導航:首頁 > 文檔加密 > ob1如何加密

ob1如何加密

發布時間:2024-01-01 12:30:41

java的md5的加密演算法代碼

import java.lang.reflect.*;

/*******************************************************************************
* keyBean 類實現了RSA Data Security, Inc.在提交給IETF 的RFC1321中的keyBean message-digest
* 演算法。
******************************************************************************/
public class keyBean {
/*
* 下面這些S11-S44實際上是一個4*4的矩陣,在原始的C實現中是用#define 實現的, 這里把它們實現成為static
* final是表示了只讀,切能在同一個進程空間內的多個 Instance間共享
*/
static final int S11 = 7;

static final int S12 = 12;

static final int S13 = 17;

static final int S14 = 22;

static final int S21 = 5;

static final int S22 = 9;

static final int S23 = 14;

static final int S24 = 20;

static final int S31 = 4;

static final int S32 = 11;

static final int S33 = 16;

static final int S34 = 23;

static final int S41 = 6;

static final int S42 = 10;

static final int S43 = 15;

static final int S44 = 21;

static final byte[] PADDING = { -128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0 };

/*
* 下面的三個成員是keyBean計算過程中用到的3個核心數據,在原始的C實現中 被定義到keyBean_CTX結構中
*/
private long[] state = new long[4]; // state (ABCD)

private long[] count = new long[2]; // number of bits, molo 2^64 (lsb

// first)

private byte[] buffer = new byte[64]; // input buffer

/*
* digestHexStr是keyBean的唯一一個公共成員,是最新一次計算結果的 16進制ASCII表示.
*/

public String digestHexStr;

/*
* digest,是最新一次計算結果的2進制內部表示,表示128bit的keyBean值.
*/
private byte[] digest = new byte[16];

/*
* getkeyBeanofStr是類keyBean最主要的公共方法,入口參數是你想要進行keyBean變換的字元串
* 返回的是變換完的結果,這個結果是從公共成員digestHexStr取得的.
*/
public String getkeyBeanofStr(String inbuf) {
keyBeanInit();
keyBeanUpdate(inbuf.getBytes(), inbuf.length());
keyBeanFinal();
digestHexStr = "";
for (int i = 0; i < 16; i++) {
digestHexStr += byteHEX(digest[i]);
}
return digestHexStr;
}

// 這是keyBean這個類的標准構造函數,JavaBean要求有一個public的並且沒有參數的構造函數
public keyBean() {
keyBeanInit();
return;
}

/* keyBeanInit是一個初始化函數,初始化核心變數,裝入標準的幻數 */
private void keyBeanInit() {
count[0] = 0L;
count[1] = 0L;
// /* Load magic initialization constants.
state[0] = 0x67452301L;
state[1] = 0xefcdab89L;
state[2] = 0x98badcfeL;
state[3] = 0x10325476L;
return;
}

/*
* F, G, H ,I 是4個基本的keyBean函數,在原始的keyBean的C實現中,由於它們是
* 簡單的位運算,可能出於效率的考慮把它們實現成了宏,在java中,我們把它們 實現成了private方法,名字保持了原來C中的。
*/
private long F(long x, long y, long z) {
return (x & y) | ((~x) & z);
}

private long G(long x, long y, long z) {
return (x & z) | (y & (~z));
}

private long H(long x, long y, long z) {
return x ^ y ^ z;
}

private long I(long x, long y, long z) {
return y ^ (x | (~z));
}

/*
* FF,GG,HH和II將調用F,G,H,I進行近一步變換 FF, GG, HH, and II transformations for
* rounds 1, 2, 3, and 4. Rotation is separate from addition to prevent
* recomputation.
*/
private long FF(long a, long b, long c, long d, long x, long s, long ac) {
a += F(b, c, d) + x + ac;
a = ((int) a << s) | ((int) a >>> (32 - s));
a += b;
return a;
}

private long GG(long a, long b, long c, long d, long x, long s, long ac) {
a += G(b, c, d) + x + ac;
a = ((int) a << s) | ((int) a >>> (32 - s));
a += b;
return a;
}

private long HH(long a, long b, long c, long d, long x, long s, long ac) {
a += H(b, c, d) + x + ac;
a = ((int) a << s) | ((int) a >>> (32 - s));
a += b;
return a;
}

private long II(long a, long b, long c, long d, long x, long s, long ac) {
a += I(b, c, d) + x + ac;
a = ((int) a << s) | ((int) a >>> (32 - s));
a += b;
return a;
}

