導航:首頁 > 文檔加密 > 加密演算法與保密函數

加密演算法與保密函數

發布時間:2023-08-30 17:28:25

A. 關於加密、解密演算法、密鑰,哪位能給我舉個形象的例子

加密就像你鑰匙深進鑰匙孔,逆時針轉一下
解密就像你鑰匙深進鑰匙孔,順時針轉一下
密鑰就像你那把鑰匙上面的齒
暴力破解就像做了世界上所有可能的齒的鑰匙,一把一把試。不可以理解為直接砸開。
就像商場裡衣服上有個鎖,如果沒有鑰匙,就算怎麼弄開,那件衣服都沒法穿了。所以就一定要有鑰匙。
所以密鑰叫作key(鑰匙)

應該很形象了吧。

加密從數學角度就是一個像函數c=E(m,k)
輸入:m是消息明文,k是密鑰,
輸出:c是消息密文

D是E的反函數,m'=D(c',k')
輸入:c'是消息密文,k'是密鑰,
輸出:m'是消息明文

當c=c', k=k'時,一定有m=m'

c,m,k可以看成一個個大整數,比如c=394783579347293479382。
最簡單的一個加密就是
E(m,k)=m+k
D(c,k)=c-k

B. 對稱加密演算法的加密演算法主要有哪些

1、3DES演算法

3DES(即Triple DES)是DES向AES過渡的加密演算法(1999年,NIST將3-DES指定為過渡的加密標准),加密演算法,其具體實現如下:設Ek()和Dk()代表DES演算法的加密和解密過程,K代表DES演算法使用的密鑰,M代表明文,C代表密文,這樣:

3DES加密過程為:C=Ek3(Dk2(Ek1(M)))

3DES解密過程為:M=Dk1(EK2(Dk3(C)))

2、Blowfish演算法

BlowFish演算法用來加密64Bit長度的字元串。

BlowFish演算法使用兩個「盒」——unsignedlongpbox[18]和unsignedlongsbox[4,256]。

BlowFish演算法中,有一個核心加密函數:BF_En(後文詳細介紹)。該函數輸入64位信息,運算後,以64位密文的形式輸出。用BlowFish演算法加密信息,需要兩個過程:密鑰預處理和信息加密。

分別說明如下:

密鑰預處理:

BlowFish演算法的源密鑰——pbox和sbox是固定的。我們要加密一個信息,需要自己選擇一個key,用這個key對pbox和sbox進行變換,得到下一步信息加密所要用的key_pbox和key_sbox。具體的變化演算法如下:

1)用sbox填充key_sbox

2)用自己選擇的key8個一組地去異或pbox,用異或的結果填充key_pbox。key可以循環使用。

比如說:選的key是"abcdefghijklmn"。則異或過程為:

key_pbox[0]=pbox[0]abcdefgh;

key_pbox[1]=pbox[1]ijklmnab;

…………

…………

如此循環,直到key_pbox填充完畢。

3)用BF_En加密一個全0的64位信息,用輸出的結果替換key_pbox[0]和key_pbox[1],i=0;

4)用BF_En加密替換後的key_pbox,key_pbox[i+1],用輸出替代key_pbox[i+2]和key_pbox[i+3];

5)i+2,繼續第4步,直到key_pbox全部被替換;

6)用key_pbox[16]和key_pbox[17]做首次輸入(相當於上面的全0的輸入),用類似的方法,替換key_sbox信息加密。

信息加密就是用函數把待加密信息x分成32位的兩部分:xL,xRBF_En對輸入信息進行變換。

3、RC5演算法

RC5是種比較新的演算法,Rivest設計了RC5的一種特殊的實現方式,因此RC5演算法有一個面向字的結構:RC5-w/r/b,這里w是字長其值可以是16、32或64對於不同的字長明文和密文塊的分組長度為2w位,r是加密輪數,b是密鑰位元組長度。

(2)加密演算法與保密函數擴展閱讀:

普遍而言,有3個獨立密鑰的3DES(密鑰選項1)的密鑰長度為168位(三個56位的DES密鑰),但由於中途相遇攻擊,它的有效安全性僅為112位。密鑰選項2將密鑰長度縮短到了112位,但該選項對特定的選擇明文攻擊和已知明文攻擊的強度較弱,因此NIST認定它只有80位的安全性。

對密鑰選項1的已知最佳攻擊需要約2組已知明文,2部,2次DES加密以及2位內存(該論文提到了時間和內存的其它分配方案)。

這在現在是不現實的,因此NIST認為密鑰選項1可以使用到2030年。若攻擊者試圖在一些可能的(而不是全部的)密鑰中找到正確的,有一種在內存效率上較高的攻擊方法可以用每個密鑰對應的少數選擇明文和約2次加密操作找到2個目標密鑰中的一個。

C. 加密基礎知識二 非對稱加密RSA演算法和對稱加密

上述過程中,出現了公鑰(3233,17)和私鑰(3233,2753),這兩組數字是怎麼找出來的呢?參考 RSA演算法原理(二)
首字母縮寫說明:E是加密(Encryption)D是解密(Decryption)N是數字(Number)。

1.隨機選擇兩個不相等的質數p和q。
alice選擇了61和53。(實際應用中,這兩個質數越大,就越難破解。)

2.計算p和q的乘積n。
n = 61×53 = 3233
n的長度就是密鑰長度。3233寫成二進制是110010100001,一共有12位,所以這個密鑰就是12位。實際應用中,RSA密鑰一般是1024位,重要場合則為2048位。

3.計算n的歐拉函數φ(n)。稱作L
根據公式φ(n) = (p-1)(q-1)
alice算出φ(3233)等於60×52,即3120。

4.隨機選擇一個整數e,也就是公鑰當中用來加密的那個數字
條件是1< e < φ(n),且e與φ(n) 互質。
alice就在1到3120之間,隨機選擇了17。(實際應用中,常常選擇65537。)

