『壹』 java jdbc連接mysql資料庫 如何實現用戶名密碼以及傳輸數據的加密
你的問題很不清晰。
java jdbc連接mysql資料庫
如何實現用戶名密碼以及傳輸數據的加密
你是要加密保存的數據,還是加密連接信息?
如果是連接串中的用戶名與密碼進行加密。恐怕用起來很不方便。
我就當你是要把入庫的信息加密。
下邊是DES加密的方法。將數據進行DES加密,將加密內容轉為16進制內容表示。
--------------------------------------------------------------------------------------------
import javax.crypto.Cipher;
import javax.crypto.spec.SecretKeySpec;
public class DesTest {
public static void main(String[] args) throws Exception {
// 要加密的數據
String str = "123456";
// 密鑰
String strKey = "86337898";
SecretKeySpec key = new SecretKeySpec(strKey.getBytes(), "DES");
Cipher cipher = Cipher.getInstance("DES");
cipher.init(Cipher.ENCRYPT_MODE, key);
byte[] byteFina = cipher.doFinal(str.getBytes());
String strFinal = byte2Hex(byteFina);
System.out.println(strFinal);
cipher.init(Cipher.DECRYPT_MODE, key);
byte[] decByte = hex2Byte(strFinal);
byte[] result = cipher.doFinal(decByte);
System.out.println(new String(result));
}
public static String byte2Hex(byte[] buff) {
String hs = "";
for (int i = 0; i < buff.length; i++) {
String stmp = (Integer.toHexString(buff[i] & 0XFF));
if (stmp.length() == 1)
hs = hs + "0" + stmp;
else
hs = hs + stmp;
}
return hs;
}
public static byte[] hex2Byte(String str) {
int len = str.length() / 2;
byte[] buff = new byte[len];
int index = 0;
for (int i = 0; i < str.length(); i += 2) {
buff[index++] = (byte) Integer
.parseInt(str.substring(i, i + 2), 16);
}
return buff;
}
}
『貳』 求 Java的C/S模式中 遠程數據傳輸的「加密、解密」技術
常用API
java.security.KeyPairGenerator 密鑰生成器類
public static KeyPairGenerator getInstance(String algorithm) throws NoSuchAlgorithmException
以指定的演算法返回一個KeyPairGenerator 對象
參數: algorithm 演算法名.如:"DSA","RSA"
public void initialize(int keysize)
以指定的長度初始化KeyPairGenerator對象,如果沒有初始化系統以1024長度默認設置
參數:keysize 演算法位長.其范圍必須在 512 到 1024 之間,且必須為 64 的倍數
public void initialize(int keysize, SecureRandom random)
以指定的長度初始化和隨機發生器初始化KeyPairGenerator對象
參數:keysize 演算法位長.其范圍必須在 512 到 1024 之間,且必須為 64 的倍數
random 一個隨機位的來源(對於initialize(int keysize)使用了默認隨機器
public abstract KeyPair generateKeyPair()
產生新密鑰對
java.security.KeyPair 密鑰對類
public PrivateKey getPrivate()
