在安全領域,利用密鑰加密演算法來對通信的過程進行加密是一種常見的安全手段。利用該手段能夠保障數據安全通信的三個目標:
而常見的密鑰加密演算法類型大體可以分為三類:對稱加密、非對稱加密、單向加密。下面我們來了解下相關的演算法原理及其常見的演算法。
在加密傳輸中最初是採用對稱密鑰方式,也就是加密和解密都用相同的密鑰。
1.對稱加密演算法採用單密鑰加密,在通信過程中,數據發送方將原始數據分割成固定大小的塊,經過密鑰和加密演算法逐個加密後,發送給接收方
2.接收方收到加密後的報文後,結合解密演算法使用相同密鑰解密組合後得出原始數據。
圖示:
非對稱加密演算法採用公鑰和私鑰兩種不同的密碼來進行加解密。公鑰和私鑰是成對存在,公鑰是從私鑰中提取產生公開給所有人的,如果使用公鑰對數據進行加密,那麼只有對應的私鑰(不能公開)才能解密,反之亦然。N 個用戶通信,需要2N個密鑰。
非對稱密鑰加密適合對密鑰或身份信息等敏感信息加密,從而在安全性上滿足用戶的需求。
1.甲使用乙的公鑰並結合相應的非對稱演算法將明文加密後發送給乙,並將密文發送給乙。
2.乙收到密文後,結合自己的私鑰和非對稱演算法解密得到明文,得到最初的明文。
圖示:
單向加密演算法只能用於對數據的加密,無法被解密,其特點為定長輸出、雪崩效應(少量消息位的變化會引起信息摘要的許多位變化)。
單向加密演算法常用於提取數據指紋,驗證數據的完整性、數字摘要、數字簽名等等。
1.發送者將明文通過單向加密演算法加密生成定長的密文串,然後傳遞給接收方。
2.接收方將用於比對驗證的明文使用相同的單向加密演算法進行加密,得出加密後的密文串。
3.將之與發送者發送過來的密文串進行對比,若發送前和發送後的密文串相一致,則說明傳輸過程中數據沒有損壞;若不一致,說明傳輸過程中數據丟失了。
圖示:
MD5、sha1、sha224等等
密鑰交換IKE(Internet Key Exchange)通常是指雙方通過交換密鑰來實現數據加密和解密
常見的密鑰交換方式有下面兩種:
將公鑰加密後通過網路傳輸到對方進行解密,這種方式缺點在於具有很大的可能性被攔截破解,因此不常用
DH演算法是一種密鑰交換演算法,其既不用於加密,也不產生數字簽名。
DH演算法通過雙方共有的參數、私有參數和演算法信息來進行加密,然後雙方將計算後的結果進行交換,交換完成後再和屬於自己私有的參數進行特殊演算法,經過雙方計算後的結果是相同的,此結果即為密鑰。
如:
安全性
在整個過程中,第三方人員只能獲取p、g兩個值,AB雙方交換的是計算後的結果,因此這種方式是很安全的。
答案:使用公鑰證書
公鑰基礎設施是一個包括硬體、軟體、人員、策略和規程的集合
用於實現基於公鑰密碼機制的密鑰和證書的生成、管理、存儲、分發和撤銷的功能
簽證機構CA、注冊機構RA、證書吊銷列表CRL和證書存取庫CB。
公鑰證書是以數字簽名的方式聲明,它將公鑰的值綁定到持有對應私鑰的個人、設備或服務身份。公鑰證書的生成遵循X.509協議的規定,其內容包括:證書名稱、證書版本、序列號、演算法標識、頒發者、有效期、有效起始日期、有效終止日期、公鑰 、證書簽名等等的內容。
1.客戶A准備好要傳送的數字信息(明文)。(准備明文)
2.客戶A對數字信息進行哈希(hash)運算,得到一個信息摘要。(准備摘要)
3.客戶A用CA的私鑰(SK)對信息摘要進行加密得到客戶A的數字簽名,並將其附在數字信息上。(用私鑰對數字信息進行數字簽名)
4.客戶A隨機產生一個加密密鑰(DES密鑰),並用此密鑰對要發送的信息進行加密,形成密文。 (生成密文)
5.客戶A用雙方共有的公鑰(PK)對剛才隨機產生的加密密鑰進行加密,將加密後的DES密鑰連同密文一起傳送給乙。(非對稱加密,用公鑰對DES密鑰進行加密)