5.計算e對於φ(n)的模反元素d。也就是密鑰當中用來解密的那個數字
所謂"模反元素"就是指有一個整數d,可以使得ed被φ(n)除的余數為1。ed ≡ 1 (mod φ(n))
alice找到了2753,即17*2753 mode 3120 = 1

6.將n和e封裝成公鑰,n和d封裝成私鑰。
在alice的例子中,n=3233,e=17,d=2753,所以公鑰就是 (3233,17),私鑰就是(3233, 2753)。

上述故事中,blob為了偷偷地傳輸移動位數6,使用了公鑰做加密,即6^17 mode 3233 = 824。alice收到824之後,進行解密,即824^2753 mod 3233 = 6。也就是說,alice成功收到了blob使用的移動位數。

再來復習一下整個流程:
p=17,q=19
n = 17 19 = 323
L = 16 18 = 144
E = 5(E需要滿足以下兩個條件:1<E<144,E和144互質)
D = 29(D要滿足兩個條件,1<D<144,D mode 144 = 1)
假設某個需要傳遞123,則加密後:123^5 mode 323 = 225
接收者收到225後,進行解密,225^ 29 mode 323 = 123

回顧上面的密鑰生成步驟,一共出現六個數字:
p
q
n
L即φ(n)
e
d
這六個數字之中,公鑰用到了兩個(n和e),其餘四個數字都是不公開的。其中最關鍵的是d,因為n和d組成了私鑰,一旦d泄漏,就等於私鑰泄漏。那麼,有無可能在已知n和e的情況下,推導出d?
(1)ed≡1 (mod φ(n))。只有知道e和φ(n),才能算出d。
(2)φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。
(3)n=pq。只有將n因數分解,才能算出p和q。
結論:如果n可以被因數分解,d就可以算出,也就意味著私鑰被破解。
可是,大整數的因數分解,是一件非常困難的事情。目前,除了暴力破解,還沒有發現別的有效方法。維基網路這樣寫道:"對極大整數做因數分解的難度決定了RSA演算法的可靠性。換言之,對一極大整數做因數分解愈困難,RSA演算法愈可靠。假如有人找到一種快速因數分解的演算法,那麼RSA的可靠性就會極度下降。但找到這樣的演算法的可能性是非常小的。今天只有短的RSA密鑰才可能被暴力破解。到2008年為止,世界上還沒有任何可靠的攻擊RSA演算法的方式。只要密鑰長度足夠長,用RSA加密的信息實際上是不能被解破的。"

然而,雖然RSA的安全性依賴於大數的因子分解,但並沒有從理論上證明破譯RSA的難度與大數分解難度等價。即RSA的重大缺陷是無法從理論上把握它的保密性能如何。此外,RSA的缺點還有:
A)產生密鑰很麻煩,受到素數產生技術的限制,因而難以做到一次一密。
B)分組長度太大,為保證安全性,n 至少也要 600bits以上,使運算代價很高,尤其是速度較慢,較對稱密碼演算法慢幾個數量級;且隨著大數分解技術的發展,這個長度還在增加,不利於數據格式的標准化。因此, 使用RSA只能加密少量數據,大量的數據加密還要靠對稱密碼演算法

加密和解密是自古就有技術了。經常看到偵探電影的橋段,勇敢又機智的主角,拿著一長串毫無意義的數字苦惱,忽然靈光一閃,翻出一本厚書,將第一個數字對應頁碼數,第二個數字對應行數,第三個數字對應那一行的某個詞。數字變成了一串非常有意義的話:
Eat the beancurd with the peanut. Taste like the ham.

這種加密方法是將原來的某種信息按照某個規律打亂。某種打亂的方式就叫做密鑰(cipher code)。發出信息的人根據密鑰來給信息加密,而接收信息的人利用相同的密鑰,來給信息解密。 就好像一個帶鎖的盒子。發送信息的人將信息放到盒子里,用鑰匙鎖上。而接受信息的人則用相同的鑰匙打開。加密和解密用的是同一個密鑰,這種加密稱為對稱加密(symmetric encryption)。

如果一對一的話,那麼兩人需要交換一個密鑰。一對多的話,比如總部和多個特工的通信,依然可以使用同一套密鑰。 但這種情況下,對手偷到一個密鑰的話,就知道所有交流的信息了。 二戰中盟軍的情報戰成果,很多都來自於破獲這種對稱加密的密鑰。

為了更安全,總部需要給每個特工都設計一個不同的密鑰。如果是FBI這樣龐大的機構,恐怕很難維護這么多的密鑰。在現代社會,每個人的信用卡信息都需要加密。一一設計密鑰的話,銀行怕是要跪了。

對稱加密的薄弱之處在於給了太多人的鑰匙。如果只給特工鎖,而總部保有鑰匙,那就容易了。特工將信息用鎖鎖到盒子里,誰也打不開,除非到總部用唯一的一把鑰匙打開。只是這樣的話,特工每次出門都要帶上許多鎖,太容易被識破身份了。總部老大想了想,乾脆就把造鎖的技術公開了。特工,或者任何其它人,可以就地取材,按照圖紙造鎖,但無法根據圖紙造出鑰匙。鑰匙只有總部的那一把。

上面的關鍵是鎖和鑰匙工藝不同。知道了鎖,並不能知道鑰匙。這樣,銀行可以將「造鎖」的方法公布給所有用戶。 每個用戶可以用鎖來加密自己的信用卡信息。即使被別人竊聽到,也不用擔心:只有銀行才有鑰匙呢!這樣一種加密演算法叫做非對稱加密(asymmetric encryption)。非對稱加密的經典演算法是RSA演算法。它來自於數論與計算機計數的奇妙結合。