返回私鑰
public PublicKey getPublic()
返回公鑰
java.security.Signature 簽名類
public static Signature getInstance(String algorithm) throws NoSuchAlgorithmException
返回一個指定演算法的Signature對象
參數 algorithm 如:"DSA"
public final void initSign(PrivateKey privateKey)
throws InvalidKeyException
用指定的私鑰初始化
參數:privateKey 所進行簽名時用的私鑰
public final void update(byte data)
throws SignatureException
public final void update(byte[] data)
throws SignatureException
public final void update(byte[] data, int off, int len)
throws SignatureException
添加要簽名的信息
public final byte[] sign()
throws SignatureException
返回簽名的數組,前提是initSign和update
public final void initVerify(PublicKey publicKey)
throws InvalidKeyException
用指定的公鑰初始化
參數:publicKey 驗證時用的公鑰
public final boolean verify(byte[] signature)
throws SignatureException
驗證簽名是否有效,前提是已initVerify初始化
參數: signature 簽名數組
『叄』 Java加密方式
這個一般沒有統一的標准,教材有不同的版本一樣。
我做過這個,記得很清楚
加密方式1:Conye加密方法
加密方式2:WeiffbYfds方法
就是這樣了,不懂追問哈,嘻嘻。
『肆』 如何用java語言對即時通訊軟體進行加密
一、Java軟體加密基本思路
對於應用軟體的保護筆者從兩個方面進行考慮,第一是阻止盜版使用軟體,第二是阻止競爭對手對軟體反編譯,即阻止對軟體的逆向工程。
1、阻止盜版
在軟體運行時對自身存在的合法性進行判斷,如果認為自身的存在和運行是被授權的、合法的,就運行;否則終止運行。這樣即使軟體可以被隨意復制,只要盜版用戶沒有相應的授權信息就無法使用軟體。
2、阻止反編譯
對編譯產生的Class文件加密處理,並在運行時進行解密,解密者無法對軟體進行反編譯。
二、Java軟體加密的總體流程
為了保護用Java語言開發的軟體,我們設計並實現了一個實用、高強度的加密演算法。以下稱需要保護的Java軟體為「受保護程序」,稱對「受保護程序」進行加密保護的軟體為「加密程序」。對軟體加密保護的流程如圖1所示。
三、加密演算法分析設計
1、用戶信息提取器設計
為了防止用戶發布序列號而導致「一次發行,到處都是」的盜版問題,提取用戶機器中硬體相關的、具有唯一性的信息——用戶計算機的硬碟分區C的序列號,並要求用戶將此信息與用戶名一起返回,之後用「序列號生成器」根據用戶返回信息生成一個唯一合法的軟體注冊序列號發回用戶,用戶即可使用此號碼注冊使用軟體。
這個信息提取器使用Winclows 32匯編以一個獨立的小程序方式實現,程序代碼如圖2所示。
2、序列號生成器與序列號合法性判斷函數的設計
序列號生成器與序列號合法性判斷函數中運用RSA加密演算法。在序列號生成器中是使用私鑰將用戶返回的信息(硬碟序列號,用戶名)進行加密得到相應的注冊序列號;在序列號合法性判斷函數中使用私鑰將用戶輸入的注冊序列號解密,再與(硬碟序列號,用戶名)進行比較,一致則調用程序裝載器將程序其他部分解密裝入內存,初始化刪環境並運行程序主體;否則退出。
RSA加密演算法的實現需要使用大數運算庫,我們使用MIRACL大數庫來實現RSA計算,序列號生成器的主要代碼如下:
char szlnputString[]=」機器碼和用戶名組成的字元串」;
char szSerial[256]=[0];//用於存放生成的注冊碼
bign,d,c,m; //MIRACL中的大數類型
mip→IBASE=16; //以16進制模式
n= mlrvar(0); //初始化大數
d= mirvar(0);
c= mirvar(0); //C存放輸入的字元串大數
m= mlrva(o);
bytes to big( len, szlnputString,c);
//將輸入字元串轉換成大數形式並存入變數c中
cinstr(n,」以字元串形成表示的模數」);//初始化模數
cinstr(d,」以字元串形成表示的公鑰」)://初始化公鑰
