Ⅰ 圖文徹底搞懂非對稱加密(公鑰密鑰)
前文詳細講解了對稱加密及演算法原理。那麼是不是對稱加密就萬無一失了呢?對稱加密有一個天然的缺點,就是加密方和解密方都要持有同樣的密鑰。你可以能會提出疑問:既然要加、解密,當然雙方都要持有密鑰,這有什麼問題呢?別急,我們繼續往下看。
我們先看一個例子,小明和小紅要進行通信,但是不想被其他人知道通信的內容,所以雙方決定採用對稱加密的方式。他們做了下面的事情:
1、雙方商定了加密和解密的演算法
2、雙方確定密鑰
3、通信過程中採用這個密鑰進行加密和解密
這是不是一個看似完美的方案?但其中有一個步驟存在漏洞!
問題出在步驟2:雙方確定密鑰!
你肯定會問,雙方不確定密鑰,後面的加、解密怎麼做?
問題在於確定下來的密鑰如何讓雙方都知道。密鑰在傳遞過程中也是可能被盜取的!這里引出了一個經典問題:密鑰配送問題。
小明和小紅在商定密鑰的過程中肯定會多次溝通密鑰是什麼。即使單方一次確定下來,也要發給對方。加密是為了保證信息傳輸的安全,但密鑰本身也是信息,密鑰的傳輸安全又該如何保證呢?難不成還要為密鑰的傳輸再做一次加密?這樣不就陷入了死循環?
你是不是在想,密鑰即使被盜取,不還有加密演算法保證信息安全嗎?如果你真的有這個想法,那麼趕緊復習一下上一篇文章講的杜絕隱蔽式安全性。任何演算法最終都會被破譯,所以不能依賴演算法的復雜度來保證安全。
小明和小紅現在左右為難,想加密就要給對方發密鑰,但發密鑰又不能保證密鑰的安全。他們應該怎麼辦呢?
有如下幾種解決密鑰配送問題的方案:
非對稱加密也稱為公鑰密碼。我更願意用非對稱加密這種叫法。因為可以體現出加密和解密使用不同的密鑰。
對稱加密中,我們只需要一個密鑰,通信雙方同時持有。而非對稱加密需要4個密鑰。通信雙方各自准備一對公鑰和私鑰。其中公鑰是公開的,由信息接受方提供給信息發送方。公鑰用來對信息加密。私鑰由信息接受方保留,用來解密。既然公鑰是公開的,就不存在保密問題。也就是說非對稱加密完全不存在密鑰配送問題!你看,是不是完美解決了密鑰配送問題?
回到剛才的例子,小明和下紅經過研究發現非對稱加密能解決他們通信的安全問題,於是做了下面的事情:
1、小明確定了自己的私鑰 mPrivateKey,公鑰 mPublicKey。自己保留私鑰,將公鑰mPublicKey發給了小紅
2、小紅確定了自己的私鑰 hPrivateKey,公鑰 hPublicKey。自己保留私鑰,將公鑰 hPublicKey 發給了小明
3、小明發送信息 「周六早10點soho T1樓下見」,並且用小紅的公鑰 hPublicKey 進行加密。
4、小紅收到信息後用自己的私鑰 hPrivateKey 進行解密。然後回復 「收到,不要遲到」 並用小明的公鑰mPublicKey加密。
5、小明收到信息後用自己的私鑰 mPrivateKey 進行解密。讀取信息後心裡暗想:還提醒我不遲到?每次遲到的都是你吧?