1976年,兩位美國計算機學家Whitfield Diffie 和 Martin Hellman,提出了一種嶄新構思,可以在不直接傳遞密鑰的情況下,完成解密。這被稱為"Diffie-Hellman密鑰交換演算法"。這個演算法啟發了其他科學家。人們認識到,加密和解密可以使用不同的規則,只要這兩種規則之間存在某種對應關系即可,這樣就避免了直接傳遞密鑰。這種新的加密模式被稱為"非對稱加密演算法"。

1977年,三位數學家Rivest、Shamir 和 Adleman 設計了一種演算法,可以實現非對稱加密。這種演算法用他們三個人的名字命名,叫做RSA演算法。從那時直到現在,RSA演算法一直是最廣為使用的"非對稱加密演算法"。毫不誇張地說,只要有計算機網路的地方,就有RSA演算法。

1.能「撞」上的保險箱(非對稱/公鑰加密體制,Asymmetric / Public Key Encryption)

數據加密解密和門鎖很像。最開始的時候,人們只想到了那種只能用鑰匙「鎖」數據的鎖。如果在自己的電腦上自己加密數據,當然可以用最開始這種門鎖的形式啦,方便快捷,簡單易用有木有。

但是我們現在是通信時代啊,雙方都想做安全的通信怎麼辦呢?如果也用這種方法,通信就好像互相發送密碼保險箱一樣…而且雙方必須都有鑰匙才能進行加密和解密。也就是說,兩個人都拿著保險箱的鑰匙,你把數據放進去,用鑰匙鎖上發給我。我用同樣的鑰匙把保險箱打開,再把我的數據鎖進保險箱,發送給你。

這樣看起來好像沒什麼問題。但是,這裡面 最大的問題是:我們兩個怎麼弄到同一個保險箱的同一個鑰匙呢? 好像僅有的辦法就是我們兩個一起去買個保險箱,然後一人拿一把鑰匙,以後就用這個保險箱了。可是,現代通信社會,絕大多數情況下別說一起去買保險箱了,連見個面都難,這怎麼辦啊?

於是,人們想到了「撞門」的方法。我這有個可以「撞上」的保險箱,你那裡自己也買一個這樣的保險箱。通信最開始,我把保險箱打開,就這么開著把保險箱發給你。你把數據放進去以後,把保險箱「撞」上發給我。撞上以後,除了我以外,誰都打不開保險箱了。這就是RSA了,公開的保險箱就是公鑰,但是我有私鑰,我才能打開。

2.數字簽名
這種鎖看起來好像很不錯,但是鎖在運輸的過程中有這么一個嚴重的問題:你怎麼確定你收到的開著的保險箱就是我發來的呢?對於一個聰明人,他完全可以這么干:
(a)裝作運輸工人。我現在把我開著的保險箱運給對方。運輸工人自己也弄這么一個保險箱,運輸的時候把保險箱換成他做的。
(b)對方收到保險箱後,沒法知道這個保險箱是我最初發過去的,還是運輸工人替換的。對方把數據放進去,把保險箱撞上。
(c)運輸工人往回運的時候,用自己的鑰匙打開自己的保險箱,把數據拿走。然後復印也好,偽造也好,弄出一份數據,把這份數據放進我的保險箱,撞上,然後發給我。
從我的角度,從對方的角度,都會覺得這數據傳輸過程沒問題。但是,運輸工人成功拿到了數據,整個過程還是不安全的,大概的過程是這樣:

這怎麼辦啊?這個問題的本質原因是,人們沒辦法獲知,保險箱到底是「我」做的,還是運輸工人做的。那乾脆,我們都別做保險箱了,讓權威機構做保險箱,然後在每個保險箱上用特殊的工具刻上一個編號。對方收到保險箱的時候,在權威機構的「公告欄」上查一下編號,要是和保險箱上的編號一樣,我就知道這個保險箱是「我」的,就安心把數據放進去。大概過程是這樣的:

如何做出刻上編號,而且編號沒法修改的保險箱呢?這涉及到了公鑰體制中的另一個問題:數字簽名。
要知道,刻字這種事情吧,誰都能幹,所以想做出只能自己刻字,還沒法讓別人修改的保險箱確實有點難度。那麼怎麼辦呢?這其實困擾了人們很長的時間。直到有一天,人們發現:我們不一定非要在保險箱上刻規規矩矩的字,我們乾脆在保險箱上刻手寫名字好了。而且,刻字有點麻煩,乾脆我們在上面弄張紙,讓人直接在上面寫,簡單不費事。具體做法是,我們在保險箱上嵌進去一張紙,然後每個出產的保險箱都讓權威機構的CEO簽上自己的名字。然後,CEO把自己的簽名公開在權威機構的「公告欄」上面。比如這個CEO就叫「學酥」,那麼整個流程差不多是這個樣子:

這個方法的本質原理是,每個人都能夠通過筆跡看出保險箱上的字是不是學酥CEO簽的。但是呢,這個字體是學酥CEO唯一的字體。別人很難模仿。如果模仿我們就能自己分辨出來了。要是實在分辨不出來呢,我們就請一個筆跡專家來分辨。這不是很好嘛。這個在密碼學上就是數字簽名。

上面這個簽字的方法雖然好,但是還有一個比較蛋疼的問題。因為簽字的樣子是公開的,一個聰明人可以把公開的簽字影印一份,自己造個保險箱,然後把這個影印的字也嵌進去。這樣一來,這個聰明人也可以造一個相同簽字的保險箱了。解決這個問題一個非常簡單的方法就是在看保險箱上的簽名時,不光看字體本身,還要看字體是不是和公開的字體完全一樣。要是完全一樣,就可以考慮這個簽名可能是影印出來的。甚至,還要考察字體是不是和其他保險櫃上的字體一模一樣。因為聰明人為了欺騙大家,可能不影印公開的簽名,而影印其他保險箱上的簽名。這種解決方法雖然簡單,但是驗證簽名的時候麻煩了一些。麻煩的地方在於我不僅需要對比保險箱上的簽名是否與公開的筆跡一樣,還需要對比得到的簽名是否與公開的筆跡完全一樣,乃至是否和所有發布的保險箱上的簽名完全一樣。有沒有什麼更好的方法呢?

