① 你都用python 來做什麼
當我知道可以做這些之後,我特別想會。因為論文查閱、答案確認查詢;想知道豆瓣8分以上電影,或者穿越類的電影、處理工資數據考核表等。
可以干什麼
1、上學吧答案神器 主要實現的是無限制獲取上學吧網站上的題目答案(繞過 IP 限制),並實現了自動識別驗證碼,只用輸入某個題目的網址,即可一鍵獲取答案,速度非常快。「想要哈哈,自己或者給孩子輔導作業必備啊?」
2、抓取某系統內全部學生姓名學號及選課信息
3、掃描研究生系統上的弱密碼用戶、模擬登錄圖書館系統並自動續借
4、給釣魚網站批量提交垃圾信息 經常會收到含有釣魚網站鏈接的簡訊的,一般都是盜取 QQ 密碼的偏多,其實可以使用 Python 來批量給對方的伺服器提交垃圾數據(需要先抓包),這樣騙子看到信息之後就不知道哪些是真的哪些是假的了,說不定可以解救一部分填了密碼的同學。
5、網易雲音樂批量下載 可以批量下載網易雲音樂熱歌榜的歌曲,可以自己設定數量,速度非常快。
6、批量下載讀者雜志某一期的全部文章
7、 獲取城市PM2.5濃度和排名
8、爬取某網商品價格信息
你都用 Python 來做什麼?
那Python 作為一種功能強大的編程語言,因其簡單易學而受到很多開發者的青睞。那麼,Python 的應用領域有哪些呢?
Python 的應用領域非常廣泛,幾乎所有大中型互聯網企業都在使用 Python 完成各種各樣的任務,例如國外的 Google、Youtube、Dropbox,國內的網路、新浪、搜狐、騰訊、阿里、網易、淘寶、知乎、豆瓣、汽車之家、美團等等。概括起來,Python 的應用領域主要有如下幾個。
Web應用開發
Python 經常被用於 Web 開發,盡管目前 PHP、JS 依然是 Web 開發的主流語言,但 Python 上升勢頭更勁。尤其隨著 Python 的 Web 開發框架逐漸成熟(比如 Django、flask、TurboGears、web2py 等等),程序員可以更輕松地開發和管理復雜的 Web 程序。例如,通過 mod_wsgi 模塊,Apache 可以運行用 Python 編寫的 Web 程序。Python 定義了 WSGI 標准應用介面來協調 HTTP 伺服器與基於 Python 的 Web 程序之間的通信。舉個最直觀的例子,全球最大的搜索引擎 Google,在其網路搜索系統中就廣泛使用 Python 語言。另外,我們經常訪問的集電影、讀書、音樂於一體的豆瓣網(如圖 1 所示),也是使用 Python 實現的。
圖2Python開發的游戲
除此之外,Python 可以直接調用 Open GL 實現 3D 繪制,這是高性能游戲引擎的技術基礎。事實上,有很多 Python 語言實現的游戲引擎,例如 Pygame、Pyglet 以及 Cocos 2d 等。以上也僅是介紹了 Python 應用領域的「冰山一角」,例如,還可以利用 Pygame 進行游戲編程;用 PIL 和其他的一些工具進行圖像處理;用 PyRo 工具包進行機器人控制編程,等等。有興趣的讀者,可自行搜索資料進行詳細了解。
② Python幾種主流框架比較
從GitHub中整理出的15個最受歡迎的Python開源框架。這些框架包括事件I/O,OLAP,Web開發,高性能網路通信,測試,爬蟲等。x0dx0ax0dx0aDjango: Python Web應用開發框架x0dx0a Django 應該是最出名的Python框架,GAE甚至Erlang都有框架受它影響。Django是走大而全的方向,它最出名的是其全自動化的管理後台:只需要使用起ORM,做簡單的對象定義,它就能自動生成資料庫結構、以及全功能的管理後台。x0dx0ax0dx0aDiesel:基於Greenlet的事件I/O框架x0dx0a Diesel提供一個整潔的API來編寫網路客戶端和伺服器。支持TCP和UDP。x0dx0ax0dx0aFlask:一個用Python編寫的輕量級Web應用框架x0dx0a Flask是一個使用Python編寫的輕量級Web應用框架。基於Werkzeug WSGI工具箱和Jinja2 x0dx0a模板引擎。