非對稱加密需要兩個密鑰:公鑰(publickey) 和私鑰 (privatekey)。公鑰和私鑰是一對,如果用公鑰對數據加密,那麼只能用對應的私鑰解密。如果用私鑰對數據加密,只能用對應的公鑰進行解密。因為加密和解密用的是不同的密鑰,所以稱為非對稱加密。
非對稱加密演算法的保密性好,它消除了最終用戶交換密鑰的需要。但是加解密速度要遠遠慢於對稱加密,在某些極端情況下,甚至能比對稱加密慢上1000倍。
演算法強度復雜、安全性依賴於演算法與密鑰但是由於其演算法復雜,而使得加密解密速度沒有對稱加密解密的速度快。對稱密碼體制中只有一種密鑰,並且是非公開的,如果要解密就得讓對方知道密鑰。所以保證其安全性就是保證密鑰的安全,而非對稱密鑰體制有兩種密鑰,其中一個是公開的,這樣就可以不需要像對稱密碼那樣傳輸對方的密鑰了。這樣安全性就大了很多。
RSA、Elgamal、背包演算法、Rabin、D-H、ECC (橢圓曲線加密演算法)。使用最廣泛的是 RSA 演算法,Elgamal 是另一種常用的非對稱加密演算法。
收信者是唯一能夠解開加密信息的人,因此收信者手裡的必須是私鑰。發信者手裡的是公鑰,其它人知道公鑰沒有關系,因為其它人發來的信息對收信者沒有意義。
客戶端需要將認證標識傳送給伺服器,此認證標識 (可能是一個隨機數) 其它客戶端可以知道,因此需要用私鑰加密,客戶端保存的是私鑰。伺服器端保存的是公鑰,其它伺服器知道公鑰沒有關系,因為客戶端不需要登錄其它伺服器。
數字簽名是為了表明信息沒有受到偽造,確實是信息擁有者發出來的,附在信息原文的後面。就像手寫的簽名一樣,具有不可抵賴性和簡潔性。
簡潔性:對信息原文做哈希運算,得到消息摘要,信息越短加密的耗時越少。
不可抵賴性:信息擁有者要保證簽名的唯一性,必須是唯一能夠加密消息摘要的人,因此必須用私鑰加密 (就像字跡他人無法學會一樣),得到簽名。如果用公鑰,那每個人都可以偽造簽名了。
問題起源:對1和3,發信者怎麼知道從網上獲取的公鑰就是真的?沒有遭受中間人攻擊?
這樣就需要第三方機構來保證公鑰的合法性,這個第三方機構就是 CA (Certificate Authority),證書中心。
CA 用自己的私鑰對信息原文所有者發布的公鑰和相關信息進行加密,得出的內容就是數字證書。
信息原文的所有者以後發布信息時,除了帶上自己的簽名,還帶上數字證書,就可以保證信息不被篡改了。信息的接收者先用 CA給的公鑰解出信息所有者的公鑰,這樣可以保證信息所有者的公鑰是真正的公鑰,然後就能通過該公鑰證明數字簽名是否真實了。
RSA 是目前最有影響力的公鑰加密演算法,該演算法基於一個十分簡單的數論事實:將兩個大素數相乘十分容易,但想要對其乘積進行因式分解卻極其困難,因此可以將乘積公開作為加密密鑰,即公鑰,而兩個大素數組合成私鑰。公鑰是可發布的供任何人使用,私鑰則為自己所有,供解密之用。
A 要把信息發給 B 為例,確定角色:A 為加密者,B 為解密者。首先由 B 隨機確定一個 KEY,稱之為私鑰,將這個 KEY 始終保存在機器 B 中而不發出來;然後,由這個 KEY 計算出另一個 KEY,稱之為公鑰。這個公鑰的特性是幾乎不可能通過它自身計算出生成它的私鑰。接下來通過網路把這個公鑰傳給 A,A 收到公鑰後,利用公鑰對信息加密,並把密文通過網路發送到 B,最後 B 利用已知的私鑰,就能對密文進行解碼了。以上就是 RSA 演算法的工作流程。
由於進行的都是大數計算,使得 RSA 最快的情況也比 DES 慢上好幾倍,無論是軟體還是硬體實現。速度一直是 RSA 的缺陷。一般來說只用於少量數據加密。RSA 的速度是對應同樣安全級別的對稱密碼演算法的1/1000左右。
比起 DES 和其它對稱演算法來說,RSA 要慢得多。實際上一般使用一種對稱演算法來加密信息,然後用 RSA 來加密比較短的公鑰,然後將用 RSA 加密的公鑰和用對稱演算法加密的消息發送給接收方。