當然有,人們想到了一個比較好的方法。那就是,學酥CEO簽字的時候吧,不光把名字簽上,還得帶上簽字得日期,或者帶上這個保險箱的編號。這樣一來,每一個保險箱上的簽字就唯一了,這個簽字是學酥CEO的簽名+學酥CEO寫上的時間或者編號。這樣一來,就算有人偽造,也只能偽造用過的保險箱。這個問題就徹底解決了。這個過程大概是這么個樣子:

3 造價問題(密鑰封裝機制,Key Encapsulation Mechanism)
解決了上面的各種問題,我們要考慮考慮成本了… 這種能「撞」門的保險箱雖然好,但是這種鎖造價一般來說要比普通的鎖要高,而且鎖生產時間也會變長。在密碼學中,對於同樣「結實」的鎖,能「撞」門的鎖的造價一般來說是普通鎖的上千倍。同時,能「撞」門的鎖一般來說只能安裝在小的保險櫃裡面。畢竟,這么復雜的鎖,裝起來很費事啊!而普通鎖安裝在多大的保險櫃上面都可以呢。如果兩個人想傳輸大量數據的話,用一個大的保險櫃比用一堆小的保險櫃慢慢傳要好的多呀。怎麼解決這個問題呢?人們又想出了一個非常棒的方法:我們把兩種鎖結合起來。能「撞」上的保險櫃裡面放一個普通鎖的鑰匙。然後造一個用普通的保險櫃來鎖大量的數據。這樣一來,我們相當於用能「撞」上的保險櫃發一個鑰匙過去。對方收到兩個保險櫃後,先用自己的鑰匙把小保險櫃打開,取出鑰匙。然後在用這個鑰匙開大的保險櫃。這樣做更棒的一個地方在於,既然對方得到了一個鑰匙,後續再通信的時候,我們就不再需要能「撞」上的保險櫃了啊,在以後一定時間內就用普通保險櫃就好了,方便快捷嘛。

以下參考 數字簽名、數字證書、SSL、https是什麼關系?
4.數字簽名(Digital Signature)
數據在瀏覽器和伺服器之間傳輸時,有可能在傳輸過程中被冒充的盜賊把內容替換了,那麼如何保證數據是真實伺服器發送的而不被調包呢,同時如何保證傳輸的數據沒有被人篡改呢,要解決這兩個問題就必須用到數字簽名,數字簽名就如同日常生活的中的簽名一樣,一旦在合同書上落下了你的大名,從法律意義上就確定是你本人簽的字兒,這是任何人都沒法仿造的,因為這是你專有的手跡,任何人是造不出來的。那麼在計算機中的數字簽名怎麼回事呢?數字簽名就是用於驗證傳輸的內容是不是真實伺服器發送的數據,發送的數據有沒有被篡改過,它就干這兩件事,是非對稱加密的一種應用場景。不過他是反過來用私鑰來加密,通過與之配對的公鑰來解密。
第一步:服務端把報文經過Hash處理後生成摘要信息Digest,摘要信息使用私鑰private-key加密之後就生成簽名,伺服器把簽名連同報文一起發送給客戶端。
第二步:客戶端接收到數據後,把簽名提取出來用public-key解密,如果能正常的解密出來Digest2,那麼就能確認是對方發的。
第三步:客戶端把報文Text提取出來做同樣的Hash處理,得到的摘要信息Digest1,再與之前解密出來的Digist2對比,如果兩者相等,就表示內容沒有被篡改,否則內容就是被人改過了。因為只要文本內容哪怕有任何一點點改動都會Hash出一個完全不一樣的摘要信息出來。

5.數字證書(Certificate Authority)
數字證書簡稱CA,它由權威機構給某網站頒發的一種認可憑證,這個憑證是被大家(瀏覽器)所認可的,為什麼需要用數字證書呢,難道有了數字簽名還不夠安全嗎?有這樣一種情況,就是瀏覽器無法確定所有的真實伺服器是不是真的是真實的,舉一個簡單的例子:A廠家給你們家安裝鎖,同時把鑰匙也交給你,只要鑰匙能打開鎖,你就可以確定鑰匙和鎖是配對的,如果有人把鑰匙換了或者把鎖換了,你是打不開門的,你就知道肯定被竊取了,但是如果有人把鎖和鑰匙替換成另一套表面看起來差不多的,但質量差很多的,雖然鑰匙和鎖配套,但是你卻不能確定這是否真的是A廠家給你的,那麼這時候,你可以找質檢部門來檢驗一下,這套鎖是不是真的來自於A廠家,質檢部門是權威機構,他說的話是可以被公眾認可的(呵呵)。
同樣的, 因為如果有人(張三)用自己的公鑰把真實伺服器發送給瀏覽器的公鑰替換了,於是張三用自己的私鑰執行相同的步驟對文本Hash、數字簽名,最後得到的結果都沒什麼問題,但事實上瀏覽器看到的東西卻不是真實伺服器給的,而是被張三從里到外(公鑰到私鑰)換了一通。那麼如何保證你現在使用的公鑰就是真實伺服器發給你的呢?我們就用數字證書來解決這個問題。數字證書一般由數字證書認證機構(Certificate Authority)頒發,證書裡麵包含了真實伺服器的公鑰和網站的一些其他信息,數字證書機構用自己的私鑰加密後發給瀏覽器,瀏覽器使用數字證書機構的公鑰解密後得到真實伺服器的公鑰。這個過程是建立在被大家所認可的證書機構之上得到的公鑰,所以這是一種安全的方式。