/*
* keyBeanUpdate是keyBean的主計算過程,inbuf是要變換的位元組串,inputlen是長度,這個
* 函數由getkeyBeanofStr調用,調用之前需要調用keyBeaninit,因此把它設計成private的
*/
private void keyBeanUpdate(byte[] inbuf, int inputLen) {
int i, index, partLen;
byte[] block = new byte[64];
index = (int) (count[0] >>> 3) & 0x3F;
// /* Update number of bits */
if ((count[0] += (inputLen << 3)) < (inputLen << 3))
count[1]++;
count[1] += (inputLen >>> 29);
partLen = 64 - index;
// Transform as many times as possible.
if (inputLen >= partLen) {
keyBeanMemcpy(buffer, inbuf, index, 0, partLen);
keyBeanTransform(buffer);
for (i = partLen; i + 63 < inputLen; i += 64) {
keyBeanMemcpy(block, inbuf, 0, i, 64);
keyBeanTransform(block);
}
index = 0;
} else
i = 0;
// /* Buffer remaining input */
keyBeanMemcpy(buffer, inbuf, index, i, inputLen - i);
}

/*
* keyBeanFinal整理和填寫輸出結果
*/
private void keyBeanFinal() {
byte[] bits = new byte[8];
int index, padLen;
// /* Save number of bits */
Encode(bits, count, 8);
// /* Pad out to 56 mod 64.
index = (int) (count[0] >>> 3) & 0x3f;
padLen = (index < 56) ? (56 - index) : (120 - index);
keyBeanUpdate(PADDING, padLen);
// /* Append length (before padding) */
keyBeanUpdate(bits, 8);
// /* Store state in digest */
Encode(digest, state, 16);
}

/*
* keyBeanMemcpy是一個內部使用的byte數組的塊拷貝函數,從input的inpos開始把len長度的
* 位元組拷貝到output的outpos位置開始
*/
private void keyBeanMemcpy(byte[] output, byte[] input, int outpos,
int inpos, int len) {
int i;
for (i = 0; i < len; i++)
output[outpos + i] = input[inpos + i];
}