這樣一來對隨機數的要求就更高了,尤其對產生對稱密碼的要求非常高,否則的話可以越過 RSA 來直接攻擊對稱密碼。
和其它加密過程一樣,對 RSA 來說分配公鑰的過程是非常重要的。分配公鑰的過程必須能夠抵擋中間人攻擊。假設 A 交給 B 一個公鑰,並使 B 相信這是A 的公鑰,並且 C 可以截下 A 和 B 之間的信息傳遞,那麼 C 可以將自己的公鑰傳給 B,B 以為這是 A 的公鑰。C 可以將所有 B 傳遞給 A 的消息截下來,將這個消息用自己的密鑰解密,讀這個消息,然後將這個消息再用 A 的公鑰加密後傳給 A。理論上 A 和 B 都不會發現 C 在偷聽它們的消息,今天人們一般用數字認證來防止這樣的攻擊。
(1) 針對 RSA 最流行的攻擊一般是基於大數因數分解。1999年,RSA-155 (512 bits) 被成功分解,花了五個月時間(約8000 MIPS 年)和224 CPU hours 在一台有3.2G 中央內存的 Cray C916計算機上完成。
RSA-158 表示如下:
2009年12月12日,編號為 RSA-768 (768 bits, 232 digits) 數也被成功分解。這一事件威脅了現通行的1024-bit 密鑰的安全性,普遍認為用戶應盡快升級到2048-bit 或以上。
RSA-768表示如下:
(2) 秀爾演算法
量子計算里的秀爾演算法能使窮舉的效率大大的提高。由於 RSA 演算法是基於大數分解 (無法抵抗窮舉攻擊),因此在未來量子計算能對 RSA 演算法構成較大的威脅。一個擁有 N 量子位的量子計算機,每次可進行2^N 次運算,理論上講,密鑰為1024位長的 RSA 演算法,用一台512量子比特位的量子計算機在1秒內即可破解。
DSA (Digital Signature Algorithm) 是 Schnorr 和 ElGamal 簽名演算法的變種,被美國 NIST 作為 DSS (DigitalSignature Standard)。 DSA 是基於整數有限域離散對數難題的。
簡單的說,這是一種更高級的驗證方式,用作數字簽名。不單單只有公鑰、私鑰,還有數字簽名。私鑰加密生成數字簽名,公鑰驗證數據及簽名,如果數據和簽名不匹配則認為驗證失敗。數字簽名的作用就是校驗數據在傳輸過程中不被修改,數字簽名,是單向加密的升級。
橢圓加密演算法(ECC)是一種公鑰加密演算法,最初由 Koblitz 和 Miller 兩人於1985年提出,其數學基礎是利用橢圓曲線上的有理點構成 Abel 加法群上橢圓離散對數的計算困難性。公鑰密碼體制根據其所依據的難題一般分為三類:大整數分解問題類、離散對數問題類、橢圓曲線類。有時也把橢圓曲線類歸為離散對數類。
ECC 的主要優勢是在某些情況下它比其他的方法使用更小的密鑰 (比如 RSA),提供相當的或更高等級的安全。ECC 的另一個優勢是可以定義群之間的雙線性映射,基於 Weil 對或是 Tate 對;雙線性映射已經在密碼學中發現了大量的應用,例如基於身份的加密。不過一個缺點是加密和解密操作的實現比其他機制花費的時間長。
ECC 被廣泛認為是在給定密鑰長度的情況下,最強大的非對稱演算法,因此在對帶寬要求十分緊的連接中會十分有用。
比特幣錢包公鑰的生成使用了橢圓曲線演算法,通過橢圓曲線乘法可以從私鑰計算得到公鑰, 這是不可逆轉的過程。
https://github.com/esxgx/easy-ecc
Java 中 Chipher、Signature、KeyPairGenerator、KeyAgreement、SecretKey 均不支持 ECC 演算法。
https://www.jianshu.com/p/58c1750c6f22