6.銀行B收到客戶A傳送過來的密文和加過密的DES密鑰,先用自己的私鑰(SK)對加密的DES密鑰進行解密,得到DES密鑰。(用私鑰對DES密鑰解密)
7.銀行B然後用DES密鑰對收到的密文進行解密,得到明文的數字信息,然後將DES密鑰拋棄(即DES密鑰作廢)。(解密文)
8.銀行B用雙方共有的公鑰(PK)對客戶A的數字簽名進行解密,得到信息摘要。銀行B用相同的hash演算法對收到的明文再進行一次hash運算,得到一個新的信息摘要。(用公鑰解密數字簽名)
9.銀行B將收到的信息摘要和新產生的信息摘要進行比較,如果一致,說明收到的信息沒有被修改過。(對比信息摘要和信息)
答案是沒法保證CA的公鑰沒有被篡改。通常操作系統和瀏覽器會預制一些CA證書在本地。所以發送方應該去那些通過認證的CA處申請數字證書。這樣是有保障的。
但是如果系統中被插入了惡意的CA證書,依然可以通過假冒的數字證書發送假冒的發送方公鑰來驗證假冒的正文信息。所以安全的前提是系統中不能被人插入非法的CA證書。
END
② 數據加密技術及其相關演算法
數據加密技術 所謂數據加密(Data Encryption)技術是指將一個信息(或稱明文,plain text)經過加密鑰匙(Encryption key)及加密函數轉換,變成無意義的密文(cipher text),而接收方則將此密文經過解密函數、解密鑰匙(Decryption key)還原成明文。加密技術是網路安全技術的基石。
數據加密技術要求只有在指定的用戶或網路下,才能解除密碼而獲得原來的數據,這就需要給數據發送方和接受方以一些特殊的信息用於加解密,這就是所謂的密鑰。其密鑰的值是從大量的隨機數中選取的。按加密演算法分為專用密鑰和公開密鑰兩種。
專用密鑰,又稱為對稱密鑰或單密鑰,加密和解密時使用同一個密鑰,即同一個演算法。如DES和MIT的Kerberos演算法。單密鑰是最簡單方式,通信雙方必須交換彼此密鑰,當需給對方發信息時,用自己的加密密鑰進行加密,而在接收方收到數據後,用對方所給的密鑰進行解密。當一個文本要加密傳送時,該文本用密鑰加密構成密文,密文在信道上傳送,收到密文後用同一個密鑰將密文解出來,形成普通文體供閱讀。在對稱密鑰中,密鑰的管理極為重要,一旦密鑰丟失,密文將無密可保。這種方式在與多方通信時因為需要保存很多密鑰而變得很復雜,而且密鑰本身的安全就是一個問題。
對稱密鑰是最古老的,一般說「密電碼」採用的就是對稱密鑰。由於對稱密鑰運算量小、速度快、安全強度高,因而目前仍廣泛被採用。
DES是一種數據分組的加密演算法,它將數據分成長度為64位的數據塊,其中8位用作奇偶校驗,剩餘的56位作為密碼的長度。第一步將原文進行置換,得到64位的雜亂無章的數據組;第二步將其分成均等兩段;第三步用加密函數進行變換,並在給定的密鑰參數條件下,進行多次迭代而得到加密密文。
公開密鑰,又稱非對稱密鑰,加密和解密時使用不同的密鑰,即不同的演算法,雖然兩者之間存在一定的關系,但不可能輕易地從一個推導出另一個。有一把公用的加密密鑰,有多把解密密鑰,如RSA演算法。
非對稱密鑰由於兩個密鑰(加密密鑰和解密密鑰)各不相同,因而可以將一個密鑰公開,而將另一個密鑰保密,同樣可以起到加密的作用。