/*
* keyBeanTransform是keyBean核心變換程序,有keyBeanUpdate調用,block是分塊的原始位元組
*/
private void keyBeanTransform(byte block[]) {
long a = state[0], b = state[1], c = state[2], d = state[3];
long[] x = new long[16];
Decode(x, block, 64);
/* Round 1 */
a = FF(a, b, c, d, x[0], S11, 0xd76aa478L); /* 1 */
d = FF(d, a, b, c, x[1], S12, 0xe8c7b756L); /* 2 */
c = FF(c, d, a, b, x[2], S13, 0x242070dbL); /* 3 */
b = FF(b, c, d, a, x[3], S14, 0xc1bdceeeL); /* 4 */
a = FF(a, b, c, d, x[4], S11, 0xf57c0fafL); /* 5 */
d = FF(d, a, b, c, x[5], S12, 0x4787c62aL); /* 6 */
c = FF(c, d, a, b, x[6], S13, 0xa8304613L); /* 7 */
b = FF(b, c, d, a, x[7], S14, 0xfd469501L); /* 8 */
a = FF(a, b, c, d, x[8], S11, 0x698098d8L); /* 9 */
d = FF(d, a, b, c, x[9], S12, 0x8b44f7afL); /* 10 */
c = FF(c, d, a, b, x[10], S13, 0xffff5bb1L); /* 11 */
b = FF(b, c, d, a, x[11], S14, 0x895cd7beL); /* 12 */
a = FF(a, b, c, d, x[12], S11, 0x6b901122L); /* 13 */
d = FF(d, a, b, c, x[13], S12, 0xfd987193L); /* 14 */
c = FF(c, d, a, b, x[14], S13, 0xa679438eL); /* 15 */
b = FF(b, c, d, a, x[15], S14, 0x49b40821L); /* 16 */
/* Round 2 */
a = GG(a, b, c, d, x[1], S21, 0xf61e2562L); /* 17 */
d = GG(d, a, b, c, x[6], S22, 0xc040b340L); /* 18 */
c = GG(c, d, a, b, x[11], S23, 0x265e5a51L); /* 19 */
b = GG(b, c, d, a, x[0], S24, 0xe9b6c7aaL); /* 20 */
a = GG(a, b, c, d, x[5], S21, 0xd62f105dL); /* 21 */
d = GG(d, a, b, c, x[10], S22, 0x2441453L); /* 22 */
c = GG(c, d, a, b, x[15], S23, 0xd8a1e681L); /* 23 */
b = GG(b, c, d, a, x[4], S24, 0xe7d3fbc8L); /* 24 */
a = GG(a, b, c, d, x[9], S21, 0x21e1cde6L); /* 25 */
d = GG(d, a, b, c, x[14], S22, 0xc33707d6L); /* 26 */
c = GG(c, d, a, b, x[3], S23, 0xf4d50d87L); /* 27 */
b = GG(b, c, d, a, x[8], S24, 0x455a14edL); /* 28 */
a = GG(a, b, c, d, x[13], S21, 0xa9e3e905L); /* 29 */
d = GG(d, a, b, c, x[2], S22, 0xfcefa3f8L); /* 30 */
c = GG(c, d, a, b, x[7], S23, 0x676f02d9L); /* 31 */
b = GG(b, c, d, a, x[12], S24, 0x8d2a4c8aL); /* 32 */
/* Round 3 */
a = HH(a, b, c, d, x[5], S31, 0xfffa3942L); /* 33 */
d = HH(d, a, b, c, x[8], S32, 0x8771f681L); /* 34 */
c = HH(c, d, a, b, x[11], S33, 0x6d9d6122L); /* 35 */
b = HH(b, c, d, a, x[14], S34, 0xfde5380cL); /* 36 */
a = HH(a, b, c, d, x[1], S31, 0xa4beea44L); /* 37 */
d = HH(d, a, b, c, x[4], S32, 0x4bdecfa9L); /* 38 */
c = HH(c, d, a, b, x[7], S33, 0xf6bb4b60L); /* 39 */
b = HH(b, c, d, a, x[10], S34, 0xbebfbc70L); /* 40 */
a = HH(a, b, c, d, x[13], S31, 0x289b7ec6L); /* 41 */
d = HH(d, a, b, c, x[0], S32, 0xeaa127faL); /* 42 */
c = HH(c, d, a, b, x[3], S33, 0xd4ef3085L); /* 43 */
b = HH(b, c, d, a, x[6], S34, 0x4881d05L); /* 44 */
a = HH(a, b, c, d, x[9], S31, 0xd9d4d039L); /* 45 */
d = HH(d, a, b, c, x[12], S32, 0xe6db99e5L); /* 46 */
c = HH(c, d, a, b, x[15], S33, 0x1fa27cf8L); /* 47 */
b = HH(b, c, d, a, x[2], S34, 0xc4ac5665L); /* 48 */
/* Round 4 */
a = II(a, b, c, d, x[0], S41, 0xf4292244L); /* 49 */
d = II(d, a, b, c, x[7], S42, 0x432aff97L); /* 50 */
c = II(c, d, a, b, x[14], S43, 0xab9423a7L); /* 51 */
b = II(b, c, d, a, x[5], S44, 0xfc93a039L); /* 52 */
a = II(a, b, c, d, x[12], S41, 0x655b59c3L); /* 53 */
d = II(d, a, b, c, x[3], S42, 0x8f0ccc92L); /* 54 */
c = II(c, d, a, b, x[10], S43, 0xffeff47dL); /* 55 */
b = II(b, c, d, a, x[1], S44, 0x85845dd1L); /* 56 */
a = II(a, b, c, d, x[8], S41, 0x6fa87e4fL); /* 57 */
d = II(d, a, b, c, x[15], S42, 0xfe2ce6e0L); /* 58 */
c = II(c, d, a, b, x[6], S43, 0xa3014314L); /* 59 */
b = II(b, c, d, a, x[13], S44, 0x4e0811a1L); /* 60 */
a = II(a, b, c, d, x[4], S41, 0xf7537e82L); /* 61 */
d = II(d, a, b, c, x[11], S42, 0xbd3af235L); /* 62 */
c = II(c, d, a, b, x[2], S43, 0x2ad7d2bbL); /* 63 */
b = II(b, c, d, a, x[9], S44, 0xeb86d391L); /* 64 */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
}

