導航:首頁 > 文檔加密 > 驗證矩陣能否作為加密矩陣

驗證矩陣能否作為加密矩陣

發布時間:2024-05-21 08:46:58

A. 矩陣在密碼學的運用問題

對密碼不熟,代數還可以,我的理解是這樣的,首先要將「ALGEBRA」轉換為向量c=(1 12 7 5 2 18 1 9 3)。
設A為一個可逆矩陣,與傳遞的信息大小要相同,這里就是9×9,
則可以c*A或者A*transpose(c)(transpose表示c的轉置向量,*為乘法),得到一個行或者列向量。
把得出的行或者列向量作為加密後的信息發出,解密者若知道這一個矩陣A,
如果用的是行向量,則需右乘A的逆矩陣即可得到原來的向量c,再對應到字母A……Z,就為傳遞的信息;列向量的話就需要左乘矩陣A的逆矩陣。

B. 希爾密碼原理

希爾密碼(Hill Cipher)是運用基本矩陣論原理的替換密碼,由Lester S. Hill在1929年發明。每個字母當作26進制數字:A=0, B=1, C=2... 一串字母當成n維向量,跟一個n×n的矩陣相乘,再將得出的結果MOD26。

中文名
希爾密碼
外文名
Hill Cipher
原理
基本矩陣論
類別
替換密碼
提出者
Lester S. Hill
快速
導航
產生原因

原理

安全性分析

例子
簡介
希爾密碼是運用基本矩陣論原理的替換密碼,由Lester S. Hill在1929年發明。
每個字母當作26進制數字:A=0, B=1, C=2... 一串字母當成n維向量,跟一個n×n的矩陣相乘,再將得出的結果模26。
注意用作加密的矩陣(即密匙)在必須是可逆的,否則就不可能解碼。只有矩陣的行列式和26互質,才是可逆的。
產生原因
隨著科技的日新月異和人們對信用卡、計算機的依賴性的加強,密碼學顯得愈來愈重要。密碼學是一門關於加密和解密、密文和明文的學科。若將原本的符號代換成另一種符號,即可稱之為廣義的密碼。狹義的密碼主要是為了保密,是一種防止竊文者得知內容而設的另一種符號文字,也是一般人所熟知的密碼。
使用信用卡、網路賬號及密碼、電子信箱、電子簽名等都需要密碼。為了方便記憶,許多人用生日、電話號碼、門牌號碼記做密碼,但是這樣安全性較差。
為了使密碼更加復雜,更難解密,產生了許多不同形式的密碼。密碼的函數特性是明文對密碼為一對一或一對多的關系,即明文是密碼的函數。傳統密碼中有一種叫移位法,移位法基本型態是加法加密系統C=P+s(mod m)。一般來說,我們以1表示A,2表示B,……,25表示Y,26表示Z,以此類推。由於s=0時相當於未加密,而0≤s≤m-1(s≥m都可用0≤s≤m-1取代),因此,整個系統只有m-1種變化。換言之,只要試過m-1次,機密的信息就會泄漏出去。
由此看來,日常生活中的密碼和傳統的密碼的可靠性較差,我們有必要尋求一種容易將字母的自然頻度隱蔽或均勻化,從而有利於統計分析的安全可靠的加密方法。希爾密碼能基本滿足這一要求。
原理
希爾加密演算法的基本思想是,將d個明文字母通過線性變換將它們轉換為d個密文字母。解密只要作一次逆變換就可以了,密鑰就是變換矩陣本身。[1]
希爾密碼是多字母代換密碼的一種。多字母代換密碼可以利用矩陣變換方便地描述,有時又稱為矩陣變換密碼。令明文字母表為Z,若採用L個字母為單位進行代換,則多碼代換是映射f:Z→Z。若映射是線性的,則f是線性變換,可以用Z上的L×L矩陣K表示。若是滿秩的,則變換為一一映射,且存在有逆變換K。將L個字母的數字表示為Z上的L維矢量m,相應的密文矢量c,且mK=c,以K作為解密矩陣,可由c恢復出相應的明文c·K=m。
在軍事通訊中,常將字元(信息)與數字對應(為方便起見,我們將字元和數字按原有的順序對應,事實上這種對應規則是極易被破解的):
abcde…x y z
12345…242526
如信息「NOSLEEPPING」對應著一組編碼14,15,19,12,5,5,16,16,9,14,7。但如果按這種方式直接傳輸出去,則很容易被敵方破譯。於是必須採取加密措施,即用一個約定的加密矩陣K乘以原信號B,傳輸信號為C=KB(加密),收到信號的一方再將信號還原(破譯)為B=KC。