在這種編碼過程中,一個密碼用來加密消息,而另一個密碼用來解密消息。在兩個密鑰中有一種關系,通常是數學關系。公鑰和私鑰都是一組十分長的、數字上相關的素數(是另一個大數字的因數)。有一個密鑰不足以翻譯出消息,因為用一個密鑰加密的消息只能用另一個密鑰才能解密。每個用戶可以得到唯一的一對密鑰,一個是公開的,另一個是保密的。公共密鑰保存在公共區域,可在用戶中傳遞,甚至可印在報紙上面。而私鑰必須存放在安全保密的地方。任何人都可以有你的公鑰,但是只有你一個人能有你的私鑰。它的工作過程是:「你要我聽你的嗎?除非你用我的公鑰加密該消息,我就可以聽你的,因為我知道沒有別人在偷聽。只有我的私鑰(其他人沒有)才能解密該消息,所以我知道沒有人能讀到這個消息。我不必擔心大家都有我的公鑰,因為它不能用來解密該消息。」
公開密鑰的加密機制雖提供了良好的保密性,但難以鑒別發送者,即任何得到公開密鑰的人都可以生成和發送報文。數字簽名機制提供了一種鑒別方法,以解決偽造、抵賴、冒充和篡改等問題。
數字簽名一般採用非對稱加密技術(如RSA),通過對整個明文進行某種變換,得到一個值,作為核實簽名。接收者使用發送者的公開密鑰對簽名進行解密運算,如其結果為明文,則簽名有效,證明對方的身份是真實的。當然,簽名也可以採用多種方式,例如,將簽名附在明文之後。數字簽名普遍用於銀行、電子貿易等。
數字簽名不同於手寫簽字:數字簽名隨文本的變化而變化,手寫簽字反映某個人個性特徵,是不變的;數字簽名與文本信息是不可分割的,而手寫簽字是附加在文本之後的,與文本信息是分離的。
值得注意的是,能否切實有效地發揮加密機制的作用,關鍵的問題在於密鑰的管理,包括密鑰的生存、分發、安裝、保管、使用以及作廢全過程。
③ 設計一個好的演算法通常要考慮哪些要求
數據結構中評價一個好的演算法,應該從四個方面來考慮,分別是:
一、演算法的正確性。
二、演算法的易讀性。
三、是演算法的健壯性。
四、是演算法的時空效率(運行)。
演算法的設計取決於數據(邏輯)結構,演算法的實現取決於所採用的存儲結構。數據的存儲結構本質上是其邏輯結構在計算機存儲器中的實現。為了全面反映一個數據的邏輯結構,它在內存中的影像包括兩個方面,即數據元素之間的信息和數據元素之間的關系。
不同的數據結構有相應的操作。數據的操作是在數據的邏輯結構上定義的操作演算法,如檢索、插入、刪除、更新和排序。
(3)不同行業數據加密計算擴展閱讀
該演算法的一般性質包括:
1.通用性對於任何符合輸入類型的輸入數據,都可以根據演算法解決問題,並且包保證了計算結構的正確性。
2.演算法的每一條指令都必須能夠被人或機器執行。
3.確定性演算法應該在每一步之後都有明確的下一步指示。也就是說,確保每個步驟都有下一步行動的指示,不缺少或只包含含糊的下一步行動指示。
4.有限演算法的執行必須在有限步結束。
④ 常見加密演算法原理及概念
在安全領域,利用密鑰加密演算法來對通信的過程進行加密是一種常見的安全手段。利用該手段能夠保障數據安全通信的三個目標:
而常見的密鑰加密演算法類型大體可以分為三類:對稱加密、非對稱加密、單向加密。下面我們來了解下相關的演算法原理及其常見的演算法。
對稱加密演算法採用單密鑰加密,在通信過程中,數據發送方將原始數據分割成固定大小的塊,經過密鑰和加密演算法逐個加密後,發送給接收方;接收方收到加密後的報文後,結合密鑰和解密演算法解密組合後得出原始數據。由於加解密演算法是公開的,因此在這過程中,密鑰的安全傳遞就成為了至關重要的事了。而密鑰通常來說是通過雙方協商,以物理的方式傳遞給對方,或者利用第三方平台傳遞給對方,一旦這過程出現了密鑰泄露,不懷好意的人就能結合相應的演算法攔截解密出其加密傳輸的內容。
對稱加密演算法擁有著演算法公開、計算量小、加密速度和效率高得特定,但是也有著密鑰單一、密鑰管理困難等缺點。
常見的對稱加密演算法有:
DES:分組式加密演算法,以64位為分組對數據加密,加解密使用同一個演算法。
3DES:三重數據加密演算法,對每個數據塊應用三次DES加密演算法。