powmod(c,d,n,m); //計算m=cdmod n
cotstr(m,szSerial);//m的16進制字元串即為注冊碼
序列號合法性檢測函數的主要代碼如下:
char szlnputStringL]=」機器碼和用戶名組成的字元串」;
char szSerial[ 256]=」用戶輸入的序列號」
bign,e,c,m; //MIRACL中的大數類型
mip→IBASE=16; //以16進制模式
cinstr(m,szSerial); //將序列號的16進制轉成大數形式
cinstr(n,」模數n的字元串形式」);//初始化模數n
cinstr(e,」字元串形式的公鑰」);//初始化公鑰
if compare(m,n)==-1) //m<n時才進行解密
{
powmod(m,e,n,c);//計算m=me mod n
big_to _bytes(0,c,szSerial,0); //轉為字元串
return lstrcmp( szlnputString,szSerial);
}
3、強耦合關系的設計
如果在序列號合法性檢測函數中簡單地使用圖3所示流程:
解密者可以使用以下幾種手段進行攻擊:
(1)修改「判斷合法性子函數」的返回指令,讓它永遠返回正確值,這樣可以使用任意的序列號,安裝/使用軟體。
(2)修改判斷後的跳轉指令,使程序永遠跳到正確的分支運行,效果和上一種一樣。
(3)在「判斷合法性子函數」之前執行一條跳轉指令,繞過判斷,直接跳轉到「正常執行」分支運行,這樣可以不用輸入序列號安裝/使用軟體。
為阻止以上攻擊手段,筆者在程序中增加了「序列號合法性檢測函數」與程序其他部分「強耦合」(即增強其與程序其他部分的關聯度,成為程序整體密不可分的一部分,一旦被修改程序將無法正常工作)的要求(見圖1),並且設置一個「完整性檢測函數」用於判斷相關的代碼是否被修改過。當然,基於同樣的原因,「完整性檢測函數」也必須與程序其他部分存在「強耦合」關系。
強耦合關系通過以下方式建立:
在程序其他部分的函數(例如函數A)中隨機的訪問需要強耦合的「序列號合法性檢測函數」和「完整性檢測函數」,在調用時隨機的選擇使用一個錯誤的序列號或是用戶輸入的序列號,並根據返回結果選擇執行A中正常的功能代碼還是錯誤退出的功能代碼,流程如圖4所示。
經過這種改進,如果破解者通過修改代碼的方式破解將因「完整性檢測」失敗導致程序退出;如果使用SMC等技術繞過「序列號合法性判斷函數」而直接跳至序列號正確時的執行入口,在後續的運行中,將因為隨機的耦合調用失敗導致程序退出。破解者要破解軟體將不得不跟蹤所有進行了耦合調用的函數,這顯然是一個艱巨的任務。
4、完整性檢測函數的設計
我們使用CRC演算法算出需進行完整性檢測的文件的校驗碼,並用RSA加密演算法的公鑰(不同於序列號合法性檢測中的公鑰/私鑰對)將其加密存放在特定的文件中,在檢測時先用CRC演算法重新生成需進行完
整性檢測的文件的校驗碼,並用私鑰將保存的校驗碼解密,兩者相比較,相等則正常運行;否則退出。
5、程序載入器的設計
與編譯成機器碼執行的程序不同,Java程序只能由Java虛擬機解釋執行,因此程序載入器的工作包括:初始化Java虛擬機;在內存中解密當前要運行的class文件;使解密後的c:lass文件在虛擬機中運行,在
需要時解密另一個class文件。圖5是用於初始化JVM的代碼:
以上介紹了我們設計的針對Java軟體的加密保護方法,其中綜合運用了多種加密技術,抗破解強度高;使用純軟體保護技術,成本低。經筆者在Windows系列平台上進行測試,運行穩定,效果良好。
在研宄開發過程中,我們還總結出加密保護軟體的一些經驗:
1、對關鍵代碼和數據要靜態加密,再動態解密執行;要結合具體的工作平台使用反跟蹤/調試技術;
2、要充分利用系統的功能,如在Windows下使用DLL文件或驅動程序形式能得到最大的豐又限,可以充分利用系統具有的各種功能;
3、如果可能應該將關鍵代碼存放在不可禚復制的地方;
4、序列號要與機器碼等用戶信息相關以阻止鹽復布序列號;
5、加密流程的合理性比加密演算法本身的強度更重要。
『伍』 android,java 通用的加密解密方式有幾種
移動端越來越火了,我們在開發過程中,總會碰到要和移動端打交道的場景,比如.NET和android或者iOS的打交道。為了讓數據交互更安全,我們需要對數據進行加密傳輸。今天研究了一下,把幾種語言的加密都實踐了一遍,實現了.NET,java(android),iOS都同一套的加密演算法,下面就分享給大家。
AES加密有多種演算法模式,下面提供兩套模式的可用源碼。
加密方式:
先將文本AES加密
返回Base64轉碼
解密方式:
將數據進行Base64解碼
進行AES解密
一、CBC(Cipher Block Chaining,加密塊鏈)模式
是一種循環模式,前一個分組的密文和當前分組的明文異或操作後再加密,這樣做的目的是增強破解難度.