Flask也被稱為「microframework」,因為它使用簡單的核心,用extension增加其他功能。Flask沒有默認使用的數x0dx0a據庫、窗體驗證工具。x0dx0ax0dx0aCubes:輕量級Python OLAP框架x0dx0a Cubes是一個輕量級Python框架,包含OLAP、多維數據分析和瀏覽聚合數據(aggregated data)等工具。x0dx0ax0dx0aKartograph.py:創造矢量地圖的輕量級Python框架x0dx0a Kartograph是一個Python庫,用來為ESRI生成SVG地圖。Kartograph.py目前仍處於beta階段,你可以在virtualenv環境下來測試。x0dx0ax0dx0aPulsar:Python的事件驅動並發框架x0dx0a Pulsar是一個事件驅動的並發框架,有了pulsar,你可以寫出在不同進程或線程中運行一個或多個活動的非同步伺服器。x0dx0ax0dx0aWeb2py:全棧式Web框架x0dx0a Web2py是一個為Python語言提供的全功能Web應用框架,旨在敏捷快速的開發Web應用,具有快速、安全以及可移植的資料庫驅動的應用,兼容Google App Engine。x0dx0ax0dx0aFalcon:構建雲API和網路應用後端的高性能Python框架x0dx0a Falcon是一個構建雲API的高性能Python框架,它鼓勵使用REST架構風格,盡可能以最少的力氣做最多的事情。x0dx0ax0dx0aDpark:Python版的Sparkx0dx0a DPark是Spark的Python克隆,是一個Python實現的分布式計算框架,可以非常方便地實現大規模數據處理和迭代計算。DPark由豆瓣實現,目前豆瓣內部的絕大多數數據分析都使用DPark完成,正日趨完善。x0dx0ax0dx0aBuildbot:基於Python的持續集成測試框架x0dx0a Buildbot是一個開源框架,可以自動化軟體構建、測試和發布等過程。每當代碼有改變,伺服器要求不同平台上的客戶端立即進行代碼構建和測試,收集並報告不同平台的構建和測試結果。x0dx0ax0dx0aZerorpc:基於ZeroMQ的高性能分布式RPC框架x0dx0a Zerorpc是一個基於ZeroMQ和MessagePack開發的遠程過程調用協議(RPC)實現。和 Zerorpc 一起使用的 Service API 被稱為 zeroservice。Zerorpc 可以通過編程或命令行方式調用。x0dx0ax0dx0aBottle: 微型Python Web框架x0dx0a Bottle是一個簡單高效的遵循WSGI的微型python Web框架。說微型,是因為它只有一個文件,除Python標准庫外,它不依賴於任何第三方模塊。x0dx0ax0dx0aTornado:非同步非阻塞IO的Python Web框架x0dx0a Tornado的全稱是Torado Web Server,從名字上看就可知道它可以用作Web伺服器,但同時它也是一個Python Web的開發框架。最初是在FriendFeed公司的網站上使用,FaceBook收購了之後便開源了出來。x0dx0ax0dx0awebpy: 輕量級的Python Web框架x0dx0a webpy的設計理念力求精簡(Keep it simple and powerful),源碼很簡短,只提供一個框架所必須的東西,不依賴大量的第三方模塊,它沒有URL路由、沒有模板也沒有資料庫的訪問。x0dx0ax0dx0aScrapy:Python的爬蟲框架x0dx0a Scrapy是一個使用Python編寫的,輕量級的,簡單輕巧,並且使用起來非常的方便。
③ 黑馬程序員的Python培訓內容有什麼
黑馬程序員
鏈接: https://pan..com/s/1DLZapQQYaVhzQCC5Ek9jDA
若資源有問題歡迎追問~
④ python和c++學哪個好
學C++好。
C++通常比Python更快,因為C++是一種編譯型語言,而Python則是一種解釋型語言。C++性能優越,C++是一種高性能編程語言,可以編寫快速且高效的代碼。因此,它非常適合用於編寫要求高性能的應用程序。C++應用廣泛,C++適用於各種應用場景,包括操作系統、嵌入式系統、游戲等。