C. 求個矩陣加密演算法的程序

暈,我原號登陸竟然沒有回答框~~!!

是不是樓主對我 (1西方不勝1) 做了限制? 那我也只能回答一部分...

把 生成滿秩矩陣以及其逆矩陣 的代碼貼上來....

#include "stdio.h"
#include "time.h"
#include "stdlib.h"
#define MAX 8 // 矩陣大小
#define PT 10 // 附矩陣 隨機初始值的最大值
#define bianhuan 100 // 由對角線矩陣生成滿秩矩陣所需的行變化次數

struct changs // 記錄變化的過程, 以便逆過來求其逆矩陣
{
int temp1 ;
int temp2 ;
} change[bianhuan + 1 ] ;

int Matrix[MAX][MAX] ; // 滿秩矩陣
int R_matrix[MAX][MAX]; // 逆矩陣

// ***** 生成 滿秩矩陣 並求出該滿秩矩陣的逆矩陣 ****************************//
void creat()
{
int i , k ;
int flage = 0 ;

for(i = 0 ; i < MAX ; i ++ ) // 生成主對角線矩陣
Matrix[i][i] = R_matrix[i][i] = 1 ;

for(k = 0 ; k < bianhuan ; k ++ ) // 進行 行 隨意變化生成滿秩矩陣 , 並記錄下變化過程
{
int x1 = change[k].temp1 = rand() % MAX ;

int x2 = rand() % MAX ;
while( x2 == x1 ) x2 = rand() % MAX ;

change[k].temp2 = x2 ;
for(i = 0 ; i < MAX ; i ++ )
if( Matrix[x1][i] + Matrix[x2][i] >= 31 ) break ; // 控制矩陣中最大的數的范圍在30內

if(i >= MAX )
{
for(i = 0 ; i < MAX ; i ++ )
Matrix[x1][i] += Matrix[x2][i] ;
}
else k-- ,flage ++ ;

if(flage > 2000 ) { k++ ; break ; }
}
for(k-- ; k >= 0 ; k -- ) // 行逆變換, 求出其逆矩陣
{
for( i = 0 ; i < MAX ; i ++ )
R_matrix[ change[k].temp1 ][i] -= R_matrix[ change[k].temp2 ][i] ;

}
return ;
}

int main()
{
int i , j ;
srand(time(0)) ;

creat() ;

printf("加密矩陣為:\n") ;
for(i =0 ; i < MAX ; i ++ )
{
for(j =0 ; j < MAX ; j ++)
printf("%4d " , Matrix[i][j]) ;
printf("\n") ;
}

printf("\n") ;
printf("解密矩陣為:\n") ;
for( i = 0; i < MAX ; i ++ )
{
for(j =0 ; j < MAX ; j ++ )
printf("%4d ",R_matrix[i][j]) ;
printf("\n");
}
return 0 ;
}

如下:是一個測試數據.