以上過程是一次完整的request和response。通過這個例子我們梳理出一次信息傳輸的非對稱加、解密過程:
1、消息接收方准備好公鑰和私鑰
2、私鑰接收方自己留存、公鑰發布給消息發送方
3、消息發送方使用接收方公鑰對消息進行加密
4、消息接收方用自己的私鑰對消息解密
公鑰只能用做數據加密。公鑰加密的數據,只能用對應的私鑰才能解密。這是非對稱加密的核心概念。
下面我用一個更為形象的例子來幫助大家理解。
我有下圖這樣一個信箱。
由於我只想接收我期望與之通信的朋友信件。於是我在投遞口加了一把鎖,這把鎖的鑰匙(公鑰)我可以復制n份,發給我想接受其信件的人。只有這些人可以用這把鑰匙打開寄信口,把信件投入。
相信通過這個例子,可以幫助大家徹底理解公鑰和私鑰的概念。
RSA 是現在使用最為廣泛的非對稱加密演算法,本節我們來簡單介紹 RSA 加解密的過程。
RSA 加解密演算法其實很簡單:
密文=明文^E mod N
明文=密文^D mod N
RSA 演算法並不會像對稱加密一樣,用玩魔方的方式來打亂原始信息。RSA 加、解密中使用了是同樣的數 N。公鑰是公開的,意味著 N 也是公開的。所以私鑰也可以認為只是 D。
我們接下來看一看 N、E、D 是如何計算的。
1、求 N
首先需要准備兩個很大質數 a 和 b。太小容易破解,太大計算成本太高。我們可以用 512 bit 的數字,安全性要求高的可以使用 1024,2048 bit。
N=a*b
2、求 L
L 只是生成密鑰對過程中產生的數,並不參與加解密。L 是 (a-1) 和 (b-1) 的最小公倍數
3、求 E(公鑰)
E 有兩個限制:
1<E<
E和L的最大公約數為1
第一個條件限制了 E 的取值范圍,第二個條件是為了保證有與 E 對應的解密時用到的 D。
4、求 D(私鑰)
D 也有兩個限制條件:
1<D<L
E*D mod L = 1
第二個條件確保密文解密時能夠成功得到原來的明文。
由於原理涉及很多數學知識,這里就不展開細講,我們只需要了解這個過程中用到這幾個數字及公式。這是理解RSA 安全性的基礎。
由於 N 在公鑰中是公開的,那麼只需要破解 D,就可以解密得到明文。
在實際使用場景中,質數 a,b 一般至少1024 bit,那麼 N 的長度在 2048 bit 以上。D 的長度和 N 接近。以現在計算機的算力,暴力破解 D 是非常困難的。
公鑰是公開的,也就是說 E 和 N 是公開的,那麼是否可以通過 E 和 N 推斷出 D 呢?
E*D mod L = 1
想要推算出 D 就需要先推算出 L。L 是 (a-1) 和 (b-1) 的最小公倍數。想知道 L 就需要知道質數 a 和 b。破解者並不知道這兩個質數,想要破解也只能通過暴力破解。這和直接破解 D 的難度是一樣的。
等等,N 是公開的,而 N = a*b。那麼是否可以對 N 進行質因數分解求得 a 和 b 呢?好在人類還未發現高效進行質因數分解的方法,因此可以認為做質因數分解非常困難。
但是一旦某一天發現了快速做質因數分解的演算法,那麼 RSA 就不再安全
我們可以看出大質數 a 和 b 在 RSA 演算法中的重要性。保證 a 和 b 的安全也就確保了 RSA 演算法的安全性。a 和 b 是通過偽隨機生成器生成的。一旦偽隨機數生成器的演算法有問題,導致隨機性很差或者可以被推斷出來。那麼 RSA 的安全性將被徹底破壞。
中間人攻擊指的是在通信雙方的通道上,混入攻擊者。他對接收方偽裝成發送者,對放送放偽裝成接收者。
他監聽到雙方發送公鑰時,偷偷將消息篡改,發送自己的公鑰給雙方。然後自己則保存下來雙方的公鑰。
如此操作後,雙方加密使用的都是攻擊者的公鑰,那麼後面所有的通信,攻擊者都可以在攔截後進行解密,並且篡改信息內容再用接收方公鑰加密。而接收方拿到的將會是篡改後的信息。實際上,發送和接收方都是在和中間人通信。
要防範中間人,我們需要使用公鑰證書。這部分內容在下一篇文章里會做介紹。
和對稱加密相比較,非對稱加密有如下特點:
1、非對稱加密解決了密碼配送問題
2、非對稱加密的處理速度只有對稱加密的幾百分之一。不適合對很長的消息做加密。
3、1024 bit 的 RSA不應該在被新的應用使用。至少要 2048 bit 的 RSA。
RSA 解決了密碼配送問題,但是效率更低。所以有些時候,根據需求可能會配合使用對稱和非對稱加密,形成混合密碼系統,各取所長。