C++能讓你對計算機結構有深入理解,C++是一種較為底層的語言,可以讓你更深入地了解計算機結構和計算機運行原理。C++可靠性高,C++是一種類型安全的語言,可以幫助你避免許多常見的編程錯誤。
C++的工作原理
C++語言的程序開發環境,為了方便測試,將調試環境做成了解釋型。即開發過程中,以解釋型的逐條語句執行方式來進行調試,以編譯型的脫離開發環境而啟動運行的方式來生成程序最終的執行代碼。
開發C++應用程序,需要經過編寫源程序、編譯、連接程序生成可執行程序、運行程序四個步驟。生成程序是指將源碼(C++語句)轉換成一個可以運行的應用程序的過程。如果程序編寫正確,那麼通常只需按一個功能鍵,即可完成該過程。C++庫中還包含一些子程序,它們把數據發送到顯示器,並知道如何讀寫硬碟上的數據文件。
以上內容參考網路-C++
⑤ 10 個 Python 圖像編輯工具
以下提到的這些 Python 工具在編輯圖像、操作圖像底層數據方面都提供了簡單直接的方法。
-- Parul Pandey
當今的世界充滿了數據,而圖像數據就是其中很重要的一部分。但只有經過處理和分析,提高圖像的質量,從中提取出有效地信息,才能利用到這些圖像數據。
常見的圖像處理操作包括顯示圖像,基本的圖像操作,如裁剪、翻轉、旋轉;圖像的分割、分類、特徵提取;圖像恢復;以及圖像識別等等。Python 作為一種日益風靡的科學編程語言,是這些圖像處理操作的最佳選擇。同時,在 Python 生態當中也有很多可以免費使用的優秀的圖像處理工具。
下文將介紹 10 個可以用於圖像處理任務的 Python 庫,它們在編輯圖像、查看圖像底層數據方面都提供了簡單直接的方法。
scikit-image 是一個結合 NumPy 數組使用的開源 Python 工具,它實現了可用於研究、教育、工業應用的演算法和應用程序。即使是對於剛剛接觸 Python 生態圈的新手來說,它也是一個在使用上足夠簡單的庫。同時它的代碼質量也很高,因為它是由一個活躍的志願者社區開發的,並且通過了 同行評審(peer review)。
scikit-image 的 文檔 非常完善,其中包含了豐富的用例。
可以通過導入 skimage 使用,大部分的功能都可以在它的子模塊中找到。
圖像濾波(image filtering):
使用 match_template() 方法實現 模板匹配(template matching):
在 展示頁面 可以看到更多相關的例子。
NumPy 提供了對數組的支持,是 Python 編程的一個核心庫。圖像的本質其實也是一個包含像素數據點的標准 NumPy 數組,因此可以通過一些基本的 NumPy 操作(例如切片、 掩膜(mask)、 花式索引(fancy indexing)等),就可以從像素級別對圖像進行編輯。通過 NumPy 數組存儲的圖像也可以被 skimage 載入並使用 matplotlib 顯示。
在 NumPy 的 官方文檔 中提供了完整的代碼文檔和資源列表。
使用 NumPy 對圖像進行 掩膜(mask)操作:
像 NumPy 一樣, SciPy 是 Python 的一個核心科學計算模塊,也可以用於圖像的基本操作和處理。尤其是 SciPy v1.1.0 中的 scipy.ndimage 子模塊,它提供了在 n 維 NumPy 數組上的運行的函數。SciPy 目前還提供了 線性和非線性濾波(linear and non-linear filtering)、 二值形態學(binary morphology)、 B 樣條插值(B-spline interpolation)、 對象測量(object measurements)等方面的函數。
在 官方文檔 中可以查閱到 scipy.ndimage 的完整函數列表。
使用 SciPy 的 高斯濾波 對圖像進行模糊處理:
PIL (Python Imaging Library) 是一個免費 Python 編程庫,它提供了對多種格式圖像文件的打開、編輯、保存的支持。但在 2009 年之後 PIL 就停止發布新版本了。幸運的是,還有一個 PIL 的積極開發的分支 Pillow ,它的安裝過程比 PIL 更加簡單,支持大部分主流的操作系統,並且還支持 Python 3。Pillow 包含了圖像的基礎處理功能,包括像素點操作、使用內置卷積內核進行濾波、顏色空間轉換等等。