密鑰
密鑰偏移量
java/adroid加密AESOperator類:
package com.bci.wx.base.util;
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import sun.misc.BASE64Decoder;
import sun.misc.BASE64Encoder;
/**
* AES 是一種可逆加密演算法,對用戶的敏感信息加密處理 對原始數據進行AES加密後,在進行Base64編碼轉化;
*/
public class AESOperator {
/*
* 加密用的Key 可以用26個字母和數字組成 此處使用AES-128-CBC加密模式,key需要為16位。
*/
private String sKey = "smkldospdosldaaa";//key,可自行修改
private String ivParameter = "0392039203920300";//偏移量,可自行修改
private static AESOperator instance = null;
private AESOperator() {
}
public static AESOperator getInstance() {
if (instance == null)
instance = new AESOperator();
return instance;
}
public static String Encrypt(String encData ,String secretKey,String vector) throws Exception {
if(secretKey == null) {
return null;
}
if(secretKey.length() != 16) {
return null;
}
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
byte[] raw = secretKey.getBytes();
SecretKeySpec skeySpec = new SecretKeySpec(raw, "AES");
IvParameterSpec iv = new IvParameterSpec(vector.getBytes());// 使用CBC模式,需要一個向量iv,可增加加密演算法的強度
cipher.init(Cipher.ENCRYPT_MODE, skeySpec, iv);
byte[] encrypted = cipher.doFinal(encData.getBytes("utf-8"));
return new BASE64Encoder().encode(encrypted);// 此處使用BASE64做轉碼。
}
// 加密
public String encrypt(String sSrc) throws Exception {
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
byte[] raw = sKey.getBytes();
SecretKeySpec skeySpec = new SecretKeySpec(raw, "AES");
IvParameterSpec iv = new IvParameterSpec(ivParameter.getBytes());// 使用CBC模式,需要一個向量iv,可增加加密演算法的強度
cipher.init(Cipher.ENCRYPT_MODE, skeySpec, iv);
byte[] encrypted = cipher.doFinal(sSrc.getBytes("utf-8"));
return new BASE64Encoder().encode(encrypted);// 此處使用BASE64做轉碼。
}
// 解密
public String decrypt(String sSrc) throws Exception {
try {
byte[] raw = sKey.getBytes("ASCII");
SecretKeySpec skeySpec = new SecretKeySpec(raw, "AES");
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
IvParameterSpec iv = new IvParameterSpec(ivParameter.getBytes());
cipher.init(Cipher.DECRYPT_MODE, skeySpec, iv);
byte[] encrypted1 = new BASE64Decoder().decodeBuffer(sSrc);// 先用base64解密
byte[] original = cipher.doFinal(encrypted1);
String originalString = new String(original, "utf-8");
return originalString;
} catch (Exception ex) {
return null;
}
}
public String decrypt(String sSrc,String key,String ivs) throws Exception {
try {
byte[] raw = key.getBytes("ASCII");
SecretKeySpec skeySpec = new SecretKeySpec(raw, "AES");
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
IvParameterSpec iv = new IvParameterSpec(ivs.getBytes());
cipher.init(Cipher.DECRYPT_MODE, skeySpec, iv);
byte[] encrypted1 = new BASE64Decoder().decodeBuffer(sSrc);// 先用base64解密
byte[] original = cipher.doFinal(encrypted1);
String originalString = new String(original, "utf-8");
return originalString;
} catch (Exception ex) {
return null;
}
}
public static String encodeBytes(byte[] bytes) {