最後提醒大家,RSA 還可以用於簽名,但要注意是私鑰簽名,公鑰驗簽。發信方用自己的私鑰簽名,收信方用對方公鑰驗簽。關於簽名,後面的文章會再詳細講解。
Ⅱ 對稱加密和非對稱加密的區別如何理解二者之間的密碼演算法
對稱加密和非對稱加密,最重要的的區別就是加密演算法的不同:對稱加密演算法在加密和解密時使用的是同一個秘鑰,而非對稱加密演算法需要兩個密鑰來進行加密和解密,這兩個秘鑰是公開密鑰(簡稱公鑰)和私有密鑰(簡稱私鑰)。
綜上所述,對稱加密和非對稱加密,區別關鍵是加密密鑰的不同。
Ⅲ RSA加密、解密、簽名、驗簽的原理及方法
RSA加密是一種非對稱加密。可以在不直接傳遞密鑰的情況下,完成解密。這能夠確保信息的安全性,避免了直接傳遞密鑰所造成的被破解的風險。是由一對密鑰來進行加解密的過程,分別稱為公鑰和私鑰。兩者之間有數學相關,該加密演算法的原理就是對一極大整數做因數分解的困難性來保證安全性。通常個人保存私鑰,公鑰是公開的(可能同時多人持有)。
加密和簽名都是為了安全性考慮,但略有不同。常有人問加密和簽名是用私鑰還是公鑰?其實都是對加密和簽名的作用有所混淆。簡單的說,加密是為了防止信息被泄露,而簽名是為了防止信息被篡改。這里舉2個例子說明。
RSA的加密過程如下:
RSA簽名的過程如下:
總結:公鑰加密、私鑰解密、私鑰簽名、公鑰驗簽。
RSA加密對明文的長度有所限制,規定需加密的明文最大長度=密鑰長度-11(單位是位元組,即byte),所以在加密和解密的過程中需要分塊進行。而密鑰默認是1024位,即1024位/8位-11=128-11=117位元組。所以默認加密前的明文最大長度117位元組,解密密文最大長度為128字。那麼為啥兩者相差11位元組呢?是因為RSA加密使用到了填充模式(padding),即內容不足117位元組時會自動填滿,用到填充模式自然會佔用一定的位元組,而且這部分位元組也是參與加密的。
Ⅳ 一個RSA演算法的加密運算,需要完整的演算過程。
我來回答你可以閉帖了,呵呵
看你題目的意思就是打算把republic這個詞按照你的方法裝換成數字例如是:X
p=3,q=11
n=p*q=33
t=(p-1)*(q-1)=20
取任何一個數e,要求滿足e<t並且e與t互素(就是最大公因數為1)
我們可以取e=7
要求d*e%t==1(D*e除以t取余等於1),我們可以找到D=3
此時我們就有了三個數
n=33
d=3 公鑰
e=7 私鑰
設消息為數M (M <n)
設c=(M**d)%n就得到了加密後的消息c
設m=(c**e)%n則 m == M,從而完成對c的解密。
註:**表示次方,上面兩式中的d和e可以互換。
我們可以對republic詞按照你的方法裝換成數字:X一位一位的加密。
加入X的第一位是6(別的同理)
則:M = 6
加密時:(c為加密後的數字)
c=(M**d)%n=(6^3)%33=216%33=18(商6餘18),則6加密後就是18了
解密時:
設m=(c**e)%n則 m == M,
(18^7)%33=612220032%33=6(商18552122餘6)
到此加密解密完成。
至於怎麼把republic裝換成X,把X裝分成多少部分進行分批加密,你可以自己決定。但是加密的數字M 需要小於n
如果需要給你寫個程序,留個Email,我空的時候寫個發給你。
我個人給你個方法,因為n=33 >26(26個英文字母),所以可以把republic分成一個字母一個字母的加密。
按你的分發 REP 就分成數字
18 05 16
加密
(18^3)%33=5832%33= 24
(05^3)%33=125%33= 26
(16^3)%33=%33= 4
所以加密後就是
24 26 04 轉換成字母就是 XZD
解密
(24^7)%33=4586471424%33=18
(26^7)%33=8031810176%33=05
(4^7)%33=16384%33=16
又變成 18 05 16 轉換成字母就是 REP
是不是很簡單啊~~
我如果不懂。空間裡面有片文章,你可以看看,就知道我上面講的那些是什麼意思了。
RSA演算法舉例說明
http://hi..com/lsgo/blog/item/5fd0da24d495666834a80fb8.html
Ⅳ 密碼學基礎(三):非對稱加密(RSA演算法原理)