/*
* Encode把long數組按順序拆成byte數組,因為java的long類型是64bit的, 只拆低32bit,以適應原始C實現的用途
*/
private void Encode(byte[] output, long[] input, int len) {
int i, j;
for (i = 0, j = 0; j < len; i++, j += 4) {
output[j] = (byte) (input[i] & 0xffL);
output[j + 1] = (byte) ((input[i] >>> 8) & 0xffL);
output[j + 2] = (byte) ((input[i] >>> 16) & 0xffL);
output[j + 3] = (byte) ((input[i] >>> 24) & 0xffL);
}
}

/*
* Decode把byte數組按順序合成成long數組,因為java的long類型是64bit的,
* 只合成低32bit,高32bit清零,以適應原始C實現的用途
*/
private void Decode(long[] output, byte[] input, int len) {
int i, j;

for (i = 0, j = 0; j < len; i++, j += 4)
output[i] = b2iu(input[j]) | (b2iu(input[j + 1]) << 8)
| (b2iu(input[j + 2]) << 16) | (b2iu(input[j + 3]) << 24);
return;
}

/*
* b2iu是我寫的一個把byte按照不考慮正負號的原則的」升位」程序,因為java沒有unsigned運算
*/
public static long b2iu(byte b) {
return b < 0 ? b & 0x7F + 128 : b;
}

/*
* byteHEX(),用來把一個byte類型的數轉換成十六進制的ASCII表示,
* 因為java中的byte的toString無法實現這一點,我們又沒有C語言中的 sprintf(outbuf,"%02X",ib)
*/
public static String byteHEX(byte ib) {
char[] Digit = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A',
'B', 'C', 'D', 'E', 'F' };
char[] ob = new char[2];
ob[0] = Digit[(ib >>> 4) & 0X0F];
ob[1] = Digit[ib & 0X0F];
String s = new String(ob);
return s;
}

public static void main(String args[]) {

keyBean m = new keyBean();
if (Array.getLength(args) == 0) { // 如果沒有參數,執行標準的Test Suite
System.out.println("keyBean Test suite:");
System.out.println("keyBean(\"):" + m.getkeyBeanofStr(""));
System.out.println("keyBean(\"a\"):" + m.getkeyBeanofStr("a"));
System.out.println("keyBean(\"abc\"):" + m.getkeyBeanofStr("abc"));
System.out.println("keyBean(\"message digest\"):"
+ m.getkeyBeanofStr("message digest"));
System.out.println("keyBean(\"abcdefghijklmnopqrstuvwxyz\"):"
+ m.getkeyBeanofStr("abcdefghijklmnopqrstuvwxyz"));
System.out
.println("keyBean(\"\"):"
+ m
.getkeyBeanofStr(""));
} else
System.out.println("keyBean(" + args[0] + ")="
+ m.getkeyBeanofStr(args[0]));