AES:高級加密標准演算法,是美國聯邦政府採用的一種區塊加密標准,用於替代原先的DES,目前已被廣泛應用。
Blowfish:Blowfish演算法是一個64位分組及可變密鑰長度的對稱密鑰分組密碼演算法,可用來加密64比特長度的字元串。
非對稱加密演算法採用公鑰和私鑰兩種不同的密碼來進行加解密。公鑰和私鑰是成對存在,公鑰是從私鑰中提取產生公開給所有人的,如果使用公鑰對數據進行加密,那麼只有對應的私鑰才能解密,反之亦然。
下圖為簡單非對稱加密演算法的常見流程:
發送方Bob從接收方Alice獲取其對應的公鑰,並結合相應的非對稱演算法將明文加密後發送給Alice;Alice接收到加密的密文後,結合自己的私鑰和非對稱演算法解密得到明文。這種簡單的非對稱加密演算法的應用其安全性比對稱加密演算法來說要高,但是其不足之處在於無法確認公鑰的來源合法性以及數據的完整性。
非對稱加密演算法具有安全性高、演算法強度負復雜的優點,其缺點為加解密耗時長、速度慢,只適合對少量數據進行加密,其常見演算法包括:
RSA :RSA演算法基於一個十分簡單的數論事實:將兩個大素數相乘十分容易,但那時想要對其乘積進行因式分解卻極其困難,因此可以將乘積公開作為加密密鑰,可用於加密,也能用於簽名。
DSA :數字簽名演算法,僅能用於簽名,不能用於加解密。
DSS :數字簽名標准,技能用於簽名,也可以用於加解密。
ELGamal :利用離散對數的原理對數據進行加解密或數據簽名,其速度是最慢的。
單向加密演算法常用於提取數據指紋,驗證數據的完整性。發送者將明文通過單向加密演算法加密生成定長的密文串,然後傳遞給接收方。接收方在收到加密的報文後進行解密,將解密獲取到的明文使用相同的單向加密演算法進行加密,得出加密後的密文串。隨後將之與發送者發送過來的密文串進行對比,若發送前和發送後的密文串相一致,則說明傳輸過程中數據沒有損壞;若不一致,說明傳輸過程中數據丟失了。單向加密演算法只能用於對數據的加密,無法被解密,其特點為定長輸出、雪崩效應。常見的演算法包括:MD5、sha1、sha224等等,其常見用途包括:數字摘要、數字簽名等等。
密鑰交換IKE(Internet Key Exchange)通常是指雙方通過交換密鑰來實現數據加密和解密,常見的密鑰交換方式有下面兩種:
1、公鑰加密,將公鑰加密後通過網路傳輸到對方進行解密,這種方式缺點在於具有很大的可能性被攔截破解,因此不常用;
2、Diffie-Hellman,DH演算法是一種密鑰交換演算法,其既不用於加密,也不產生數字簽名。DH演算法的巧妙在於需要安全通信的雙方可以用這個方法確定對稱密鑰。然後可以用這個密鑰進行加密和解密。但是注意,這個密鑰交換協議/演算法只能用於密鑰的交換,而不能進行消息的加密和解密。雙方確定要用的密鑰後,要使用其他對稱密鑰操作加密演算法實際加密和解密消息。DH演算法通過雙方共有的參數、私有參數和演算法信息來進行加密,然後雙方將計算後的結果進行交換,交換完成後再和屬於自己私有的參數進行特殊演算法,經過雙方計算後的結果是相同的,此結果即為密鑰。
如:
在整個過程中,第三方人員只能獲取p、g兩個值,AB雙方交換的是計算後的結果,因此這種方式是很安全的。
公鑰基礎設施是一個包括硬體、軟體、人員、策略和規程的集合,用於實現基於公鑰密碼機制的密鑰和證書的生成、管理、存儲、分發和撤銷的功能,其組成包括:簽證機構CA、注冊機構RA、證書吊銷列表CRL和證書存取庫CB。
PKI採用證書管理公鑰,通過第三方可信任CA中心,把用戶的公鑰和其他用戶信息組生成證書,用於驗證用戶的身份。