Pillow 的 官方文檔 提供了 Pillow 的安裝說明自己代碼庫中每一個模塊的示例。
使用 Pillow 中的 ImageFilter 模塊實現圖像增強:
OpenCV(Open Source Computer Vision 庫)是計算機視覺領域最廣泛使用的庫之一, OpenCV-Python 則是 OpenCV 的 Python API。OpenCV-Python 的運行速度很快,這歸功於它使用 C/C++ 編寫的後台代碼,同時由於它使用了 Python 進行封裝,因此調用和部署的難度也不大。這些優點讓 OpenCV-Python 成為了計算密集型計算機視覺應用程序的一個不錯的選擇。
入門之前最好先閱讀 OpenCV2-Python-Guide 這份文檔。
使用 OpenCV-Python 中的 金字塔融合(Pyramid Blending)將蘋果和橘子融合到一起:
SimpleCV 是一個開源的計算機視覺框架。它支持包括 OpenCV 在內的一些高性能計算機視覺庫,同時不需要去了解 位深度(bit depth)、文件格式、 色彩空間(color space)之類的概念,因此 SimpleCV 的學習曲線要比 OpenCV 平緩得多,正如它的口號所說,「將計算機視覺變得更簡單」。SimpleCV 的優點還有:
官方文檔 簡單易懂,同時也附有大量的學慣用例。
文檔 包含了安裝介紹、示例以及一些 Mahotas 的入門教程。
Mahotas 力求使用少量的代碼來實現功能。例如這個 Finding Wally 游戲 :
ITK (Insight Segmentation and Registration Toolkit)是一個為開發者提供普適性圖像分析功能的開源、跨平台工具套件, SimpleITK 則是基於 ITK 構建出來的一個簡化層,旨在促進 ITK 在快速原型設計、教育、解釋語言中的應用。SimpleITK 作為一個圖像分析工具包,它也帶有 大量的組件 ,可以支持常規的濾波、圖像分割、 圖像配准(registration)功能。盡管 SimpleITK 使用 C++ 編寫,但它也支持包括 Python 在內的大部分編程語言。
有很多 Jupyter Notebooks 用例可以展示 SimpleITK 在教育和科研領域中的應用,通過這些用例可以看到如何使用 Python 和 R 利用 SimpleITK 來實現互動式圖像分析。
使用 Python + SimpleITK 實現的 CT/MR 圖像配准過程:
pgmagick 是使用 Python 封裝的 GraphicsMagick 庫。 GraphicsMagick 通常被認為是圖像處理界的瑞士軍刀,因為它強大而又高效的工具包支持對多達 88 種主流格式圖像文件的讀寫操作,包括 DPX、GIF、JPEG、JPEG-2000、PNG、PDF、PNM、TIFF 等等。
pgmagick 的 GitHub 倉庫 中有相關的安裝說明、依賴列表,以及詳細的 使用指引 。
圖像縮放:
邊緣提取:
Cairo 是一個用於繪制矢量圖的二維圖形庫,而 Pycairo 是用於 Cairo 的一組 Python 綁定。矢量圖的優點在於做大小縮放的過程中不會丟失圖像的清晰度。使用 Pycairo 可以在 Python 中調用 Cairo 的相關命令。
Pycairo 的 GitHub 倉庫 提供了關於安裝和使用的詳細說明,以及一份簡要介紹 Pycairo 的 入門指南 。
使用 Pycairo 繪制線段、基本圖形、 徑向漸變(radial gradients):
以上就是 Python 中的一些有用的圖像處理庫,無論你有沒有聽說過、有沒有使用過,都值得試用一下並了解它們。
via: https://opensource.com/article/19/3/python-image-manipulation-tools
