Ⅰ 公開密鑰密碼體系的演算法
公開密鑰演算法是在1976年由當時在美國斯坦福大學的迪菲(Diffie)和赫爾曼(Hellman)兩人首先發明的(論文New Direction in Cryptography)。但目前最流行的RSA是1977年由MIT教授Ronald L.Rivest,Adi Shamir和Leonard M.Adleman共同開發的,分別取自三名數學家的名字的第一個字母來構成的。
1976年提出的公開密鑰密碼體制思想不同於傳統的對稱密鑰密碼體制,它要求密鑰成對出現,一個為加密密鑰(e),另一個為解密密鑰(d),且不可能從其中一個推導出另一個。自1976年以來,已經提出了多種公開密鑰密碼演算法,其中許多是不安全的, 一些認為是安全的演算法又有許多是不實用的,它們要麼是密鑰太大,要麼密文擴展十分嚴重。多數密碼演算法的安全基礎是基於一些數學難題, 這些難題專家們認為在短期內不可能得到解決。因為一些問題(如因子分解問題)至今已有數千年的歷史了。
公鑰加密演算法也稱非對稱密鑰演算法,用兩對密鑰:一個公共密鑰和一個專用密鑰。用戶要保障專用密鑰的安全;公共密鑰則可以發布出去。公共密鑰與專用密鑰是有緊密關系的,用公共密鑰加密的信息只能用專用密鑰解密,反之亦然。由於公鑰演算法不需要聯機密鑰伺服器,密鑰分配協議簡單,所以極大簡化了密鑰管理。除加密功能外,公鑰系統還可以提供數字簽名。 公鑰加密演算法中使用最廣的是RSA。RSA使用兩個密鑰,一個公共密鑰,一個專用密鑰。如用其中一個加密,則可用另一個解密,密鑰長度從40到2048bit可變,加密時也把明文分成塊,塊的大小可變,但不能超過密鑰的長度,RSA演算法把每一塊明文轉化為與密鑰長度相同的密文塊。密鑰越長,加密效果越好,但加密解密的開銷也大,所以要在安全與性能之間折衷考慮,一般64位是較合適的。RSA的一個比較知名的應用是SSL,在美國和加拿大SSL用128位RSA演算法,由於出口限制,在其它地區(包括中國)通用的則是40位版本。
RSA演算法研製的最初理念與目標是努力使互聯網安全可靠,旨在解決DES演算法秘密密鑰的利用公開信道傳輸分發的難題。而實際結果不但很好地解決了這個難題;還可利用RSA來完成對電文的數字簽名以抗對電文的否認與抵賴;同時還可以利用數字簽名較容易地發現攻擊者對電文的非法篡改,以保護數據信息的完整性。 通常信息安全的目標可以概括為解決信息的以下問題:
保密性(Confidentiality)保證信息不泄露給未經授權的任何人。
完整性(Integrity)防止信息被未經授權的人篡改。
可用性(Availability)保證信息和信息系統確實為授權者所用。
可控性(Controllability)對信息和信息系統實施安全監控,防止非法利用信息和信息系統。
密碼是實現一種變換,利用密碼變換保護信息秘密是密碼的最原始的能力,然而,隨著信息和信息技術發展起來的現代密碼學,不僅被用於解決信息的保密性,而且也用於解決信息的完整性、可用性和可控性。可以說,密碼是解決信息安全的最有效手段,密碼技術是解決信息安全的核心技術。
公用密鑰的優點就在於,也許你並不認識某一實體,但只要你的伺服器認為該實體的CA是可靠的,就可以進行安全通信,而這正是Web商務這樣的業務所要求的。例如信用卡購物。服務方對自己的資源可根據客戶CA的發行機構的可靠程度來授權。目前國內外尚沒有可以被廣泛信賴的CA。美國Natescape公司的產品支持公用密鑰,但把Natescape公司作為CA。由外國公司充當CA在中國是一件不可想像的事情。
公共密鑰方案較保密密鑰方案處理速度慢,因此,通常把公共密鑰與專用密鑰技術結合起來實現最佳性能。即用公共密鑰技術在通信雙方之間傳送專用密鑰,而用專用密鑰來對實際傳輸的數據加密解密。另外,公鑰加密也用來對專用密鑰進行加密。
在這些安全實用的演算法中,有些適用於密鑰分配,有些可作為加密演算法,還有些僅用於數字簽名。多數演算法需要大數運算,所以實現速度很慢,不能用於快的數據加密。以下將介紹典型的公開密鑰密碼演算法-RSA。
RSA演算法很好的完成對電文的數字簽名以抗對數據的否認與抵賴;利用數字簽名較容易地發現攻擊者對電文的非法篡改,以保護數據信息的完整性。目前為止,很多種加密技術採用了RSA演算法,比如PGP(PrettyGoodPrivacy)加密系統,它是一個工具軟體,向認證中心注冊後就可以用它對文件進行加解密或數字簽名,PGP所採用的就是RSA演算法。由此可以看出RSA有很好的應用。
Ⅱ 公開密鑰技術,如何進行加密和驗證
你說的也叫非對稱加密技術,下面是簡介:
1976年,美國學者Dime和Henman為解決信息公開傳送和密鑰管理問題,提出一種新的密鑰交換協議,允許在不安全的媒體上的通訊雙方交換信息,安全地達成一致的密鑰,這就是「公開密鑰系統」。相對於「對稱加密演算法」這種方法也叫做「非對稱加密演算法」。與對稱加密演算法不同,非對稱加密演算法需要兩個密鑰:公開密鑰(publickey)和私有密(privatekey)。公開密鑰與私有密鑰是一對,如果用公開密鑰對數據進行加密,只有用對應的私有密鑰才能解密;如果用私有密鑰對數據進行加密,那麼只有用對應的公開密鑰才能解密。因為加密和解密使用的是兩個不同的密鑰,所以這種演算法叫作非對稱加密演算法。
其中非對稱加密技術以RSA為代表,具體的你可以在網路查詢,我就不貼出來了
加密和驗證過程文字書寫不方便理解,你可以參照下圖理解:
Ⅲ rsa是什麼意思
RSA是公開密鑰密碼體制是一種使用不同的加密密鑰與解密密鑰,「由已知加密密鑰推導出解密密鑰在計算上是不可行的」密碼體制。RSA是1977年由羅納德·李維斯特(RonRivest)、阿迪·薩莫爾(AdiShamir)和倫納德·阿德曼(LeonardAdleman)一起提出的。當時他們三人都在麻省理工學院工作。RSA就是他們三人姓氏開頭字母拼在一起組成的。
簡介
在公開密鑰密碼體制中,加密密鑰(即公開密鑰)PK是公開信息,而解密密鑰(即秘密密鑰)SK是需要保密的。加密演算法E和解密演算法D也都是公開的。雖然解密密鑰SK是由公開密鑰PK決定的,但卻不能根據PK計算出SK。正是基於這種理論,1978年出現了著名的RSA演算法,它通常是先生成一對RSA密鑰,其中之一是保密密鑰,由用戶保存;另一個為公開密鑰,可對外公開,甚至可在網路伺服器中注冊。為提高保密強度,RSA密鑰至少為500位長,一般推薦使用1024位。這就使加密的計算量很大。為減少計算量,在傳送信息時,常採用傳統加密方法與公開密鑰加密方法相結合的方式,即信息採用改進的DES或IDEA對話密鑰加密,然後使用RSA密鑰加密對話密鑰和信息摘要。對方收到信息後,用不同的密鑰解密並可核對信息摘要。
演算法原理
RSA公開密鑰密碼體制的原理是:根據數論,尋求兩個大素數比較簡單,而將它們的乘積進行因式分解卻極其困難,因此可以將乘積公開作為加密密鑰。
Ⅳ 公開密鑰密碼體制的公開密鑰密碼體制
1976年美國斯坦福大學的兩名學者迪菲和赫爾曼提出了公開密鑰密碼體制的概念。所謂的公開密鑰密碼體制就是使用不同的加密密鑰與解密密鑰,是一種「由已知加密密鑰推導出解密密鑰在計算上是不可行的」密碼體制。
在公開密鑰密碼體制中,加密密鑰(即公開密鑰)PK是公開信息,而解密密鑰(即秘密密鑰)SK是需要保密的。加密演算法E和解密演算法D也都是公開的。雖然秘密密鑰SK是由公開密鑰PK決定的,但卻不能根據PK計算出SK。
與傳統的加密方法不同,該技術採用兩個不同的密鑰來對信息加密和解密,它也稱為非對稱式加密方法。每個用戶有一個對外公開的加密演算法E和對外保密的解密演算法D,它們須滿足條件:(1)D是E的逆,即D[E(X)]=X;(2)E和D都容易計算。(3)由E出發去求解D十分困難。從上述條件可看出,公開密鑰密碼體制下,加密密鑰不等於解密密鑰。加密密鑰可對外公開,使任何用戶都可將傳送給此用戶的信息用公開密鑰加密發送,而該用戶唯一保存的私人密鑰是保密的,也只有它能將密文復原、解密。雖然解密密鑰理論上可由加密密鑰推算出來,但這種演算法設計在實際上是不可能的,或者雖然能夠推算出,但要花費很長的時間而成為不可行的。所以將加密密鑰公開也不會危害密鑰的安全。數學上的單向陷門函數的特點是一個方向求值很容易,但其逆向計算卻很困難。許多形式為Y=f(x)的函數,對於給定的自變數x值,很容易計算出函數Y的值;而由給定的Y值,在很多情況下依照函數關系f(x)計算x值十分困難。例如,兩個大素數p和q相乘得到乘積n比較容易計算,但從它們的乘積n分解為兩個大素數p和q則十分困難。如果n為足夠大,當前的演算法不可能在有效的時間內實現。
特點:
(1) 發送者用加密密鑰 PK 對明文 X 加密後,在接收者用解密密鑰 SK 解密,即可恢復出明文,或寫為:
Dsk(Epk(X)) = X
解密密鑰是接收者專用的秘密密鑰,對其他人都保密。
此外,加密和解密的運算可以對調,即
Epk(Dsk(X)) = X
(2) 加密密鑰是公開的,但不能用它來解密,即
Dpk(Epk(X)) ? X
(3) 在計算機上可容易地產生成對的 PK 和 SK。
(4) 從已知的 PK 實際上不可能推導出 SK,即從 PK 到 SK 是「計算上不可能的」。
(5) 加密和解密演算法都是公開的。