RSA、Elgamal、背包演算法、Rabin、D-H、ECC橢圓曲線加密演算法。
非對稱加密(公鑰加密):指加密和解密使用不同密鑰的加密演算法,也稱為公私鑰加密。假設兩個用戶要加密交換數據,雙方交換公鑰,使用時一方用對方的公鑰加密,另一方即可用自己的私鑰解密。如果企業中有n個用戶,企業需要生成n對密鑰,並分發n個公鑰。假設A用B的公鑰加密消息,用A的私鑰簽名,B接到消息後,首先用A的公鑰驗證簽名,確認後用自己的私鑰解密消息。由於公鑰是可以公開的,用戶只要保管好自己的私鑰即可,因此加密密鑰的分發將變得十分簡單。同時,由於每個用戶的私鑰是唯一的,其他用戶除了可以通過信息發送者的公鑰來驗證信息的來源是否真實,還可以通過數字簽名確保發送者無法否認曾發送過該信息。
『貳』 如何用通俗易懂的話來解釋非對稱加密
在採用對稱密鑰體系時,加密與解密採用相同的演算法和密鑰,這就說明收發雙方需要保存有相同密鑰。這就需要一個安全的通道來傳遞這個密鑰,但實際上這樣安全的通道是不方便的或者沒有的。所以就有了非對稱形式的(不同的密鑰)。公鑰是公開的,私鑰則只有接受者才有,這樣就不必傳遞私鑰了,更安全了。基本的數學原理?
加解密過程由單向陷門函數實現。單向陷門函數是指由已知的y=f(x)和x求出y是簡單的,但是已知y=f(x)和y求出x是困難的。當前工程應用大都基於大數分解,離散對數和橢圓曲線此類數學難題。
『叄』 圖文徹底搞懂非對稱加密(公鑰密鑰)
前文詳細講解了對稱加密及演算法原理。那麼是不是對稱加密就萬無一失了呢?對稱加密有一個天然的缺點,就是加密方和解密方都要持有同樣的密鑰。你可以能會提出疑問:既然要加、解密,當然雙方都要持有密鑰,這有什麼問題呢?別急,我們繼續往下看。
我們先看一個例子,小明和小紅要進行通信,但是不想被其他人知道通信的內容,所以雙方決定採用對稱加密的方式。他們做了下面的事情:
1、雙方商定了加密和解密的演算法
2、雙方確定密鑰
3、通信過程中採用這個密鑰進行加密和解密
這是不是一個看似完美的方案?但其中有一個步驟存在漏洞!
問題出在步驟2:雙方確定密鑰!
你肯定會問,雙方不確定密鑰,後面的加、解密怎麼做?
問題在於確定下來的密鑰如何讓雙方都知道。密鑰在傳遞過程中也是可能被盜取的!這里引出了一個經典問題:密鑰配送問題。
小明和小紅在商定密鑰的過程中肯定會多次溝通密鑰是什麼。即使單方一次確定下來,也要發給對方。加密是為了保證信息傳輸的安全,但密鑰本身也是信息,密鑰的傳輸安全又該如何保證呢?難不成還要為密鑰的傳輸再做一次加密?這樣不就陷入了死循環?
你是不是在想,密鑰即使被盜取,不還有加密演算法保證信息安全嗎?如果你真的有這個想法,那麼趕緊復習一下上一篇文章講的杜絕隱蔽式安全性。任何演算法最終都會被破譯,所以不能依賴演算法的復雜度來保證安全。
小明和小紅現在左右為難,想加密就要給對方發密鑰,但發密鑰又不能保證密鑰的安全。他們應該怎麼辦呢?
有如下幾種解決密鑰配送問題的方案:
非對稱加密也稱為公鑰密碼。我更願意用非對稱加密這種叫法。因為可以體現出加密和解密使用不同的密鑰。
對稱加密中,我們只需要一個密鑰,通信雙方同時持有。而非對稱加密需要4個密鑰。通信雙方各自准備一對公鑰和私鑰。其中公鑰是公開的,由信息接受方提供給信息發送方。公鑰用來對信息加密。私鑰由信息接受方保留,用來解密。既然公鑰是公開的,就不存在保密問題。也就是說非對稱加密完全不存在密鑰配送問題!你看,是不是完美解決了密鑰配送問題?
回到剛才的例子,小明和下紅經過研究發現非對稱加密能解決他們通信的安全問題,於是做了下面的事情:
1、小明確定了自己的私鑰 mPrivateKey,公鑰 mPublicKey。自己保留私鑰,將公鑰mPublicKey發給了小紅
2、小紅確定了自己的私鑰 hPrivateKey,公鑰 hPublicKey。自己保留私鑰,將公鑰 hPublicKey 發給了小明
3、小明發送信息 「周六早10點soho T1樓下見」,並且用小紅的公鑰 hPublicKey 進行加密。
4、小紅收到信息後用自己的私鑰 hPrivateKey 進行解密。然後回復 「收到,不要遲到」 並用小明的公鑰mPublicKey加密。
5、小明收到信息後用自己的私鑰 mPrivateKey 進行解密。讀取信息後心裡暗想:還提醒我不遲到?每次遲到的都是你吧?