作者: Parul Pandey 選題: lujun9972 譯者: HankChow 校對: wxy
⑥ 0基礎自學python,有入門書籍推薦下么
AlphaGo 都在使用的 Python 語言,是最接近 AI 的編程語言。
教育部考試中心近日發布了「關於全國計算機等級(NCRE)體系調整」的通知,決定自2018年3月起,在全國計算機二級考試中加入了「Python語言程序設計」科目。
9個月前,浙江省信息技術課程改革方案已經出台,Python確定進入浙江省信息技術教材,從2018年起浙江省信息技術教材編程語言將會從vb更換為Python。
小學生都開始學Python了,天吶擼,學習Python看完這些准沒錯。
安利一波書單
Python入門
Python數據分析》
作者: 【印尼】Ivan Idris
Python是一種多范型編程語言,既適用於面向對象的應用開發,又適合函數式設計模式。Python已經成為數據科學家進行數據分析、可視化以及機器學習的一種理想編程語言,它能幫助你快速提升工作效率。
本書將會帶領新手熟悉Python數據分析相關領域的方方面面,從數據檢索、清洗、操作、可視化、存儲到高級分析和建模。同時,本書著重講解一系列開源的Python模塊,諸如NumPy、SciPy、matplotlib、pandas、IPython、 Cython、scikit-learn和NLTK等。此外,本書還介紹了數據可視化、信號處理、時間序列分析、資料庫、預測性分析和機器學習等主題。通過閱讀本書,你將華麗變身數據分析高手。
⑦ 初學python,感受和C的不同
從開始看Python到現在也有半個多月了,前後看了Python核心編程和Dive into
Python兩本書。話說半個月看兩本,是個人都知道有多囫圇吞棗,這也是因為我暫時沒有需求拿這個做大型開發,主要是平時的小程序test用一用。所以
我的策略是,整體瀏覽,用到時候現查。話說這核心編程第一版太古老了,老在講2.2之前的東西,我看的翻譯電子版,翻譯得也不好,很晦澀。看完這個後還有
點雲里霧里,看網上人家說DIP好,啄木鳥還有免費電子文檔,就找來看這個。怎麼說呢,講的比核心編程好,但不適合第一次看的初學者。我之所以覺得講得
好,是因為看核心編程,有些概念還有些模糊,看了這本書就明白不少了。要是初學者上來就看這本,保證不好理解。
下面就是在學習的過程中,在翻閱資料的過程中,總結的一些C和python比較明顯的不同之處,有大方向的,也有細節的。肯定沒有總結完,比如動態
函數,lambda這些,我都懶得往上寫了。實際上,作為兩種完全不同的語言,下面這些差異只是冰山一角而已。權當拋磚引玉吧,至少應該對和我有相同研究
興趣,正在考慮是否學習另一門語言的朋友有點幫助。此文也算是DIP的學習筆記吧。順帶說一句,要是有朋友了解,可以幫忙推薦一下實戰性強的Python
教材,語言這東西,不多練手,光比劃,是不可能學好的。
學習目的
我的以後的研究方向是嵌入式,顯然,C語言是我的主要語言。我不是一個語言愛好者,我以前覺得,對於做研究而不是應用的人來說,了解多門語言,不如
精通一門語言。之所以去看python,主要還是因為python更有利於快速開發一些程序,也是因為現在認識到,研究和應用是不能分離的。個人以為,要
想在計算機工程的競爭中立足,必須懂C語言。因為真正要做高性能編程,
不可能將機器的體系架構拋到腦後讓Python虛擬機(或Java虛擬機等)幫你搞定所有底層。越來越多的CPU
core,越來越恐怖的內存性能瓶頸,對於上層開發人員來說,無所謂,但是對高性能程序開發人員來說,這些是無法透明的。很多應用,還是自己掌控比較有
效。這些場合中,匯編和C還是不可替代的。但是,光知道C是不夠的,掌握一門面向對象語言,相對更高層的語言,不僅對以後的個人發展有利,也會對自己的技
術認識產生幫助。
如果要問對我來說誰更重要,我覺得還是C更重要。C的學習曲線更陡,貌似簡單,實際上到處都是陷阱,看上去比較簡單低效的程序,也不是學1,2個月
就能搞定的。談到優化的深層次和難度嘛,需要的功底是按年算的。但是一旦你C語言的基礎打好了,對計算機的理解,對其他語言的理解都是大有裨益的。比如,