公鑰證書是以數字簽名的方式聲明,它將公鑰的值綁定到持有對應私鑰的個人、設備或服務身份。公鑰證書的生成遵循X.509協議的規定,其內容包括:證書名稱、證書版本、序列號、演算法標識、頒發者、有效期、有效起始日期、有效終止日期、公鑰 、證書簽名等等的內容。
CA證書認證的流程如下圖,Bob為了向Alice證明自己是Bob和某個公鑰是自己的,她便向一個Bob和Alice都信任的CA機構申請證書,Bob先自己生成了一對密鑰對(私鑰和公鑰),把自己的私鑰保存在自己電腦上,然後把公鑰給CA申請證書,CA接受申請於是給Bob頒發了一個數字證書,證書中包含了Bob的那個公鑰以及其它身份信息,當然,CA會計算這些信息的消息摘要並用自己的私鑰加密消息摘要(數字簽名)一並附在Bob的證書上,以此來證明這個證書就是CA自己頒發的。Alice得到Bob的證書後用CA的證書(自簽署的)中的公鑰來解密消息摘要,隨後將摘要和Bob的公鑰發送到CA伺服器上進行核對。CA在接收到Alice的核對請求後,會根據Alice提供的信息核對Bob的證書是否合法,如果確認合法則回復Alice證書合法。Alice收到CA的確認回復後,再去使用從證書中獲取的Bob的公鑰加密郵件然後發送給Bob,Bob接收後再以自己的私鑰進行解密。
⑤ 加密演算法的常見加密演算法
DES(Data Encryption Standard):對稱演算法,數據加密標准,速度較快,適用於加密大量數據的場合;
3DES(Triple DES):是基於DES的對稱演算法,對一塊數據用三個不同的密鑰進行三次加密,強度更高;
RC2和RC4:對稱演算法,用變長密鑰對大量數據進行加密,比 DES 快;
IDEA(International Data Encryption Algorithm)國際數據加密演算法,使用 128 位密鑰提供非常強的安全性;
RSA:由 RSA 公司發明,是一個支持變長密鑰的公共密鑰演算法,需要加密的文件塊的長度也是可變的,非對稱演算法; 演算法如下:
首先, 找出三個數, p, q, r,其中 p, q 是兩個相異的質數, r 是與 (p-1)(q-1) 互質的數......p, q, r 這三個數便是 private key
接著, 找出 m, 使得 rm == 1 mod (p-1)(q-1).....這個 m 一定存在, 因為 r 與 (p-1)(q-1) 互質, 用輾轉相除法就可以得到了.....再來, 計算 n = pq.......m, n 這兩個數便是 public key
DSA(Digital Signature Algorithm):數字簽名演算法,是一種標準的 DSS(數字簽名標准),嚴格來說不算加密演算法;
AES(Advanced Encryption Standard):高級加密標准,對稱演算法,是下一代的加密演算法標准,速度快,安全級別高,在21世紀AES 標準的一個實現是 Rijndael 演算法;
BLOWFISH,它使用變長的密鑰,長度可達448位,運行速度很快;
MD5:嚴格來說不算加密演算法,只能說是摘要演算法;
對MD5演算法簡要的敘述可以為:MD5以512位分組來處理輸入的信息,且每一分組又被劃分為16個32位子分組,經過了一系列的處理後,演算法的輸出由四個32位分組組成,將這四個32位分組級聯後將生成一個128位散列值。
在MD5演算法中,首先需要對信息進行填充,使其位元組長度對512求余的結果等於448。因此,信息的位元組長度(Bits Length)將被擴展至N*512+448,即N*64+56個位元組(Bytes),N為一個正整數。填充的方法如下,在信息的後面填充一個1和無數個0,直到滿足上面的條件時才停止用0對信息的填充。然後,在這個結果後面附加一個以64位二進製表示的填充前信息長度。經過這兩步的處理,如今信息位元組長度=N*512+448+64=(N+1)*512,即長度恰好是512的整數倍。這樣做的原因是為滿足後面處理中對信息長度的要求。(可參見MD5演算法詞條)