加密矩陣為:
14 8 29 30 10 2 14 13
11 8 23 25 6 1 10 8
12 8 26 27 7 3 11 9
7 5 15 15 3 1 5 4
9 6 19 21 7 1 10 9
10 6 21 22 7 2 10 9
8 6 17 18 3 1 6 4
7 6 15 19 5 1 9 7

解密矩陣為:
-2 5 -1 -2 -3 5 -2 -1
-1 5 2 -1 -1 -1 -4 -1
2 -1 2 0 1 -5 0 0
-1 -4 -3 2 1 4 3 1
-3 2 0 -2 2 3 0 -2
-1 1 0 0 -1 2 -1 0
2 4 4 -4 -1 -6 -2 -1
1 -3 -2 4 -1 1 0 2

被加密文件:
=====================================
發往: 劉曉輝 (ACM基地/QT002)
時間: 2007-06-11 星期一 18:58:40 (RSA)(封裝)
(文件) player.swf
-------------------------------------

加密後文件:
x xxxx \ \\\\ g gggg 7 7777 R RRRR W WWWW ? ???? E EEEE x xxxx \ \\\\ g gggg 7 7777 R RRRR W WWWW ? ???? E EEEE x xxxx \ \\\\ g gggg 7 7777 R RRRR W WWWW ? ???? E EEEE x xxxx \ \\\\ g gggg 7 7777 R RRRR W WWWW ? ???? E EEEE hh]hv
Q QJQ[ Y YSYd 11.16 G鶪?GQ K KDKU 8858> ;;5;D B9#PIaBP2,@:K2=90F@S9E'#-%-'72B-60):5F0:"-)4"*&!/+7&-%$8-3>H3*!*25*/$.6=. %"+0"( %-4%#$%'?5>nJ6Q1'2V8,C8,6`>1I?4"**$+K2&7.&-P5(;# #<&1" %@(#/+(
J1X!"9%B%& A(I#'? 2"< 6#?(, *14)@x+2\ . 8g  7%-R &/W�???"
(ER2L]>'<JE+AS% #. 8"5?;$7D*?)5�.
.5 ^A`E3QK 3K2*CR 7T9.I.-*@ .B0"7D?F2%;5"4 16)9)/*,3hk
$)QT #'-Y^ 13 #GI ? %KN 8; ;> K(;3T&':0#?@!5'H"#&
3(#96+$=( #+*"/?/
` "I  ' Q?,? A ?" E  2 5?%%.:xS #.\=  &2gE 7#  (R9 ?!*W<? ?(#E0V]K%IvS BJ9;[A IS>AdH '. %6( ;?51Q8 >D65U< -5%+>. 25.)D. x xx x \ \\ \ g gg g 7 77 7 R RR R W WW W ? ?? ? E EE E x xx x \ \\ \ g gg g 7 77 7 R RR R W WW W ? ?? ? E EE E x xx x \ \\ \ g gg g 7 77 7 R RR R W WW W ? ?? ? E EE E x xx x \ \\ \ g gg g 7 77 7 R RR R W WW W ? ?? ? E EE E P(Px P ==\ = E"Eg E %%7 % 66R 6 ::W : **? * --E -

解密後文件:

=====================================
發往: 劉曉輝 (ACM基地/QT002)
時間: 2007-06-11 星期一 18:58:40 (RSA)(封裝)
(文件) player.swf
-------------------------------------

閱讀全文

與驗證矩陣能否作為加密矩陣相關的資料

熱點內容
如何快捷錄音安卓 瀏覽:5
sd播放音樂需要哪些文件夾 瀏覽:839
華為平板m3怎麼升級到安卓11 瀏覽:532
聯通app排隊號怎麼看 瀏覽:647
怎麼不越獄安裝app 瀏覽:183
python怎麼用鏈表 瀏覽:851
8k程序員面試題 瀏覽:541
貴州交警app怎麼下載 瀏覽:414
解壓縮安裝包怎麼安裝 瀏覽:44
壓縮機系統與裝置 瀏覽:677
上海大眾app怎麼查保養記錄 瀏覽:464
抖音網紅一手資源解壓密碼 瀏覽:543
python輸出的域寬 瀏覽:804
一體機上如何下載愛學班班app 瀏覽:44
當謊言遇上套路pdf 瀏覽:281
如何查看伺服器網卡數目 瀏覽:127
預編譯更新是啥 瀏覽:726
python中根據時間序列畫折線圖 瀏覽:793
51單片機c語言程序框架 瀏覽:178
預演算法全文一般公共預算 瀏覽:538