如果你有C基礎,可以說,學過1天python,就能寫的出來一些不短的程序。後面的優化也不是什麼大不了的演算法,都是非常基本的語句換來換去。當然這里
不是說 Python不好,實際上,上層應用,Python比C方便的不是一個層次。
很多人覺得,既然懂C了,那麼進一步掌握C++應該是水到渠成,但C++不是C的超集,而我又不喜歡C++的繁瑣和巨大,所以才決定看一看Python。我很喜歡Python的優雅與快捷。
語言類型
和C不一樣,Python是一種動態類型語言,又是強類型語言。這個分類怎麼理解呢?大概是可以按照下列說明來分類的:
靜態類型語言
一種在編譯期間就確定數據類型的語言。大多數靜態類型語言是通過要求在使用任一變數之前聲明其數據類型來保證這一點的。Java和 C 是靜態類型語言。
動態類型語言
一種在運行期間才去確定數據類型的語言,與靜態類型相反。Python 是動態類型的,因為它們確定一個變數的類型是在您第一次給它賦值的時候。
強類型語言
一種總是強制類型定義的語言。Java 和 Python 是強制類型定義的。您有一個整數,如果不明確地進行轉換 ,不能將把它當成一個字元串。
弱類型語言
一種類型可以被忽略的語言,與強類型相反。VBScript 是弱類型的。在 VBScript 中,您可以將字元串 『12′ 和整數 3 進行連接得到字元串』123′,然後可以把它看成整數 123 ,所有這些都不需要任何的顯示轉換。
對象機制
具體怎麼來理解這個「動態確定變數類型」,就要從Python的Object對象機制說起了。Objects(以下稱對象)是Python對於數據
的抽象,Python中所有的數據,都是由對象或者對象之間的關系表示的,函數是對象,字元串是對象,每個東西都是對象的概念。每一個對象都有三種屬性:
實體,類型和值。理解實體是理解對象中很重要的一步,實體一旦被創建,那麼就一直不會改變,也不會被顯式摧毀,同時通常意義來講,決定對象所支持的操作方
式的類型(type,包括number,string,tuple及其他)也不會改變,改變的只可能是它的值。如果要找一個具體點的說明,實體就相當於對
象在內存中的地址,是本質存在。而類型和值都只是實體的外在呈現。然後Python提供一些介面讓使用者和對象交互,比如id()函數用來獲得對象實體的
整形表示(實際在這里就是地址),type()函數獲取其類型。
這個object機制,就是c所不具備的,主要體現在下面幾點:
1 剛才說了,c是一個靜態類型語言,我們可以定義int a, char
b等等,但必須是在源代碼裡面事先規定。比如我們可以在Python裡面任意一處直接規定a =
「lk」,這樣,a的類型就是string,這是在其賦值的時候才決定的,我們無須在代碼中明確寫出。而在C裡面,我們必須顯式規定char *a =
「lk」,也就是人工事先規定好a的類型
2 由於在C中,沒有對象這個概念,只有「數據的表示」,比如說,如果有兩個int變數a和b,我們想比較大小,可以用a ==
b來判斷,但是如果是兩個字元串變數a和b,我們就不得不用strcmp來比較了,因為此時,a和b本質上是指向字元串的指針,如果直接還是用==比較,
那比較的實際是指針中存儲的值——地址。
在Java中呢,我們通過使用 str1 == str2 可以確定兩個字元串變數是否指向同一塊物理內存位置,這叫做「對象同一性」。在 Java 中要比較兩個字元串值,你要使用 str1.equals(str2)。
然後在Python中,和前兩者都不一樣,由於對象的引入,我們可以用「is」這個運算符來比較兩個對象的實體,和具體對象的type就沒有關系
了,比如你的對象是tuple也好,string也好,甚至class也好,都可以用」is」來比較,本質上就是「對象同一性」的比較,和Java中
的==類似,和 C中的pointer比較類似。Python中也有==比較,這個就是值比較了。
3
由於對象機制的引入,讓Python的使用非常靈活,比如我們可以用自省方法來查看內存中以對象形式存在的其它模塊和函數,獲取它們的信息,並對它們進行
操作。用這種方法,你可以定義沒有名稱的函數,不按函數聲明的參數順序調用函數,甚至引用事先並不知道名稱的函數。 這些操作在C中都是不可想像的。