PKCS:The Public-Key Cryptography Standards (PKCS)是由美國RSA數據安全公司及其合作夥伴制定的一組公鑰密碼學標准,其中包括證書申請、證書更新、證書作廢表發布、擴展證書內容以及數字簽名、數字信封的格式等方面的一系列相關協議。
SSF33,SSF28,SCB2(SM1):國家密碼局的隱蔽不公開的商用演算法,在國內民用和商用的,除這些都不容許使用外,其他的都可以使用;
⑥ 簡述加密技術的基本原理,並指出有哪些常用的加密體制及其代表演算法
1、對稱加密演算法
對稱加密演算法用來對敏感數據等信息進行加密,常用的演算法包括:
DES(Data Encryption Standard):數據加密標准,速度較快,適用於加密大量數據的場合。
3DES(Triple DES):是基於DES,對一塊數據用三個不同的密鑰進行三次加密,強度更高。
AES(Advanced Encryption Standard):高級加密標准,是下一代的加密演算法標准,速度快,安全級別高;
演算法原理
AES 演算法基於排列和置換運算。排列是對數據重新進行安排,置換是將一個數據單元替換為另一個。AES 使用幾種不同的方法來執行排列和置換運算。
2、非對稱演算法
常見的非對稱加密演算法如下:
RSA:由 RSA 公司發明,是一個支持變長密鑰的公共密鑰演算法,需要加密的文件塊的長度也是可變的;
DSA(Digital Signature Algorithm):數字簽名演算法,是一種標準的 DSS(數字簽名標准);
ECC(Elliptic Curves Cryptography):橢圓曲線密碼編碼學。
演算法原理——橢圓曲線上的難題
橢圓曲線上離散對數問題ECDLP定義如下:給定素數p和橢圓曲線E,對Q=kP,在已知P,Q 的情況下求出小於p的正整數k。可以證明由k和P計算Q比較容易,而由Q和P計算k則比較困難。
將橢圓曲線中的加法運算與離散對數中的模乘運算相對應,將橢圓曲線中的乘法運算與離散對數中的模冪運算相對應,我們就可以建立基於橢圓曲線的對應的密碼體制。
⑦ 數據加密的方法有哪些如題
1. 數據加密標准 傳統加密方法有兩種,替換和置換.上面的例子採用的就是替換的方法:使用密鑰將明文中的每一個字元轉換為密 文中的一個字元.而置換僅將明文的字元按不同的順序重新排列.單獨使用這兩種方法的任意一種都是不夠安全的,但 是將這兩種方法結合起來就能提供相當高的安全程度.數據加密標准(Data Encryption Standard,簡稱DES)就採用了 這種結合演算法,它由IBM制定,並在1977年成為美國官方加密標准. DES的工作原理為:將明文分割成許多64位大小的塊,每個塊用64位密鑰進行加密,實際上,密鑰由56位數據位和8 位奇偶校驗位組成,因此只有256個可能的密碼而不是264個.每塊先用初始置換方法進行加密,再連續進行16次復雜的 替換,最後再對其施用初始置換的逆.第i步的替換並不是直接利用原始的密鑰K,而是由K與i計算出的密鑰Ki. DES具有這樣的特性,其解密演算法與加密演算法相同,除了密鑰Ki的施加順序相反以外. 2. 公開密鑰加密 多年來,許多人都認為DES並不是真的很安全.事實上,即使不採用智能的方法,隨著快速、高度並行的處理器的出 現,強制破解DES也是可能的.公開密鑰加密方法使得DES以及類似的傳統加密技術過時了.