常見的對稱加密演算法有DES、3DES、AES、RC5、RC6。非對稱加密演算法應用非常廣泛,如SSH,
HTTPS, TLS,電子證書,電子簽名,電子身份證等等。
參考 DES/3DES/AES區別

D. 密碼演算法的密碼學

(1) 發送者和接收者
假設發送者想發送消息給接收者,且想安全地發送信息:她想確信偷聽者不能閱讀發送的消息。
(2) 消息和加密
消息被稱為明文。用某種方法偽裝消息以隱藏它的內容的過程稱為加密,加了密的消息稱為密文,而把密文轉變為明文的過程稱為解密。
明文用M(消息)或P(明文)表示,它可能是比特流(文本文件、點陣圖、數字化的語音流或數字化的視頻圖像)。至於涉及到計算機,P是簡單的二進制數據。明文可被傳送或存儲,無論在哪種情況,M指待加密的消息。
密文用C表示,它也是二進制數據,有時和M一樣大,有時稍大(通過壓縮和加密的結合,C有可能比P小些。然而,單單加密通常達不到這一點)。加密函數E作用於M得到密文C,用數學表示為:
E(M)=C.
相反地,解密函數D作用於C產生M
D(C)=M.
先加密後再解密消息,原始的明文將恢復出來,下面的等式必須成立:
D(E(M))=M
(3) 鑒別、完整性和抗抵賴
除了提供機密性外,密碼學通常有其它的作用:.
(a) 鑒別
消息的接收者應該能夠確認消息的來源;入侵者不可能偽裝成他人。
(b) 完整性檢驗
消息的接收者應該能夠驗證在傳送過程中消息沒有被修改;入侵者不可能用假消息代替合法消息。
(c) 抗抵賴
發送者事後不可能虛假地否認他發送的消息。
(4) 演算法和密鑰
密碼演算法也叫密碼,是用於加密和解密的數學函數。(通常情況下,有兩個相關的函數:一個用作加密,另一個用作解密)
如果演算法的保密性是基於保持演算法的秘密,這種演算法稱為受限制的演算法。受限制的演算法具有歷史意義,但按現在的標准,它們的保密性已遠遠不夠。大的或經常變換的用戶組織不能使用它們,因為每有一個用戶離開這個組織,其它的用戶就必須改換另外不同的演算法。如果有人無意暴露了這個秘密,所有人都必須改變他們的演算法。
但是,受限制的密碼演算法不可能進行質量控制或標准化。每個用戶組織必須有他們自己的唯一演算法。這樣的組織不可能採用流行的硬體或軟體產品。但竊聽者卻可以買到這些流行產品並學習演算法,於是用戶不得不自己編寫演算法並予以實現,如果這個組織中沒有好的密碼學家,那麼他們就無法知道他們是否擁有安全的演算法。
盡管有這些主要缺陷,受限制的演算法對低密級的應用來說還是很流行的,用戶或者沒有認識到或者不在乎他們系統中內在的問題。
現代密碼學用密鑰解決了這個問題,密鑰用K表示。K可以是很多數值里的任意值。密鑰K的可能值的范圍叫做密鑰空間。加密和解密運算都使用這個密鑰(即運算都依賴於密鑰,並用K作為下標表示),這樣,加/解密函數現在變成:
EK(M)=C
DK(C)=M.
這些函數具有下面的特性:
DK(EK(M))=M.
有些演算法使用不同的加密密鑰和解密密鑰,也就是說加密密鑰K1與相應的解密密鑰K2不同,在這種情況下:
EK1(M)=C
DK2(C)=M
DK2 (EK1(M))=M
所有這些演算法的安全性都基於密鑰的安全性;而不是基於演算法的細節的安全性。這就意味著演算法可以公開,也可以被分析,可以大量生產使用演算法的產品,即使偷聽者知道你的演算法也沒有關系;如果他不知道你使用的具體密鑰,他就不可能閱讀你的消息。
密碼系統由演算法、以及所有可能的明文、密文和密鑰組成的。
基於密鑰的演算法通常有兩類:對稱演算法和公開密鑰演算法。下面將分別介紹: 對稱演算法有時又叫傳統密碼演算法,就是加密密鑰能夠從解密密鑰中推算出來,反過來也成立。在大多數對稱演算法中,加/解密密鑰是相同的。這些演算法也叫秘密密鑰演算法或單密鑰演算法,它要求發送者和接收者在安全通信之前,商定一個密鑰。對稱演算法的安全性依賴於密鑰,泄漏密鑰就意味著任何人都能對消息進行加/解密。只要通信需要保密,密鑰就必須保密。
對稱演算法的加密和解密表示為:
EK(M)=C
DK(C)=M
對稱演算法可分為兩類。一次只對明文中的單個比特(有時對位元組)運算的演算法稱為序列演算法或序列密碼。另一類演算法是對明文的一組比特亞行運算,這些比特組稱為分組,相應的演算法稱為分組演算法或分組密碼。現代計算機密碼演算法的典型分組長度為64比特——這個長度大到足以防止分析破譯,但又小到足以方便使用(在計算機出現前,演算法普遍地每次只對明文的一個字元運算,可認為是序列密碼對字元序列的運算)。 公開密鑰演算法(也叫非對稱演算法)是這樣設計的:用作加密的密鑰不同於用作解密的密鑰,而且解密密鑰不能根據加密密鑰計算出來(至少在合理假定的長時間內)。之所以叫做公開密鑰演算法,是因為加密密鑰能夠公開,即陌生者能用加密密鑰加密信息,但只有用相應的解密密鑰才能解密信息。在這些系統中,加密密鑰叫做公開密鑰(簡稱公鑰),解密密鑰叫做私人密鑰(簡稱私鑰)。私人密鑰有時也叫秘密密鑰。為了避免與對稱演算法混淆,此處不用秘密密鑰這個名字。
用公開密鑰K加密表示為
EK(M)=C.
雖然公開密鑰和私人密鑰是不同的,但用相應的私人密鑰解密可表示為:
DK(C)=M
有時消息用私人密鑰加密而用公開密鑰解密,這用於數字簽名(後面將詳細介紹),盡管可能產生混淆,但這些運算可分別表示為:
EK(M)=C
DK(C)=M
