演算法,對一塊數據用三個不同的密鑰進行三次加密,強度更高;

3、RC2和RC4:對稱演算法,用變長密鑰對大量數據進行加密,比 DES 快;

4、IDEA(International Data Encryption Algorithm)國際數據加密演算法,使用 128 位密鑰提供非常強的安全性;

5、RSA:由 RSA 公司發明,是一個支持變長密鑰的公共密鑰演算法,需要加密的文件塊的長度也是可變的,非對稱演算法; 演算法如下:

首先, 找出三個數,p,q,r,其中 p,q 是兩個不相同的質數,r 是與 (p-1)(q-1) 互為質數的數。

p,q,r這三個數便是 private key。接著,找出 m,使得 rm == 1 mod (p-1)(q-1).....這個 m 一定存在,因為 r 與 (p-1)(q-1) 互質,用輾轉相除法就可以得到了。再來,計算 n = pq.......m,n 這兩個數便是 public key。

6、DSA(Digital Signature Algorithm):數字簽名演算法,是一種標準的 DSS(數字簽名標准),嚴格來說不算加密演算法;

7、AES(Advanced Encryption Standard):高級加密標准,對稱演算法,是下一代的加密演算法標准,速度快,安全級別高,在21世紀AES 標準的一個實現是 Rijndael 演算法。

8、BLOWFISH,它使用變長的密鑰,長度可達448位,運行速度很快;

9、MD5:嚴格來說不算加密演算法,只能說是摘要演算法;

對MD5演算法簡要的敘述可以為:MD5以512位分組來處理輸入的信息,且每一分組又被劃分為16個32位子分組,經過了一系列的處理後,演算法的輸出由四個32位分組組成,將這四個32位分組級聯後將生成一個128位散列值。

(2)摘要加密目的擴展閱讀

數據加密標准

傳統加密方法有兩種,替換和置換。上面的例子採用的就是替換的方法:使用密鑰將明文中的每一個字元轉換為密文中的一個字元。而置換僅將明文的字元按不同的順序重新排列。單獨使用這兩種方法的任意一種都是不夠安全的,但是將這兩種方法結合起來就能提供相當高的安全程度。

數據加密標准(Data Encryption Standard,簡稱DES)就採用了這種結合演算法,它由IBM制定,並在1977年成為美國官方加密標准。

DES的工作原理為:將明文分割成許多64位大小的塊,每個塊用64位密鑰進行加密,實際上,密鑰由56位數據位和8位奇偶校驗位組成,因此只有56個可能的密碼而不是64個。

每塊先用初始置換方法進行加密,再連續進行16次復雜的替換,最後再對其施用初始置換的逆。第i步的替換並不是直接利用原始的密鑰K,而是由K與i計算出的密鑰Ki。

DES具有這樣的特性,其解密演算法與加密演算法相同,除了密鑰Ki的施加順序相反以外。

參考資料來源:網路-加密演算法

參考資料來源:網路-數據加密

⑶ 數據加密和數據簽名的原理作用

加密可以幫助保護數據不被查看和修改,並且可以幫助在本不安全的信道上提供安全的通信方式。例如,可以使用加密演算法對數據進行加密,在加密狀態下傳輸數據,然後由預定的接收方對數據進行解密。如果第三方截獲了加密的數據,解密數據是很困難的。

在一個使用加密的典型場合中,雙方(小紅和小明)在不安全的信道上通信。小紅和小明想要確保任何可能正在偵聽的人無法理解他們之間的通信。而且,由於小紅和小明相距遙遠,因此小紅必須確保她從小明處收到的信息沒有在傳輸期間被任何人修改。此外,她必須確定信息確實是發自小明而不是有人模仿小明發出的。

加密用於達到以下目的:

保密性:幫助保護用戶的標識或數據不被讀取。
數據完整性:幫助保護數據不更改。
身份驗證:確保數據發自特定的一方。
為了達到這些目的,您可以使用演算法和慣例的組合(稱作加密基元)來創建加密方案。下表列出了加密基元及它們的用法。