}
}

Ⅱ 文件加密解密問題

是不是-高強度文件夾加密大師 8000 ,如果是在安裝一個同樣的,就能找到,在不行重做系統可以吧

Ⅲ 如何使用java對密碼加密 加密方式aes

Java有相關的實現類:具體原理如下
對於任意長度的明文,AES首先對其進行分組,每組的長度為128位。分組之後將分別對每個128位的明文分組進行加密。
對於每個128位長度的明文分組的加密過程如下:
(1)將128位AES明文分組放入狀態矩陣中。
(2)AddRoundKey變換:對狀態矩陣進行AddRoundKey變換,與膨脹後的密鑰進行異或操作(密鑰膨脹將在實驗原理七中詳細討論)。
(3)10輪循環:AES對狀態矩陣進行了10輪類似的子加密過程。前9輪子加密過程中,每一輪子加密過程包括4種不同的變換,而最後一輪只有3種變換,前9輪的子加密步驟如下:
● SubBytes變換:SubBytes變換是一個對狀態矩陣非線性的變換;
● ShiftRows變換:ShiftRows變換對狀態矩陣的行進行循環移位;
● MixColumns變換:MixColumns變換對狀態矩陣的列進行變換;
● AddRoundKey變換:AddRoundKey變換對狀態矩陣和膨脹後的密鑰進行異或操作。
最後一輪的子加密步驟如下:
● SubBytes變換:SubBytes變換是一個對狀態矩陣非線性的變換;
● ShiftRows變換:ShiftRows變換對狀態矩陣的行進行循環移位;
● AddRoundKey變換:AddRoundKey變換對狀態矩陣和膨脹後的密鑰進行異或操作;
(4)經過10輪循環的狀態矩陣中的內容就是加密後的密文。
AES的加密演算法的偽代碼如下。

在AES演算法中,AddRoundKey變換需要使用膨脹後的密鑰,原始的128位密鑰經過膨脹會產生44個字(每個字為32位)的膨脹後的密鑰,這44個字的膨脹後的密鑰供11次AddRoundKey變換使用,一次AddRoundKey使用4個字(128位)的膨脹後的密鑰。
三.AES的分組過程
對於任意長度的明文,AES首先對其進行分組,分組的方法與DES相同,即對長度不足的明文分組後面補充0即可,只是每一組的長度為128位。
AES的密鑰長度有128比特,192比特和256比特三種標准,其他長度的密鑰並沒有列入到AES聯邦標准中,在下面的介紹中,我們將以128位密鑰為例。
四.狀態矩陣
狀態矩陣是一個4行、4列的位元組矩陣,所謂位元組矩陣就是指矩陣中的每個元素都是一個1位元組長度的數據。我們將狀態矩陣記為State,State中的元素記為Sij,表示狀態矩陣中第i行第j列的元素。128比特的明文分組按位元組分成16塊,第一塊記為「塊0」,第二塊記為「塊1」,依此類推,最後一塊記為「塊15」,然後將這16塊明文數據放入到狀態矩陣中,將這16塊明文數據放入到狀態矩陣中的方法如圖2-2-1所示。

塊0

塊4

塊8

塊12

塊1

塊5

塊9

塊13

塊2

塊6

塊10

塊14

塊3

塊7

塊11

塊15

圖2-2-1 將明文塊放入狀態矩陣中
五.AddRoundKey變換
狀態矩陣生成以後,首先要進行AddRoundKey變換,AddRoundKey變換將狀態矩陣與膨脹後的密鑰進行按位異或運算,如下所示。

其中,c表示列數,數組W為膨脹後的密鑰,round為加密輪數,Nb為狀態矩陣的列數。
它的過程如圖2-2-2所示。

圖2-2-2 AES演算法AddRoundKey變換
六.10輪循環
經過AddRoundKey的狀態矩陣要繼續進行10輪類似的子加密過程。前9輪子加密過程中,每一輪要經過4種不同的變換,即SubBytes變換、ShiftRows變換、MixColumns變換和AddRoundKey變換,而最後一輪只有3種變換,即SubBytes變換、ShiftRows變換和AddRoundKey變換。AddRoundKey變換已經討論過,下面分別討論餘下的三種變換。
1.SubBytes變換
SubBytes是一個獨立作用於狀態位元組的非線性變換,它由以下兩個步驟組成:
(1)在GF(28)域,求乘法的逆運算,即對於α∈GF(28)求β∈GF(28),使αβ =βα = 1mod(x8 + x4 + x3 + x + 1)。
(2)在GF(28)域做變換,變換使用矩陣乘法,如下所示:

由於所有的運算都在GF(28)域上進行,所以最後的結果都在GF(28)上。若g∈GF(28)是GF(28)的本原元素,則對於α∈GF(28),α≠0,則存在
β ∈ GF(28),使得:
β = gαmod(x8 + x4 + x3 + x + 1)
由於g255 = 1mod(x8 + x4 + x3 + x + 1)
所以g255-α = β-1mod(x8 + x4 + x3 + x + 1)
根據SubBytes變換演算法,可以得出SubBytes的置換表,如表2-2-1所示,這個表也叫做AES的S盒。該表的使用方法如下:狀態矩陣中每個元素都要經過該表替換,每個元素為8比特,前4比特決定了行號,後4比特決定了列號,例如求SubBytes(0C)查表的0行C列得FE。
表2-2-1 AES的SubBytes置換表

它的變換過程如圖2-2-3所示。

圖2-2-3 SubBytes變換
AES加密過程需要用到一些數學基礎,其中包括GF(2)域上的多項式、GF(28)域上的多項式的計算和矩陣乘法運算等,有興趣的同學請參考相關的數學書籍。
2.ShiftRows變換
ShiftRows變換比較簡單,狀態矩陣的第1行不發生改變,第2行循環左移1位元組,第3行循環左移2位元組,第4行循環左移3位元組。ShiftRows變換的過程如圖2-2-4所示。

圖2-2-4 AES的ShiftRows變換
3.MixColumns變換
在MixColumns變換中,狀態矩陣的列看作是域GF(28)的多項式,模(x4+1)乘以c(x)的結果:
c(x)=(03)x3+(01)x2+(01)x+(02)
這里(03)為十六進製表示,依此類推。c(x)與x4+1互質,故存在逆:
d(x)=(0B)x3+(0D)x2+(0G)x+(0E)使c(x)•d(x) = (D1)mod(x4+1)。
設有:

它的過程如圖2-2-5所示。

圖2-2-5 AES演算法MixColumns變換
七.密鑰膨脹
在AES演算法中,AddRoundKey變換需要使用膨脹後的密鑰,膨脹後的密鑰記為子密鑰,原始的128位密鑰經過膨脹會產生44個字(每個字為32位)的子密鑰,這44個字的子密鑰供11次AddRoundKey變換使用,一次AddRoundKey使用4個字(128位)的膨脹後的密鑰。
密鑰膨脹演算法是以字為基礎的(一個字由4個位元組組成,即32比特)。128比特的原始密鑰經過膨脹後將產生44個字的子密鑰,我們將這44個密鑰保存在一個字數組中,記為W[44]。128比特的原始密鑰分成16份,存放在一個位元組的數組:Key[0],Key[1]……Key[15]中。
在密鑰膨脹演算法中,Rcon是一個10個字的數組,在數組中保存著演算法定義的常數,分別為:
Rcon[0] = 0x01000000
Rcon[1] = 0x02000000
Rcon[2] = 0x04000000
Rcon[3] = 0x08000000
Rcon[4] = 0x10000000
Rcon[5] = 0x20000000
Rcon[6] = 0x40000000
Rcon[7] = 0x80000000
Rcon[8] = 0x1b000000
Rcon[9] = 0x36000000
另外,在密鑰膨脹中包括其他兩個操作RotWord和SubWord,下面對這兩個操作做說明:
RotWord( B0,B1,B2,B3 )對4個位元組B0,B1,B2,B3進行循環移位,即
RotWord( B0,B1,B2,B3 ) = ( B1,B2,B3,B0 )
SubWord( B0,B1,B2,B3 )對4個位元組B0,B1,B2,B3使用AES的S盒,即
SubWord( B0,B1,B2,B3 ) = ( B』0,B』1,B』2,B』3 )
其中,B』i = SubBytes(Bi),i = 0,1,2,3。
密鑰膨脹的演算法如下:

八.解密過程
AES的加密和解密過程並不相同,首先密文按128位分組,分組方法和加密時的分組方法相同,然後進行輪變換。
AES的解密過程可以看成是加密過程的逆過程,它也由10輪循環組成,每一輪循環包括四個變換分別為InvShiftRows變換、InvSubBytes變換、InvMixColumns變換和AddRoundKey變換;
這個過程可以描述為如下代碼片段所示:

九.InvShiftRows變換
InvShiftRows變換是ShiftRows變換的逆過程,十分簡單,指定InvShiftRows的變換如下。
Sr,(c+shift(r,Nb))modNb= Sr,c for 0 < r< 4 and 0 ≤ c < Nb
圖2-2-6演示了這個過程。

圖2-2-6 AES演算法InvShiftRows變換
十.InvSubBytes變換
InvSubBytes變換是SubBytes變換的逆變換,利用AES的S盒的逆作位元組置換,表2-2-2為InvSubBytes變換的置換表。
表2-2-2 InvSubBytes置換表

十一.InvMixColumns變換
InvMixColumns變換與MixColumns變換類似,每列乘以d(x)
d(x) = (OB)x3 + (0D)x2 + (0G)x + (0E)
下列等式成立:
( (03)x3 + (01)x2 + (01)x + (02) )⊙d(x) = (01)
上面的內容可以描述為以下的矩陣乘法:

十二.AddRoundKey變換
AES解密過程的AddRoundKey變換與加密過程中的AddRoundKey變換一樣,都是按位與子密鑰做異或操作。解密過程的密鑰膨脹演算法也與加密的密鑰膨脹演算法相同。最後狀態矩陣中的數據就是明文。

Ⅳ s7300plc程序如何備份

1、打開SIMATIC Manager,並打開需要備份的程序。

Ⅳ 從PLC上傳上來的程序,OB1怎麼就編譯不過呢

我也遇見過同樣的問題!正常運行的設備上傳的OB1發現加密,用解密軟體解密後就出現了和樓主一樣的問題了,後來沒有辦法因為確實要修改OB1中的程序,就只要重新寫編譯不過的程序了。其實編譯不過的都是些調用其它塊的指令,按正常的調用修改就可以了!

Ⅵ 世界上各種密碼的形式

1、二方密碼:

二方密碼(en:Two-square_cipher)比四方密碼用更少的矩陣。

得出加密矩陣的方法和四方密碼一樣。

例如用「example」和「keyword」作密匙,加密lp。首先找出第一個字母(L)在上方矩陣的位置,再找出第二個字母(P)在下方矩陣的位置:

E X A M P

L B C D F

G H I J K

N O R S T

U V W Y Z

K E Y W O

R D A B C

F G H I J

L M N P S

T U V X Z

在上方矩陣找第一個字母同行,第二個字母同列的字母;在下方矩陣找第一個字母同列,第二個字母同行的字母,那兩個字母就是加密的結果:

E X A M P

L B C D F

G H I J K

N O R S T

U V W Y Z

K E Y W O

R D A B C

F G H I J

L M N P S

T U V X Z

help me的加密結果:

he lp me

HE DL XW

這種加密法的弱點是若兩個字同列,便採用原來的字母,例如he便加密作HE。約有二成的內容都因此而暴露。

2、四方密碼

四方密碼用4個5×5的矩陣來加密。每個矩陣都有25個字母(通常會取消Q或將I,J視作同一樣,或改進為6×6的矩陣,加入10個數字)。

首先選擇兩個英文字作密匙,例如example和keyword。對於每一個密匙,將重復出現的字母去除,即example要轉成exampl,然後將每個字母順序放入矩陣,再將餘下的字母順序放入矩陣,便得出加密矩陣。