公開密鑰加密方法中,加密 演算法和加密密鑰都是公開的,任何人都可將明文轉換成密文.但是相應的解密密鑰是保密的(公開密鑰方法包括兩個密鑰, 分別用於加密和解密),而且無法從加密密鑰推導出,因此,即使是加密者若未被授權也無法執行相應的解密. 公開密鑰加密思想最初是由Diffie和Hellman提出的,最著名的是Rivest、Shamir以及Adleman提出的,現在通常稱為 RSA(以三個發明者的首位字母命名)的方法,該方法基於下面的兩個事實: 1) 已有確定一個數是不是質數的快速演算法; 2) 尚未找到確定一個合數的質因子的快速演算法. RSA方法的工作原理如下: 1) 任意選取兩個不同的大質數p和q,計算乘積r=p*q; 2) 任意選取一個大整數e,e與(p-1)*(q-1)互質,整數e用做加密密鑰.注意:e的選取是很容易的,例如,所有大 於p和q的質數都可用. 3) 確定解密密鑰d: d * e = 1 molo(p - 1)*(q - 1) 根據e、p和q可以容易地計算出d. 4) 公開整數r和e,但是不公開d; 5) 將明文P (假設P是一個小於r的整數)加密為密文C,計算方法為: C = Pe molo r 6) 將密文C解密為明文P,計算方法為: P = Cd molo r 然而只根據r和e(不是p和q)要計算出d是不可能的.因此,任何人都可對明文進行加密,但只有授權用戶(知道d) 才可對密文解密.
⑧ 數據在網路上傳輸為什麼要加密現在常用的數據加密演算法主要有哪些
數據傳輸加密技術的目的是對傳輸中的數據流加密,通常有線路加密與端—端加密兩種。線路加密側重在線路上而不考慮信源與信宿,是對保密信息通過各線路採用不同的加密密鑰提供安全保護。
端—端加密指信息由發送端自動加密,並且由TCP/IP進行數據包封裝,然後作為不可閱讀和不可識別的數據穿過互聯網,當這些信息到達目的地,將被自動重組、解密,而成為可讀的數據。
數據存儲加密技術的目的是防止在存儲環節上的數據失密,數據存儲加密技術可分為密文存儲和存取控制兩種。前者一般是通過加密演算法轉換、附加密碼、加密模塊等方法實現;後者則是對用戶資格、許可權加以審查和限制,防止非法用戶存取數據或合法用戶越權存取數據。
常見加密演算法
1、DES(Data Encryption Standard):對稱演算法,數據加密標准,速度較快,適用於加密大量數據的場合;
2、3DES(Triple DES):是基於DES的對稱演算法,對一塊數據用三個不同的密鑰進行三次加密,強度更高;
3、RC2和RC4:對稱演算法,用變長密鑰對大量數據進行加密,比 DES 快;
4、IDEA(International Data Encryption Algorithm)國際數據加密演算法,使用 128 位密鑰提供非常強的安全性;
5、RSA:由 RSA 公司發明,是一個支持變長密鑰的公共密鑰演算法,需要加密的文件塊的長度也是可變的,非對稱演算法; 演算法如下:
首先, 找出三個數,p,q,r,其中 p,q 是兩個不相同的質數,r 是與 (p-1)(q-1) 互為質數的數。
p,q,r這三個數便是 private key。接著,找出 m,使得 rm == 1 mod (p-1)(q-1).....這個 m 一定存在,因為 r 與 (p-1)(q-1) 互質,用輾轉相除法就可以得到了。再來,計算 n = pq.......m,n 這兩個數便是 public key。
6、DSA(Digital Signature Algorithm):數字簽名演算法,是一種標準的 DSS(數字簽名標准),嚴格來說不算加密演算法;