4 還有一個很有意思的細節,就是類型對對象行為的影響是各方面的,比如說,a = 1; b =
1這個語句中,在Python裡面引發的,可能是a,b同時指向一個值為1的對象,也可能是分別指向兩個值為1的對象。而例如這個語句,c = []; d
= [],那麼c和d是肯定指向不同的,新創建的空list的。沒完,如果是」c = d =
[]「這個語句呢?此時,c和d又指向了相同的list對象了。這些區別,都是在c中沒有的。
最後,我們來說說為什麼python慢。主要原因就是function call
overhead比較大。因為所有東西現在都是對象了,contruct 和destroy 花費也大。連1 + 1 都是 function
call,像』12′+』45′ 這樣的要 create a third string object, then calls the string
obj』s __add。可想而知,速度如何能快起來?
列表和數組
分析Python中的list和C中的數組總是很有趣的。相信可能一些朋友和一樣,初學列表的時候,都是把它當作是數組來學的。最初對於list和數組區別的定性,主要是集中在兩點。首先,list可以包含很多不同的數據類型,比如
["this", 1, "is", "an", "array"]
這個List,如果放在C中,其實是一個字元串數組,相當於二維的了。
其次呢,list有很多方法,其本身就是一個對象,這個和C的單純數組是不同的。對於List的操作很多樣,因為有方法也有重載的運算符。也帶來一些問題,比如下面這個例子:
加入我們要產生一個多維列表,用下面這個語句
A = [[None] * 2] * 3
結果,A的值會是
[[None, None], [None, None], [None, None]]
初一看沒問題,典型的二維數組形式的列表。好,現在我們想修改第一個None的值,用語句
A[0][0] = 5
現在我們再來看看A的值:
[[5, None], [5, None], [5, None]]
發現問題沒有?這是因為用 * 來復制時,只是創建了對這個對象的引用,而不是真正的創建了它。 *3 創建了一個包含三個引用的列表,這三個引用都指向同一個長度為2的列表。其中一個行的改變會顯示在所有行中,這當然不是你想要的。解決方法當然有,我們這樣來創建
A = [None]*3
for i in range(3):
A[i] = [None] * 2
這樣創建了一個包含三個不同的長度為2的列表。
所以,還是一直強調的,越復雜的東西,越靈活,也越容易出錯。
代碼優化
C是一個很簡單的語言,當我們考慮優化的時候,通常想得也很簡單,比如系統級調用越少越好(緩沖區機制),消除循環的低效率和不必要的系統引用,等
等,其實主要都是基於系統和硬體細節考慮的。而Python就完全不一樣了,當然上面說的這些優化形式,對於Python仍然是實用的,但由於
Python的語法形式千差萬別,庫和模塊多種多樣,所以對於語言本身而言,就有很多值得注意的優化要點,舉幾個例子吧。
比如我們有一個list L1,想要構建一個新的list L2,L2包括L1的頭4個元素。按照最直接的想法,代碼應該是
L2 = []
for i in range[3]:
L2.append(L1[i])
而更加優化和優美的版本是
L2 = L1[:3]
再比如,如果s1..s7是大字元串(10K+),那麼join([s1,s2,s3,s4,s5,s6,s7])就會比
s1+s2+s3+s4+s5+s6+s7快得多,因為後者會計算很多次子表達式,而join()則在一次過程中完成所有的復制。還有,對於字元串操作,
對字元串對象使用replace()方法。僅當在沒有固定字元串模式時才使用正則表達式。
所以說,以優化為評判標准,如果說C是短小精悍,Python就是博大精深。
include和import
在C語言中的include非常簡單,因為形式單一,意義明確,當你需要用到外部函數等資源時,就用include。而Python中有一個相似的