將這兩個加密矩陣放在右上角和左下角,餘下的兩個角放a到z順序的矩陣:

a b c d e E X A M P

f g h i j L B C D F

k l m n o G H I J K

p r s t u N O R S T

v w x y z U V W Y Z

K E Y WO a b c d e

R D A BC f g h i j

F G H I J k l m n o

L M N P S p r s t u

T U V X Z v w x y z

加密的步驟:

兩個字母一組地分開訊息:(例如hello world變成he ll ow or ld)

找出第一個字母在左上角矩陣的位置

a b c d e E X A M P

f g h i j L B C D F

k l m n o G H I J K

p r s t u N O R S T

v w x y z U V W Y Z

K E Y W O a b c d e

R D A B C f g h i j

F G H I J k l m n o

L M N P S p r s t u

T U V X Z v w x y z

同樣道理,找第二個字母在右下角矩陣的位置:

a b c d e E X A M P

f g h i j L B C D F

k l m n o G H I J K

p r s t u N O R S T

v w x y z U V W Y Z

K E Y W O a b c d e

R D A B C f g h i j

F G H I J k l m n o

L M N P S p r s t u

T U V X Z v w x y z

找右上角矩陣中,和第一個字母同行,第二個字母同列的字母:

a b c d e E X A M P

f g h i j L B C D F

k l m n o G H I J K

p r s t u NO R S T

v w x y z U V W Y Z

K E Y W O a b c d e

R D A B C f g h i j

F G H I J k l m n o

L M N P S p r s t u

T U V X Z v w x y z

找左下角矩陣中,和第一個字母同列,第二個字母同行的字母:

a b c d e E X A M P

f g h i j L B C D F

k l m n o G H I J K

p r s t u N O R S T

v w x y z U V W Y Z

K E Y W O a b c d e

R D A B C f g h i j

F G H I J k l m n o

L M N P S p r s t u

T U V X Z v w x y z

這兩個字母就是加密過的訊息。

he lp me ob iw an ke no bi的加密結果:

FY GM KY HO BX MF KK KI MD

3、三分密碼

首先隨意製造一個3個3×3的Polybius方格替代密碼,包括26個英文字母和一個符號。然後寫出要加密的訊息的三維坐標。訊息和坐標四個一列排起,再順序取橫行的數字,三個一組分開,將這三個數字當成坐標,找出對應的字母,便得到密文。

(6)ob1如何加密擴展閱讀:

加密方法:

替換加密法:用一個字元替換另一個字元的加密方法。

換位加密法:重新排列明文中的字母位置的加密法。

回轉輪加密法:一種多碼加密法,它是用多個回轉輪,每個回轉輪實現單碼加密。這些回轉輪可以組合在一起,在每個字母加密後產生一種新的替換模式。

多碼加密法:一種加密法,其替換形式是:可以用多個字母來替換明文中的一個字母。

夾帶法:通過隱藏消息的存在來隱藏消息的方法。

閱讀全文

與ob1如何加密相關的資料

熱點內容
stc1t單片機 瀏覽:313
英華特渦旋壓縮機 瀏覽:4
編解碼器的輸入輸出干擾 瀏覽:542
往復式壓縮氣缸過熱的原因 瀏覽:839
4u伺服器機箱怎麼賣 瀏覽:461
如何自學葡萄牙語app 瀏覽:456
擺來擺去的游戲解壓 瀏覽:270
centos注銷命令 瀏覽:859
vue多端編譯 瀏覽:755
程序員qq表白代碼編輯 瀏覽:893
聯想伺服器怎麼進後台 瀏覽:116
安卓定製rom怎麼刷 瀏覽:539
三層交換機的配置命令 瀏覽:110
49演算法公式 瀏覽:791
求最小生成樹演算法代碼及運行圖片 瀏覽:931
python掃雷計數 瀏覽:880
什麼安卓手機品牌最保值 瀏覽:847
編程貓買房子 瀏覽:134
c語言系列編程 瀏覽:743
符合國標加密標准技術 瀏覽:498