以上過程是一次完整的request和response。通過這個例子我們梳理出一次信息傳輸的非對稱加、解密過程:
1、消息接收方准備好公鑰和私鑰
2、私鑰接收方自己留存、公鑰發布給消息發送方
3、消息發送方使用接收方公鑰對消息進行加密
4、消息接收方用自己的私鑰對消息解密
公鑰只能用做數據加密。公鑰加密的數據,只能用對應的私鑰才能解密。這是非對稱加密的核心概念。
下面我用一個更為形象的例子來幫助大家理解。
我有下圖這樣一個信箱。
由於我只想接收我期望與之通信的朋友信件。於是我在投遞口加了一把鎖,這把鎖的鑰匙(公鑰)我可以復制n份,發給我想接受其信件的人。只有這些人可以用這把鑰匙打開寄信口,把信件投入。
相信通過這個例子,可以幫助大家徹底理解公鑰和私鑰的概念。
RSA 是現在使用最為廣泛的非對稱加密演算法,本節我們來簡單介紹 RSA 加解密的過程。
RSA 加解密演算法其實很簡單:
密文=明文^E mod N
明文=密文^D mod N
RSA 演算法並不會像對稱加密一樣,用玩魔方的方式來打亂原始信息。RSA 加、解密中使用了是同樣的數 N。公鑰是公開的,意味著 N 也是公開的。所以私鑰也可以認為只是 D。
我們接下來看一看 N、E、D 是如何計算的。
1、求 N
首先需要准備兩個很大質數 a 和 b。太小容易破解,太大計算成本太高。我們可以用 512 bit 的數字,安全性要求高的可以使用 1024,2048 bit。
N=a*b
2、求 L
L 只是生成密鑰對過程中產生的數,並不參與加解密。L 是 (a-1) 和 (b-1) 的最小公倍數
3、求 E(公鑰)
E 有兩個限制:
1<E<
E和L的最大公約數為1
第一個條件限制了 E 的取值范圍,第二個條件是為了保證有與 E 對應的解密時用到的 D。
4、求 D(私鑰)
D 也有兩個限制條件:
1<D<L
E*D mod L = 1
第二個條件確保密文解密時能夠成功得到原來的明文。
由於原理涉及很多數學知識,這里就不展開細講,我們只需要了解這個過程中用到這幾個數字及公式。這是理解RSA 安全性的基礎。
由於 N 在公鑰中是公開的,那麼只需要破解 D,就可以解密得到明文。
在實際使用場景中,質數 a,b 一般至少1024 bit,那麼 N 的長度在 2048 bit 以上。D 的長度和 N 接近。以現在計算機的算力,暴力破解 D 是非常困難的。
公鑰是公開的,也就是說 E 和 N 是公開的,那麼是否可以通過 E 和 N 推斷出 D 呢?
E*D mod L = 1
想要推算出 D 就需要先推算出 L。L 是 (a-1) 和 (b-1) 的最小公倍數。想知道 L 就需要知道質數 a 和 b。破解者並不知道這兩個質數,想要破解也只能通過暴力破解。這和直接破解 D 的難度是一樣的。
等等,N 是公開的,而 N = a*b。那麼是否可以對 N 進行質因數分解求得 a 和 b 呢?好在人類還未發現高效進行質因數分解的方法,因此可以認為做質因數分解非常困難。
但是一旦某一天發現了快速做質因數分解的演算法,那麼 RSA 就不再安全
我們可以看出大質數 a 和 b 在 RSA 演算法中的重要性。保證 a 和 b 的安全也就確保了 RSA 演算法的安全性。a 和 b 是通過偽隨機生成器生成的。一旦偽隨機數生成器的演算法有問題,導致隨機性很差或者可以被推斷出來。那麼 RSA 的安全性將被徹底破壞。
中間人攻擊指的是在通信雙方的通道上,混入攻擊者。他對接收方偽裝成發送者,對放送放偽裝成接收者。
他監聽到雙方發送公鑰時,偷偷將消息篡改,發送自己的公鑰給雙方。然後自己則保存下來雙方的公鑰。
如此操作後,雙方加密使用的都是攻擊者的公鑰,那麼後面所有的通信,攻擊者都可以在攔截後進行解密,並且篡改信息內容再用接收方公鑰加密。而接收方拿到的將會是篡改後的信息。實際上,發送和接收方都是在和中間人通信。
要防範中間人,我們需要使用公鑰證書。這部分內容在下一篇文章里會做介紹。
和對稱加密相比較,非對稱加密有如下特點:
1、非對稱加密解決了密碼配送問題
2、非對稱加密的處理速度只有對稱加密的幾百分之一。不適合對很長的消息做加密。
3、1024 bit 的 RSA不應該在被新的應用使用。至少要 2048 bit 的 RSA。
RSA 解決了密碼配送問題,但是效率更低。所以有些時候,根據需求可能會配合使用對稱和非對稱加密,形成混合密碼系統,各取所長。
最後提醒大家,RSA 還可以用於簽名,但要注意是私鑰簽名,公鑰驗簽。發信方用自己的私鑰簽名,收信方用對方公鑰驗簽。關於簽名,後面的文章會再詳細講解。