加密基元 使用
私鑰加密(對稱加密) 對數據執行轉換,使第三方無法讀取該數據。此類型的加密使用單個共享的機密密鑰來加密和解密數據。
公鑰加密(不對稱加密) 對數據執行轉換,使第三方無法讀取該數據。此類加密使用公鑰/私鑰對來加密和解密數據。
加密簽名 通過創建對特定方唯一的數字簽名來幫助驗證數據是否發自特定方。此過程還使用哈希函數。
加密哈希 將數據從任意長度映射為定長位元組序列。哈希在統計上是唯一的;不同的雙位元組序列不會哈希為同一個值。

私鑰加密
私鑰加密演算法使用單個私鑰來加密和解密數據。由於具有密鑰的任意一方都可以使用該密鑰解密數據,因此必須保護密鑰不被未經授權的代理得到。私鑰加密又稱為對稱加密,因為同一密鑰既用於加密又用於解密。私鑰加密演算法非常快(與公鑰演算法相比),特別適用於對較大的數據流執行加密轉換。

通常,私鑰演算法(稱為塊密碼)用於一次加密一個數據塊。塊密碼(如 RC2、DES、TrippleDES 和 Rijndael)通過加密將 n 位元組的輸入塊轉換為加密位元組的輸出塊。如果要加密或解密位元組序列,必須逐塊進行。由於 n 很小(對於 RC2、DES 和 TripleDES,n = 8 位元組;n = 16 [默認值];n = 24;對於 Rijndael,n = 32),因此必須對大於 n 的值一次加密一個塊。

基類庫中提供的塊密碼類使用稱作密碼塊鏈 (CBC) 的鏈模式,它使用一個密鑰和一個初始化向量 (IV) 對數據執行加密轉換。對於給定的私鑰 k,一個不使用初始化向量的簡單塊密碼將把相同的明文輸入塊加密為同樣的密文輸出塊。如果在明文流中有重復的塊,那麼在密文流中將存在重復的塊。如果未經授權的用戶知道有關明文塊的結構的任何信息,就可以使用這些信息解密已知的密文塊並有可能發現您的密鑰。若要克服這個問題,可將上一個塊中的信息混合到加密下一個塊的過程中。這樣,兩個相同的明文塊的輸出就會不同。由於該技術使用上一個塊加密下一個塊,因此使用了一個 IV 來加密數據的第一個塊。使用該系統,未經授權的用戶有可能知道的公共消息標頭將無法用於對密鑰進行反向工程。

可以危及用此類型密碼加密的數據的一個方法是,對每個可能的密鑰執行窮舉搜索。根據用於執行加密的密鑰大小,即使使用最快的計算機執行這種搜索,也極其耗時,因此難以實施。使用較大的密鑰大小將使解密更加困難。雖然從理論上說加密不會使對手無法檢索加密的數據,但這確實極大增加了這樣做的成本。如果執行徹底搜索來檢索只在幾天內有意義的數據需要花費三個月的時間,那麼窮舉搜索的方法是不實用的。

私鑰加密的缺點是它假定雙方已就密鑰和 IV 達成協議,並且互相傳達了密鑰和 IV 的值。並且,密鑰必須對未經授權的用戶保密。由於存在這些問題,私鑰加密通常與公鑰加密一起使用,來秘密地傳達密鑰和 IV 的值。

假設小紅和小明是要在不安全的信道上進行通信的雙方,他們可能按以下方式使用私鑰加密。小紅和小明都同意使用一種具有特定密鑰和 IV 的特定演算法(如 Rijndael)。小紅撰寫一條消息並創建要在其上發送該消息的網路流。接下來,她使用該密鑰和 IV 加密該文本,並通過 Internet 發送該文本。她沒有將密鑰和 IV 發送給小明。小明收到該加密文本並使用預先商定的密鑰和 IV 對它進行解密。如果傳輸的內容被人截獲,截獲者將無法恢復原始消息,因為截獲者並不知道密鑰或 IV。在這個方案中,密鑰必須保密,但 IV 不需要保密。在一個實際方案中,將由小紅或小明生成私鑰並使用公鑰(不對稱)加密將私鑰(對稱)傳遞給對方。有關更多信息,請參見本主題後面的有關公鑰加密的部分。

.NET Framework 提供以下實現私鑰加密演算法的類:

DESCryptoServiceProvider
RC2CryptoServiceProvider
RijndaelManaged

公鑰加密
公鑰加密使用一個必須對未經授權的用戶保密的私鑰和一個可以對任何人公開的公鑰。公鑰和私鑰都在數學上相關聯;用公鑰加密的數據只能用私鑰解密,而用私鑰簽名的數據只能用公鑰驗證。公鑰可以提供給任何人;公鑰用於對要發送到私鑰持有者的數據進行加密。兩個密鑰對於通信會話都是唯一的。公鑰加密演算法也稱為不對稱演算法,原因是需要用一個密鑰加密數據而需要用另一個密鑰來解密數據。

公鑰加密演算法使用固定的緩沖區大小,而私鑰加密演算法使用長度可變的緩沖區。公鑰演算法無法像私鑰演算法那樣將數據鏈接起來成為流,原因是它只可以加密少量數據。因此,不對稱操作不使用與對稱操作相同的流模型。

雙方(小紅和小明)可以按照下列方式使用公鑰加密。首先,小紅生成一個公鑰/私鑰對。如果小明想要給小紅發送一條加密的消息,他將向她索要她的公鑰。小紅通過不安全的網路將她的公鑰發送給小明,小明接著使用該密鑰加密消息。(如果小明在不安全的信道如公共網路上收到小紅的密鑰,則小明必須同小紅驗證他具有她的公鑰的正確副本。)小明將加密的消息發送給小紅,而小紅使用她的私鑰解密該消息。

但是,在傳輸小紅的公鑰期間,未經授權的代理可能截獲該密鑰。而且,同一代理可能截獲來自小明的加密消息。但是,該代理無法用公鑰解密該消息。該消息只能用小紅的私鑰解密,而該私鑰沒有被傳輸。小紅不使用她的私鑰加密給小明的答復消息,原因是任何具有公鑰的人都可以解密該消息。如果小紅想要將消息發送回小明,她將向小明索要他的公鑰並使用該公鑰加密她的消息。然後,小明使用與他相關聯的私鑰來解密該消息。

在一個實際方案中,小紅和小明使用公鑰(不對稱)加密來傳輸私(對稱)鑰,而對他們的會話的其餘部分使用私鑰加密。

公鑰加密具有更大的密鑰空間(或密鑰的可能值范圍),因此不大容易受到對每個可能密鑰都進行嘗試的窮舉攻擊。由於不必保護公鑰,因此它易於分發。公鑰演算法可用於創建數字簽名以驗證數據發送方的身份。但是,公鑰演算法非常慢(與私鑰演算法相比),不適合用來加密大量數據。公鑰演算法僅對傳輸很少量的數據有用。公鑰加密通常用於加密一個私鑰演算法將要使用的密鑰和 IV。傳輸密鑰和 IV 後,會話的其餘部分將使用私鑰加密。

.NET Framework 提供以下實現公鑰加密演算法的類:

DSACryptoServiceProvider
RSACryptoServiceProvider
數字簽名
公鑰演算法還可用於構成數字簽名。數字簽名驗證發送方的身份(如果您信任發送方的公鑰)並幫助保護數據的完整性。使用由小紅生成的公鑰,小紅的數據的接收者可以通過將數字簽名與小紅的數據和小紅的公鑰進行比較來驗證是否是小紅發送了該數據。

為了使用公鑰加密對消息進行數字簽名,小紅首先將哈希演算法應用於該消息以創建消息摘要。該消息摘要是數據的緊湊且唯一的表示形式。然後,小紅用她的私鑰加密該消息摘要以創建她的個人簽名。在收到消息和簽名時,小明使用小紅的公鑰解密簽名以恢復消息摘要,並使用與小紅所使用的相同的哈希演算法來散列消息。如果小明計算的消息摘要與從小紅那裡收到的消息摘要完全一致,小明就可以確定該消息來自私鑰的持有人,並且數據未被修改過。如果小明相信小紅是私鑰的持有人,則他知道該消息來自小紅。

請注意,由於發送方的公鑰為大家所周知,並且它通常包含在數字簽名格式中,因此任何人都可以驗證簽名。此方法不保守消息的機密;若要使消息保密,還必須對消息進行加密。

.NET Framework 提供以下實現數字簽名演算法的類:

DSACryptoServiceProvider
RSACryptoServiceProvider
哈希值
哈希演算法將任意長度的二進制值映射為固定長度的較小二進制值,這個小的二進制值稱為哈希值。哈希值是一段數據唯一且極其緊湊的數值表示形式。如果散列一段明文而且哪怕只更改該段落的一個字母,隨後的哈希計算都將產生不同的值。要找到散列為同一個值的兩個不同的輸入,在計算上是不可能的。

消息身份驗證代碼 (MAC) 哈希函數通常與數字簽名一起用於對數據進行簽名,而消息檢測代碼 (MDC) 哈希函數則用於數據完整性。

雙方(小紅和小明)可按下面的方式使用哈希函數來確保數據的完整性。如果小紅對小明編寫一條消息並創建該消息的哈希,則小明可以在稍後散列該消息並將他的哈希與原始哈希進行比較。如果兩個哈希值相同,則該消息沒有被更改;如果值不相同,則該消息在小紅編寫它之後已被更改。為了使此系統發揮作用,小紅必須對除小明外的所有人保密原始的哈希值。

.NET Framework 提供以下實現數字簽名演算法的類:

HMACSHA1
MACTripleDES
MD5CryptoServiceProvider
SHA1Managed
SHA256Managed
SHA384Managed
SHA512Managed
隨機數生成
隨機數生成是許多加密操作不可分割的組成部分。例如,加密密鑰需要盡可能地隨機,以便使生成的密鑰很難再現。加密隨機數生成器必須生成無法以計算方法推算出(低於 p < .05 的概率)的輸出;即,任何推算下一個輸出位的方法不得比隨機猜測具有更高的成功概率。.NET Framework 中的類使用隨機數生成器生成加密密鑰。

RNGCryptoServiceProvider 類是隨機數生成器演算法的實現。

⑷ 摘要、數字簽名和數字證書

摘要是指通過一定的摘要演算法將一段內容轉為一段固定長度的內容,該內容即是摘要。

摘要演算法: 通過一個函數,把任意長度的數據轉換為一個長度固定的數據串(通常用16進制的字元串表示)

常見的摘要演算法有:MD5、SHA1、SHA256、SHA512。

摘要作用: 檢測內容是否發生修改。

存在問題: 消息發送過程中,可被中間人修改消息內容,並生成新的摘要,消息接收者不能確定消息是否被篡改。

數字簽名,即是用消息發送者的 私鑰 加密 摘要 後生成的內容。該內容只能用發送者的公鑰進行解密,所以可以防止他人修改。

數字簽名的目的是為了確保該消息是發送者發送的,中途沒有被修改或替換。

存在問題: 數字簽名可以解決消息被中間人修改的問題,但前提是消息接收者拿到的發送者的公鑰是真實的。如果拿到的公鑰不是發送者的,而是中間人的公鑰,那麼消息還是可以被篡改。

數字證書,是通過第三方(一般稱為CA)頒發的,一般是用第三方的私鑰來加密消息發送者的公鑰和相關信息而生成的。這樣,消息接收者用第三方的公鑰來進行解密證書,得到消息發送者的公鑰。

數字證書解決的問題是:防止消息發送者的公鑰被中途替換,從而解決了單純的 摘要 和 數字簽名 的問題。

閱讀全文

與摘要加密目的相關的資料

熱點內容
c語言編譯運行結果查看器 瀏覽:108
androidpx轉dip 瀏覽:837
西藏編譯局是什麼級別 瀏覽:997
php提交代碼 瀏覽:595
如何用命令查找並刪除代碼塊 瀏覽:578
python初學路線圖 瀏覽:531
matlab遺傳演算法旅行商問題 瀏覽:300
將辦公軟體加入加密軟體的進程 瀏覽:722
聯想小新pro14編譯器 瀏覽:460
為什麼伺服器要關掉icmp協議 瀏覽:853
源碼編輯器如何設置難度 瀏覽:353
給pdf加目錄 瀏覽:476
加密軟體怎麼改安全問題 瀏覽:552
cmd命令ip 瀏覽:946
python輸出單引號雙引號 瀏覽:272
腳本編程管理命令 瀏覽:379
小愛音箱pro怎麼自己裝app 瀏覽:118
建立ftp文件夾命令 瀏覽:571
sha1withrsa演算法 瀏覽:453
域名交易系統源碼php 瀏覽:171