當前的公開密碼演算法的速度,比起對稱密碼演算法,要慢的多,這使得公開密碼演算法在大數據量的加密中應用有限。 單向散列函數 H(M) 作用於一個任意長度的消息 M,它返回一個固定長度的散列值 h,其中 h 的長度為 m 。
輸入為任意長度且輸出為固定長度的函數有很多種,但單向散列函數還有使其單向的其它特性:
(1) 給定 M ,很容易計算 h ;
(2) 給定 h ,根據 H(M) = h 計算 M 很難 ;
(3) 給定 M ,要找到另一個消息 M『 並滿足 H(M) = H(M』) 很難。
在許多應用中,僅有單向性是不夠的,還需要稱之為「抗碰撞」的條件:
要找出兩個隨機的消息 M 和 M『,使 H(M) = H(M』) 滿足很難。
由於散列函數的這些特性,由於公開密碼演算法的計算速度往往很慢,所以,在一些密碼協議中,它可以作為一個消息 M 的摘要,代替原始消息 M,讓發送者為 H(M) 簽名而不是對 M 簽名 。
如 SHA 散列演算法用於數字簽名協議 DSA中。 提到數字簽名就離不開公開密碼系統和散列技術。
有幾種公鑰演算法能用作數字簽名。在一些演算法中,例如RSA,公鑰或者私鑰都可用作加密。用你的私鑰加密文件,你就擁有安全的數字簽名。在其它情況下,如DSA,演算法便區分開來了??數字簽名演算法不能用於加密。這種思想首先由Diffie和Hellman提出 。
基本協議是簡單的 :
(1) A 用她的私鑰對文件加密,從而對文件簽名。
(2) A 將簽名的文件傳給B。
(3) B用A的公鑰解密文件,從而驗證簽名。
這個協議中,只需要證明A的公鑰的確是她的。如果B不能完成第(3)步,那麼他知道簽名是無效的。
這個協議也滿足以下特徵:
(1) 簽名是可信的。當B用A的公鑰驗證信息時,他知道是由A簽名的。
(2) 簽名是不可偽造的。只有A知道她的私鑰。
(3) 簽名是不可重用的。簽名是文件的函數,並且不可能轉換成另外的文件。
(4) 被簽名的文件是不可改變的。如果文件有任何改變,文件就不可能用A的公鑰驗證。
(5) 簽名是不可抵賴的。B不用A的幫助就能驗證A的簽名。 加密技術是對信息進行編碼和解碼的技術,編碼是把原來可讀信息(又稱明文)譯成代碼形式(又稱密文),其逆過程就是解碼(解密)。加密技術的要點是加密演算法,加密演算法可以分為對稱加密、不對稱加密和不可逆加密三類演算法。
對稱加密演算法 對稱加密演算法是應用較早的加密演算法,技術成熟。在對稱加密演算法中,數據發信方將明文(原始數據)和加密密鑰一起經過特殊加密演算法處理後,使其變成復雜的加密密文發送出去。收信方收到密文後,若想解讀原文,則需要使用加密用過的密鑰及相同演算法的逆演算法對密文進行解密,才能使其恢復成可讀明文。在對稱加密演算法中,使用的密鑰只有一個,發收信雙方都使用這個密鑰對數據進行加密和解密,這就要求解密方事先必須知道加密密鑰。對稱加密演算法的特點是演算法公開、計算量小、加密速度快、加密效率高。不足之處是,交易雙方都使用同樣鑰匙,安全性得不到保證。此外,每對用戶每次使用對稱加密演算法時,都需要使用其他人不知道的惟一鑰匙,這會使得發收信雙方所擁有的鑰匙數量成幾何級數增長,密鑰管理成為用戶的負擔。對稱加密演算法在分布式網路系統上使用較為困難,主要是因為密鑰管理困難,使用成本較高。在計算機專網系統中廣泛使用的對稱加密演算法有DES和IDEA等。美國國家標准局倡導的AES即將作為新標准取代DES。
不對稱加密演算法 不對稱加密演算法使用兩把完全不同但又是完全匹配的一對鑰匙—公鑰和私鑰。在使用不對稱加密演算法加密文件時,只有使用匹配的一對公鑰和私鑰,才能完成對明文的加密和解密過程。加密明文時採用公鑰加密,解密密文時使用私鑰才能完成,而且發信方(加密者)知道收信方的公鑰,只有收信方(解密者)才是唯一知道自己私鑰的人。不對稱加密演算法的基本原理是,如果發信方想發送只有收信方才能解讀的加密信息,發信方必須首先知道收信方的公鑰,然後利用收信方的公鑰來加密原文;收信方收到加密密文後,使用自己的私鑰才能解密密文。顯然,採用不對稱加密演算法,收發信雙方在通信之前,收信方必須將自己早已隨機生成的公鑰送給發信方,而自己保留私鑰。由於不對稱演算法擁有兩個密鑰,因而特別適用於分布式系統中的數據加密。廣泛應用的不對稱加密演算法有RSA演算法和美國國家標准局提出的DSA。以不對稱加密演算法為基礎的加密技術應用非常廣泛。
不可逆加密演算法 的特徵是加密過程中不需要使用密鑰,輸入明文後由系統直接經過加密演算法處理成密文,這種加密後的數據是無法被解密的,只有重新輸入明文,並再次經過同樣不可逆的加密演算法處理,得到相同的加密密文並被系統重新識別後,才能真正解密。顯然,在這類加密過程中,加密是自己,解密還得是自己,而所謂解密,實際上就是重新加一次密,所應用的「密碼」也就是輸入的明文。不可逆加密演算法不存在密鑰保管和分發問題,非常適合在分布式網路系統上使用,但因加密計算復雜,工作量相當繁重,通常只在數據量有限的情形下使用,如廣泛應用在計算機系統中的口令加密,利用的就是不可逆加密演算法。近年來,隨著計算機系統性能的不斷提高,不可逆加密的應用領域正在逐漸增大。在計算機網路中應用較多不可逆加密演算法的有RSA公司發明的MD5演算法和由美國國家標准局建議的不可逆加密標准SHS(Secure Hash Standard:安全雜亂信息標准)等。