DH,全稱為"Diffie-Hellman",它是一種確保共享 KEY 安全穿越不安全網路的方法,也就是常說的密鑰一致協議。由公開密鑰密碼體制的奠基人 Diffie 和 Hellman 所提出的一種思想。簡單的說就是允許兩名用戶在公開媒體上交換信息以生成"一致"的、可以共享的密鑰。也就是由甲方產出一對密鑰 (公鑰、私鑰),乙方依照甲方公鑰產生乙方密鑰對 (公鑰、私鑰)。
以此為基線,作為數據傳輸保密基礎,同時雙方使用同一種對稱加密演算法構建本地密鑰 (SecretKey) 對數據加密。這樣,在互通了本地密鑰 (SecretKey) 演算法後,甲乙雙方公開自己的公鑰,使用對方的公鑰和剛才產生的私鑰加密數據,同時可以使用對方的公鑰和自己的私鑰對數據解密。不單單是甲乙雙方兩方,可以擴展為多方共享數據通訊,這樣就完成了網路交互數據的安全通訊。
具體例子可以移步到這篇文章: 非對稱密碼之DH密鑰交換演算法
參考:
https://blog.csdn.net/u014294681/article/details/86705999
https://www.cnblogs.com/wangzxblog/p/13667634.html
https://www.cnblogs.com/taoxw/p/15837729.html
https://www.cnblogs.com/fangfan/p/4086662.html
https://www.cnblogs.com/utank/p/7877761.html
https://blog.csdn.net/m0_59133441/article/details/122686815
https://www.cnblogs.com/muliu/p/10875633.html
https://www.cnblogs.com/wf-zhang/p/14923279.html
https://www.jianshu.com/p/7a927db713e4
https://blog.csdn.net/ljx1400052550/article/details/79587133
https://blog.csdn.net/yuanjian0814/article/details/109815473
⑵ 什麼叫非對稱加密演算法
非對稱加密演算法是一種密鑰的保密方法。
非對稱加密演算法需要兩個密鑰:公開密鑰(publickey:簡稱公鑰)和私有密鑰(privatekey:簡稱私鑰)。公鑰與私鑰是一對,如果用公鑰對數據進行加密,只有用對應的私鑰才能解密。因為加密和解密使用的是兩個不同的密鑰,所以這種演算法叫作非對稱加密演算法。
⑶ 非對稱密鑰演算法有哪些
具體如下。
RSA(RSAalgorithm):由RSA公司發明,是一個支持變長密鑰的公開密鑰算帆碧法,需要加密的文件塊的長度也是可變的,非對稱加密演算法。DSA(DigitalSignatureAlgorithm):數字簽名演算法,是一種標準的DSS(數字灶告簽名標准)嚴格來說不算加密演算法;算ECC(EllipticCurvesCryptography):橢圓曲線密碼編碼學,也屬於公開密鑰演算法。
非對稱加密演算法是一種密鑰的保密方法。非對稱加密演算法需要兩個密鑰:公開密鑰(publickey)和私有密鑰(privatekey)。公隱轎明開密鑰與私有密鑰是一對。
⑷ 對稱密鑰演算法與非對稱密鑰演算法有何區別
對稱密鑰演算法與非對稱密鑰演算法的區別
密碼學中兩種常見的密碼演算法為對稱密碼演算法(單鑰密碼演算法)和非對稱密碼演算法(公鑰密碼演算法)。