7、AES(Advanced Encryption Standard):高級加密標准,對稱演算法,是下一代的加密演算法標准,速度快,安全級別高,在21世紀AES 標準的一個實現是 Rijndael 演算法。
8、BLOWFISH,它使用變長的密鑰,長度可達448位,運行速度很快;
9、MD5:嚴格來說不算加密演算法,只能說是摘要演算法;
對MD5演算法簡要的敘述可以為:MD5以512位分組來處理輸入的信息,且每一分組又被劃分為16個32位子分組,經過了一系列的處理後,演算法的輸出由四個32位分組組成,將這四個32位分組級聯後將生成一個128位散列值。
(8)不同行業數據加密計算擴展閱讀
數據加密標准
傳統加密方法有兩種,替換和置換。上面的例子採用的就是替換的方法:使用密鑰將明文中的每一個字元轉換為密文中的一個字元。而置換僅將明文的字元按不同的順序重新排列。單獨使用這兩種方法的任意一種都是不夠安全的,但是將這兩種方法結合起來就能提供相當高的安全程度。
數據加密標准(Data Encryption Standard,簡稱DES)就採用了這種結合演算法,它由IBM制定,並在1977年成為美國官方加密標准。
DES的工作原理為:將明文分割成許多64位大小的塊,每個塊用64位密鑰進行加密,實際上,密鑰由56位數據位和8位奇偶校驗位組成,因此只有56個可能的密碼而不是64個。
每塊先用初始置換方法進行加密,再連續進行16次復雜的替換,最後再對其施用初始置換的逆。第i步的替換並不是直接利用原始的密鑰K,而是由K與i計算出的密鑰Ki。
DES具有這樣的特性,其解密演算法與加密演算法相同,除了密鑰Ki的施加順序相反以外。
參考資料來源:網路-加密演算法
參考資料來源:網路-數據加密
⑨ 幾種常用數據加密演算法的比較
幾種對稱性加密演算法:AES,DES,3DES
DES是一種分組數據加密技術(先將數據分成固定長度的小數據塊,之後進行加密),速度較快,適用於大量數據加密,而3DES是一種基於DES的加密演算法,使用3個不同密匙對同一個分組數據塊進行3次加密,如此以使得密文強度更高。
相較於DES和3DES演算法而言,AES演算法有著更高的速度和資源使用效率,安全級別也較之更高了,被稱為下一代加密標准。
幾種非對稱性加密演算法:RSA,DSA,ECC
RSA和DSA的安全性及其它各方面性能都差不多,而ECC較之則有著很多的性能優越,包括處理速度,帶寬要求,存儲空間等等。
幾種線性散列演算法(簽名演算法):MD5,SHA1,HMAC
這幾種演算法只生成一串不可逆的密文,經常用其效驗數據傳輸過程中是否經過修改,因為相同的生成演算法對於同一明文只會生成唯一的密文,若相同演算法生成的密文不同,則證明傳輸數據進行過了修改。通常在數據傳說過程前,使用MD5和SHA1演算法均需要發送和接收數據雙方在數據傳送之前就知道密匙生成演算法,而HMAC與之不同的是需要生成一個密匙,發送方用此密匙對數據進行摘要處理(生成密文),接收方再利用此密匙對接收到的數據進行摘要處理,再判斷生成的密文是否相同。
對於各種加密演算法的選用:
由於對稱加密演算法的密鑰管理是一個復雜的過程,密鑰的管理直接決定著他的安全性,因此當數據量很小時,我們可以考慮採用非對稱加密演算法。
在實際的操作過程中,我們通常採用的方式是:採用非對稱加密演算法管理對稱演算法的密鑰,然後用對稱加密演算法加密數據,這樣我們就集成了兩類加密演算法的優點,既實現了加密速度快的優點,又實現了安全方便管理密鑰的優點。
如果在選定了加密演算法後,那採用多少位的密鑰呢?一般來說,密鑰越長,運行的速度就越慢,應該根據的我們實際需要的安全級別來選擇,一般來說,RSA建議採用1024位的數字,ECC建議採用160位,AES採用128為即可。