E. 十大常見密碼加密方式

一、密鑰散列

採用MD5或者SHA1等散列演算法,對明文進行加密。嚴格來說,MD5不算一種加密演算法,而是一種摘要演算法。無論多長的輸入,MD5都會輸出一個128位(16位元組)的散列值。而SHA1也是流行的消息摘要演算法,它可以生成一個被稱為消息摘要的160位(20位元組)散列值。MD5相對SHA1來說,安全性較低,但是速度快;SHA1和MD5相比安全性高,但是速度慢。

二、對稱加密

採用單鑰密碼系統的加密方法,同一個密鑰可以同時用作信息的加密和解密,這種加密方法稱為對稱加密。對稱加密演算法中常用的演算法有:DES、3DES、TDEA、Blowfish、RC2、RC4、RC5、IDEA、SKIPJACK等。

三、非對稱加密

非對稱加密演算法是一種密鑰的保密方法,它需要兩個密鑰來進行加密和解密,這兩個密鑰是公開密鑰和私有密鑰。公鑰與私鑰是一對,如果用公鑰對數據進行加密,只有用對應的私鑰才能解密。非對稱加密演算法有:RSA、Elgamal、背包演算法、Rabin、D-H、ECC(橢圓曲線加密演算法)。

四、數字簽名

數字簽名(又稱公鑰數字簽名)是只有信息的發送者才能產生的別人無法偽造的一段數字串,這段數字串同時也是對信息的發送者發送信息真實性的一個有效證明。它是一種類似寫在紙上的普通的物理簽名,但是在使用了公鑰加密領域的技術來實現的,用於鑒別數字信息的方法。

五、直接明文保存

早期很多這樣的做法,比如用戶設置的密碼是「123」,直接就將「123」保存到資料庫中,這種是最簡單的保存方式,也是最不安全的方式。但實際上不少互聯網公司,都可能採取的是這種方式。

六、使用MD5、SHA1等單向HASH演算法保護密碼

使用這些演算法後,無法通過計算還原出原始密碼,而且實現比較簡單,因此很多互聯網公司都採用這種方式保存用戶密碼,曾經這種方式也是比較安全的方式,但隨著彩虹表技術的興起,可以建立彩虹表進行查表破解,目前這種方式已經很不安全了。

七、特殊的單向HASH演算法

由於單向HASH演算法在保護密碼方面不再安全,於是有些公司在單向HASH演算法基礎上進行了加鹽、多次HASH等擴展,這些方式可以在一定程度上增加破解難度,對於加了「固定鹽」的HASH演算法,需要保護「鹽」不能泄露,這就會遇到「保護對稱密鑰」一樣的問題,一旦「鹽」泄露,根據「鹽」重新建立彩虹表可以進行破解,對於多次HASH,也只是增加了破解的時間,並沒有本質上的提升。

八、PBKDF2

該演算法原理大致相當於在HASH演算法基礎上增加隨機鹽,並進行多次HASH運算,隨機鹽使得彩虹表的建表難度大幅增加,而多次HASH也使得建表和破解的難度都大幅增加。

九、BCrypt

BCrypt 在1999年就產生了,並且在對抗 GPU/ASIC 方面要優於 PBKDF2,但是我還是不建議你在新系統中使用它,因為它在離線破解的威脅模型分析中表現並不突出。

十、SCrypt

SCrypt 在如今是一個更好的選擇:比 BCrypt設計得更好(尤其是關於內存方面)並且已經在該領域工作了 10 年。另一方面,它也被用於許多加密貨幣,並且我們有一些硬體(包括 FPGA 和 ASIC)能實現它。 盡管它們專門用於采礦,也可以將其重新用於破解。

F. md5是什麼

MD5信息摘要演算法(英語:MD5 Message-Digest Algorithm),一種被廣泛使用的密碼散列函數,可以產生出一個128位(16位元組)的散列值(hash value),用於確保信息傳輸完整一致。

MD5由美國密碼學家羅納德·李維斯特(Ronald Linn Rivest)設計,於1992年公開,用以取代MD4演算法。這套演算法的程序在 RFC 1321 標准中被加以規范。

1996年後該演算法被證實存在弱點,可以被加以破解,對於需要高度安全性的數據,專家一般建議改用其他演算法,如SHA-2。2004年,證實MD5演算法無法防止碰撞(collision),因此不適用於安全性認證,如SSL公開密鑰認證或是數字簽名等用途。