對稱密碼演算法有時又叫傳統密碼演算法,就是加密密鑰能夠從解密密鑰中推算出來,反過來也成立。在大多數對稱演算法中,加密解密密鑰是相同的。這些演算法也叫秘密密鑰演算法或單密鑰演算法,它要求發送者和接收者在安全通信之前,商定一個密鑰。對稱演算法的安全性依賴於密鑰,泄漏密鑰就意味著任何人都能對消息進行加密解密。只要通信需要保密,密鑰就必須保密。對稱演算法的加密和解密表示為:
Ek(M)=C
Dk(C)=M
對稱演算法可分為兩類。一次只對明文中的單個位(有時對位元組)運算的演算法稱為序列演算法或序列密碼。另一類演算法是對明文的一組位進行運算,這些位組稱為分組,相應的演算法稱為分組演算法或分組密碼。現代計算機密碼演算法的典型分組長度為64位――這個長度大到足以防止分析破譯,但又小到足以方便作用。
這種演算法具有如下的特性:
Dk(Ek(M))=M
常用的採用對稱密碼術的加密方案有5個組成部分(如圖所示)
l)明文:原始信息。
2)加密演算法:以密鑰為參數,對明文進行多種置換和轉換的規則和步驟,變換結果為密文。
3)密鑰:加密與解密演算法的參數,直接影響對明文進行變換的結果。
4)密文:對明文進行變換的結果。
5)解密演算法:加密演算法的逆變換,以密文為輸入、密鑰為參數,變換結果為明文。
對稱密碼術的優點在於效率高(加/解密速度能達到數十兆/秒或更多),演算法簡單,系統開銷小,適合加密大量悔敬數據。
盡管對稱密碼術有一些很好的特性,但它也存在著明顯的缺陷,包括:
l)進行安全通信前需要以安全方式進行密鑰交換。這一步驟,在某種情況下是可行的,但在某些情況下會非常困難,甚至無法實現。
2)規模復雜。舉例來說,A與B兩人之間的密鑰必須不同於A和C兩人之間的密鑰,否則給B的消息的安全性就會受到威脅。在有1000個用戶的團體中,A需要保持至少999個密鑰(更確切的說是1000個,如果她需要留一個密鑰給他自己加密數據)。對於該團體中的其它用戶,此種倩況同樣存在。這樣,這個團體一共需要將近50萬個不同的密鑰!推而廣之,n個用戶的團體需要N2/2個不同的密鑰。
通過應用基於對稱密碼的中心服務結構,上述問題有所緩解。在這個體系中,團體中的任何一個用戶與中心伺服器(通常稱作密鑰分配中心)共享一個密鑰。因而,需要存儲的密鑰數量基本上和團體的人數差不多,而且中心伺服器也可以為以前互相不認識的用戶充當「介紹人」。但是,這個與安全密切相關的中心伺服器必須隨時都是在線的,因為只要伺服器一掉線,用戶間的通信將不可能進行。這就意味著中心伺服器是整個通信成敗的關鍵和受攻擊的焦點,也意味著它還是一個龐大組織通信服務的「瓶頸」斗前數
非對稱密鑰演算法是指一個加密演算法的加密密鑰和解密密鑰是不一樣的,或者說不能由其中一個密鑰推導出另一個密鑰。1、加解密時採用的密鑰空首的差異:從上述對對稱密鑰演算法和非對稱密鑰演算法的描述中可看出,對稱密鑰加解密使用的同一個密鑰,或者能從加密密鑰很容易推出解密密鑰;②對稱密鑰演算法具有加密處理簡單,加解密速度快,密鑰較短,發展歷史悠久等特點,非對稱密鑰演算法具有加解密速度慢的特點,密鑰尺寸大,發展歷史較短等特點。
⑸ 常用的非對稱密鑰密碼演算法包括des
DES全稱為DataEncryptionStandard,即數據加密標准。
是一種使用密鑰加密的塊演算法,1977年被美國聯邦政府的國家標准局確定為聯邦資料處理標准(FIPS),並授權在非密級政府通信中使用,隨後該演算法在國際上廣泛流傳開來。
DES是對稱性加密里常見的一種,是一種使用秘鑰加密的塊演算法。秘鑰長度是64位(bit),超過位數秘鑰被忽略。所謂對稱性加密,加密和解密秘鑰相同。
對稱性加密一般會按照固定長度,把待加密字元串分成塊。不足一整塊或者剛好最後有特殊填充字元。
常見的填充有:'pkcs5'、'pkcs7'、'iso10126'、'ansix923'、'zero'類型,包括DES-ECB、DES-CBC、DES-CTR、DES-OFB、DES-CFB。