StringBuffer strBuf = new StringBuffer();
for (int i = 0; i < bytes.length; i++) {
strBuf.append((char) (((bytes[i] >> 4) & 0xF) + ((int) 'a')));
strBuf.append((char) (((bytes[i]) & 0xF) + ((int) 'a')));
}
return strBuf.toString();
}
『陸』 分享Java常用幾種加密演算法
簡單的Java加密演算法有:
第一種. BASE
Base是網路上最常見的用於傳輸Bit位元組代碼的編碼方式之一,大家可以查看RFC~RFC,上面有MIME的詳細規范。Base編碼可用於在HTTP環境下傳遞較長的標識信息。例如,在Java Persistence系統Hibernate中,就採用了Base來將一個較長的唯一標識符(一般為-bit的UUID)編碼為一個字元串,用作HTTP表單和HTTP GET URL中的參數。在其他應用程序中,也常常需要把二進制數據編碼為適合放在URL(包括隱藏表單域)中的形式。此時,採用Base編碼具有不可讀性,即所編碼的數據不會被人用肉眼所直接看到。
第二種. MD
MD即Message-Digest Algorithm (信息-摘要演算法),用於確保信息傳輸完整一致。是計算機廣泛使用的雜湊演算法之一(又譯摘要演算法、哈希演算法),主流編程語言普遍已有MD實現。將數據(如漢字)運算為另一固定長度值,是雜湊演算法的基礎原理,MD的前身有MD、MD和MD。廣泛用於加密和解密技術,常用於文件校驗。校驗?不管文件多大,經過MD後都能生成唯一的MD值。好比現在的ISO校驗,都是MD校驗。怎麼用?當然是把ISO經過MD後產生MD的值。一般下載linux-ISO的朋友都見過下載鏈接旁邊放著MD的串。就是用來驗證文件是否一致的。
MD演算法具有以下特點:
壓縮性:任意長度的數據,算出的MD值長度都是固定的。
容易計算:從原數據計算出MD值很容易。
抗修改性:對原數據進行任何改動,哪怕只修改個位元組,所得到的MD值都有很大區別。
弱抗碰撞:已知原數據和其MD值,想找到一個具有相同MD值的數據(即偽造數據)是非常困難的。
強抗碰撞:想找到兩個不同的數據,使它們具有相同的MD值,是非常困難的。
MD的作用是讓大容量信息在用數字簽名軟體簽署私人密鑰前被」壓縮」成一種保密的格式(就是把一個任意長度的位元組串變換成一定長的十六進制數字串)。除了MD以外,其中比較有名的還有sha-、RIPEMD以及Haval等。
第三種.SHA
安全哈希演算法(Secure Hash Algorithm)主要適用於數字簽名標准(Digital Signature Standard DSS)裡面定義的數字簽名演算法(Digital Signature Algorithm DSA)。對於長度小於^位的消息,SHA會產生一個位的消息摘要。該演算法經過加密專家多年來的發展和改進已日益完善,並被廣泛使用。該演算法的思想是接收一段明文,然後以一種不可逆的方式將它轉換成一段(通常更小)密文,也可以簡單的理解為取一串輸入碼(稱為預映射或信息),並把它們轉化為長度較短、位數固定的輸出序列即散列值(也稱為信息摘要或信息認證代碼)的過程。散列函數值可以說是對明文的一種「指紋」或是「摘要」所以對散列值的數字簽名就可以視為對此明文的數字簽名。
SHA-與MD的比較
因為二者均由MD導出,SHA-和MD彼此很相似。相應的,他們的強度和其他特性也是相似,但還有以下幾點不同:
對強行攻擊的安全性:最顯著和最重要的區別是SHA-摘要比MD摘要長 位。使用強行技術,產生任何一個報文使其摘要等於給定報摘要的難度對MD是^數量級的操作,而對SHA-則是^數量級的操作。這樣,SHA-對強行攻擊有更大的強度。
對密碼分析的安全性:由於MD的設計,易受密碼分析的攻擊,SHA-顯得不易受這樣的攻擊。
速度:在相同的硬體上,SHA-的運行速度比MD慢。
第四種.HMAC
HMAC(Hash Message Authentication Code,散列消息鑒別碼,基於密鑰的Hash演算法的認證協議。消息鑒別碼實現鑒別的原理是,用公開函數和密鑰產生一個固定長度的值作為認證標識,用這個標識鑒別消息的完整性。使用一個密鑰生成一個固定大小的小數據塊,即MAC,並將其加入到消息中,然後傳輸。接收方利用與發送方共享的密鑰進行鑒別認證等。
『柒』 java項目如何加密
Java基本的單向加密演算法:
1.BASE64 嚴格地說,屬於編碼格式,而非加密演算法
2.MD5(Message Digest algorithm 5,信息摘要演算法)
3.SHA(Secure Hash Algorithm,安全散列演算法)
4.HMAC(Hash Message Authentication Code,散列消息鑒別碼)
按 照RFC2045的定義,Base64被定義為:Base64內容傳送編碼被設計用來把任意序列的8位位元組描述為一種不易被人直接識別的形式。(The Base64 Content-Transfer-Encoding is designed to represent arbitrary sequences of octets in a form that need not be humanly readable.)
常見於郵件、http加密,截取http信息,你就會發現登錄操作的用戶名、密碼欄位通過BASE64加密的。
主要就是BASE64Encoder、BASE64Decoder兩個類,我們只需要知道使用對應的方法即可。另,BASE加密後產生的位元組位數是8的倍數,如果不夠位數以=符號填充。
MD5
MD5 -- message-digest algorithm 5 (信息-摘要演算法)縮寫,廣泛用於加密和解密技術,常用於文件校驗。校驗?不管文件多大,經過MD5後都能生成唯一的MD5值。好比現在的ISO校驗,都 是MD5校驗。怎麼用?當然是把ISO經過MD5後產生MD5的值。一般下載linux-ISO的朋友都見過下載鏈接旁邊放著MD5的串。就是用來驗證文 件是否一致的。
HMAC
HMAC(Hash Message Authentication Code,散列消息鑒別碼,基於密鑰的Hash演算法的認證協議。消息鑒別碼實現鑒別的原理是,用公開函數和密鑰產生一個固定長度的值作為認證標識,用這個 標識鑒別消息的完整性。使用一個密鑰生成一個固定大小的小數據塊,即MAC,並將其加入到消息中,然後傳輸。接收方利用與發送方共享的密鑰進行鑒別認證 等。