機制,就是import。乍一看,這兩個傢伙挺像的,不都是我們要用外部資源(最常見的就是函數或者模塊(Python))時就用這個來指明么?其實不
然,兩者的處理機制本質區別在於,C中的include是用於告訴預處理器,這個include指定的文件的內容,你都給我當作在本地源文件中出現過。而
import呢,不是簡單的將後面的內容*直接*插入到本地裡面去,這玩意更加靈活。事實上,幾乎所有類似的機制,Python都比C靈活。這里不是說C
不好,C很簡練,我其實更喜歡C。
簡單說說這個靈活性。import在python中有三種形式,import X, from X import *( or a,b,c……),
X = __import__(』x')。最常用的是第二種,因為比較方便,不像第一種那樣老是用X.mole來調用模塊。from X
import *只是import那些public的mole(一般都是不以__命名的模塊),也可以指定a,b,c來import。
什麼時候用哪一種形式呢?應該說,在大多數的模塊文檔里,都會明確告訴你應該用哪種形式。如果需要用到很多對象,那麼from X import
*可能更合適一些,但是,就目前來看,大多數第三方Python庫都不推薦使用from molename import *
這種格式。這樣做會使引入者的namespace混亂。很多人甚至對於那些專門設計用於這種模式的模塊(包括Tkinter,
threading和matplot)都不採用這種方式。而如果你僅僅需要某個對象類a,那麼用from X import a比用import
X.a更好,因為以後你調用a的函數直接用a.function()既可以了,不用加X。
如果你連自己希望import的模塊都不知道怎麼辦?請注意,此時Python的優勢就體現出來了,我們可以用
__import__(mole)來調用mole,其中這個mole是字元串,這樣,可以在運行時再決定,你到底要調用什麼mole。舉
個例子:
def classFromMole (mole, Name):
mod = __import__ (mole)
return getattr (mod, Name)
這里,定義了一個函數classFromMole,你可以在代碼的任何時候調用它,
o = classFromMole (MoleOfTheClass, NameOfTheAttribute)()
只需要傳入字元串形式的你希望import的模塊MoleOfTheClass和其中屬性的名字NameOfTheAttribute(當然可以是數據也可以是方法),就能調用了,這個名字字元串不用事先指定,而是根據當時運行的情況來判斷。
順帶說一句,Python中import的順序也有默認規定,這個和C中的include有點類似,因為我們一般都是先include系統文件,再
include自己的頭文件(而且還有<>和「」的區別)。Python中呢,一般應該按照以下順序import模塊:
1. 標准庫模塊 — 如 sys, os, getopt 等
2. 第三方模塊
3. 本地實現的模塊。
全局變數
這里談全局變數呢,倒不是說Python和c的全局變數概念不同,他們的概念是相同的。只是在使用機制上,是有一些差異的。舉個例子:
– mole.py –
globalvar = 1
def func():
print globalvar
# This makes someglobal readonly,
# any attempt to write to someglobal
# would create a new local variable.
def func2():
global globalvar
globalvar = 2
# this allows you to manipulate the global
# variable
在 func這個函數中,globalvar是只讀的。如果你使用了globalvar =
xxx這種賦值語句,Python會重新創造一個新的本地對象並將新值賦給它,原來的對象值不變。而在func2函數中,由於我們事先申明了
globalvar是global的,那麼此時的更改就直接在全局變數上生效。