用於密碼管理

當我們需要保存某些密碼信息以用於身份確認時,如果直接將密碼信息以明碼方式保存在資料庫中,不使用任何保密措施,系統管理員就很容易能得到原來的密碼信息,這些信息一旦泄露, 密碼也很容易被破譯。

為了增加安全性,有必要對資料庫中需要保密的信息進行加密,這樣,即使有人得到了整個資料庫,如果沒有解密演算法,也不能得到原來的密碼信息。MD5演算法可以很好地解決這個問題,因為它可以將任意長度的輸入串經過計算得到固定長度的輸出,而且只有在明文相同的情況下。

才能等到相同的密文,並且這個演算法是不可逆的,即便得到了加密以後的密文,也不可能通過解密演算法反算出明文。

G. 用於文件加密的演算法有哪些,以及它們的原理

MD5全稱"message-digest algorithm 5"(信息-摘要演算法)。

90年代初由MIT計算機科學實驗室和RSA Data Security Inc聯合開發。

MD5演算法採用128位加密方式,即使一台計算機每秒可嘗試10億條明文,要跑出原始明文也要1022年。在802.1X認證中,一直使用此演算法。

加密演算法之二---ELGamal

ELGamal演算法是一種較為常見的加密演算法,他基於1984年提出的公鑰密碼體制和橢圓曲線加密體系。即能用於數據加密,又能用於數字簽名,起安全性依賴於計算有限領域上離散對數這一數學難題。

著名的DSS和Schnorr和美國國家標准X9.30-199X中ELGamal為唯一認可加密方式。並且橢圓曲線密碼加密體系增強了ELGamal演算法的安全性。

ELGamal在加密過程中,生成的密文長度是明文的兩倍。且每次加密後都會在密文中生成一個隨即數K。

加密演算法之三---BlowFish

BlowFish演算法由著名的密碼學專家部魯斯·施耐爾所開發,是一個基於64位分組及可變密鑰長度[32-448位]的分組密碼演算法。

BlowFish演算法的核心加密函數名為BF_En,為一種對稱演算法,加密強度不夠。

加密演算法之四---SHA

SHA(即Secure Hash Algorithm,安全散列演算法)是一種常用的數據加密演算法,由美國國家標准與技術局於1993年做為聯邦信息處理標准公布,先版本SHA-1,SHA-2。

SHA演算法與MD5類似,同樣按2bit數據塊為單位來處理輸入,但它能產生160bit的信息摘要,具有比MD5更強的安全性。

SHA收到一段明文,然後以不可逆方式將它轉為一段密文,該演算法被廣泛運用於數字簽名及電子商務交易的身份認證中。(

H. 加密方式有幾種

加密方式的種類:

1、MD5

一種被廣泛使用的密碼散列函數,可以產生出一個128位(16位元組)的散列值(hash value),用於確保信息傳輸完整一致。MD5由美國密碼學家羅納德·李維斯特(Ronald Linn Rivest)設計,於1992年公開,用以取代MD4演算法。這套演算法的程序在 RFC 1321 標准中被加以規范。

2、對稱加密

對稱加密採用單鑰密碼系統的加密方法,同一個密鑰可以同時用作信息的加密和解密,這種加密方法稱為對稱加密,也稱為單密鑰加密。

3、非對稱加密

與對稱加密演算法不同,非對稱加密演算法需要兩個密鑰:公開密鑰(publickey)和私有密鑰(privatekey)。公開密鑰與私有密鑰是一對,如果用公開密鑰對數據進行加密,只有用對應的私有密鑰才能解密。

如果用私有密鑰對數據進行加密,那麼只有用對應的公開密鑰才能解密。因為加密和解密使用的是兩個不同的密鑰,所以這種演算法叫作非對稱加密演算法。

(8)加密演算法與保密函數擴展閱讀

非對稱加密工作過程

1、乙方生成一對密鑰(公鑰和私鑰)並將公鑰向其它方公開。

2、得到該公鑰的甲方使用該密鑰對機密信息進行加密後再發送給乙方。

3、乙方再用自己保存的另一把專用密鑰(私鑰)對加密後的信息進行解密。乙方只能用其專用密鑰(私鑰)解密由對應的公鑰加密後的信息。

在傳輸過程中,即使攻擊者截獲了傳輸的密文,並得到了乙的公鑰,也無法破解密文,因為只有乙的私鑰才能解密密文。

同樣,如果乙要回復加密信息給甲,那麼需要甲先公布甲的公鑰給乙用於加密,甲自己保存甲的私鑰用於解密。

閱讀全文

與加密演算法與保密函數相關的資料

熱點內容
安卓手機怎麼設置陌生免打擾 瀏覽:807
如何看見自己手機號安卓 瀏覽:120
香煙源碼查詢 瀏覽:774
台達文本編程軟體 瀏覽:718
單片機燒寫器使用視頻 瀏覽:996
拍照哪個app比較好 瀏覽:132
dhcp伺服器不能分配MAC地址 瀏覽:964
java偽隨機數 瀏覽:128
塗色書怎麼解壓 瀏覽:465
三角形圓邊編程 瀏覽:457
手機壓縮文件怎麼壓縮到十兆以下 瀏覽:987
雲主機雲伺服器品牌 瀏覽:345
安卓emulated文件夾如何打開 瀏覽:315
採用fifo頁面置換演算法是 瀏覽:194
如何上網代理伺服器 瀏覽:593
Hro系統源碼 瀏覽:847
寶庫源碼 瀏覽:342
路飛和熊排解壓力 瀏覽:625
php定時更新 瀏覽:357
數控5軸編程培訓一般多久 瀏覽:560