加密和解密使用的是兩個不同的秘鑰,這種演算法叫做非對稱加密。非對稱加密又稱為公鑰加密,RSA只是公鑰加密的一種。
現實生活中有簽名,互聯網中也存在簽名。簽名的作用有兩個,一個是身份驗證,一個是數據完整性驗證。數字簽名通過摘要演算法來確保接收到的數據沒有被篡改,再通過簽名者的私鑰加密,只能使用對應的公鑰解密,以此來保證身份的一致性。
數字證書是將個人信息和數字簽名放到一起,經由CA機構的私鑰加密之後生成。當然,不經過CA機構,由自己完成簽名的證書稱為自簽名證書。CA機構作為互聯網密碼體系中的基礎機構,擁有相當高級的安全防範能力,所有的證書體系中的基本假設或者前提就是CA機構的私鑰不被竊取,一旦 CA J機構出事,整個信息鏈將不再安全。
CA證書的生成過程如下:
證書參與信息傳遞完成加密和解密的過程如下:
互質關系:互質是公約數只有1的兩個整數,1和1互質,13和13就不互質了。
歐拉函數:表示任意給定正整數 n,在小於等於n的正整數之中,有多少個與 n 構成互質關系,其表達式為:
其中,若P為質數,則其表達式可以簡寫為:
情況一:φ(1)=1
1和任何數都互質,所以φ(1)=1;
情況二:n 是質數, φ(n)=n-1
因為 n 是質數,所以和小於自己的所有數都是互質關系,所以φ(n)=n-1;
情況三:如果 n 是質數的某一個次方,即 n = p^k ( p 為質數,k 為大於等於1的整數),則φ(n)=(p-1)p^(k-1)
因為 p 為質數,所以除了 p 的倍數之外,小於 n 的所有數都是 n 的質數;
情況四:如果 n 可以分解成兩個互質的整數之積,n = p1 × p2,則φ(n) = φ(p1p2) = φ(p1)φ(p2)
情況五:基於情況四,如果 p1 和 p2 都是質數,且 n=p1 × p2,則φ(n) = φ(p1p2) = φ(p1)φ(p2)=(p1-1)(p2-1)
而 RSA 演算法的基本原理就是歐拉函數中的第五種情況,即: φ(n)=(p1-1)(p2-1);
如果兩個正整數 a 和 n 互質,那麼一定可以找到整數 b,使得 ab-1 被 n 整除,或者說ab被n除的余數是1。這時,b就叫做a的「模反元素」。歐拉定理可以用來證明模反元素必然存在。
可以看到,a的 φ(n)-1 次方,就是a對模數n的模反元素。
n=p x q = 3233,3233寫成二進制是110010100001,一共有12位,所以這個密鑰就是12位。
在實際使用中,一般場景下選擇1024位長度的數字,更高安全要求的場景下,選擇2048位的數字,這里作為演示,選取p=61和q=53;
因為n、p、q都為質數,所以φ(n) = (p-1)(q-1)=60×52= 3120
注意,這里是和φ(n) 互互質而不是n!假設選擇的值是17,即 e=17;
模反元素就是指有一個整數 d,可以使得 ed 被 φ(n) 除的余數為1。表示為:(ed-1)=φ(n) y --> 17d=3120y+1,算出一組解為(2753,15),即 d=2753,y=-15,也就是(17 2753-1)/3120=15。
注意,這里不能選擇3119,否則公私鑰相同??
公鑰:(n,e)=(3233,2753)
私鑰:(n,d)=(3233,17)
公鑰是公開的,也就是說m=p*q=3233是公開的,那麼怎麼求e被?e是通過模反函數求得,17d=3120y+1,e是公開的等於17,這時候想要求d就要知道3120,也就是φ(n),也就是φ(3233),說白了,3233是公開的,你能對3233進行因數分解,你就能知道d,也就能破解私鑰。
正常情況下,3233我們可以因數分解為61*53,但是對於很大的數字,人類只能通過枚舉的方法來因數分解,所以RSA安全性的本質就是:對極大整數做因數分解的難度決定了RSA演算法的可靠性。換言之,對一極大整數做因數分解愈困難,RSA演算法愈可靠。
人類已經分解的最大整數是:
這個人類已經分解的最大整數為232個十進制位,768個二進制位,比它更大的因數分解,還沒有被報道過,因此目前被破解的最長RSA密鑰就是768位。所以實際使用中的1024位秘鑰基本安全,2048位秘鑰絕對安全。
網上有個段子:
已經得出公私鑰的組成:
公鑰:(n,e)=(3233,2753)
私鑰:(n,d)=(3233,17)
加密的過程就是
解密過程如下:
其中 m 是要被加密的數字,c 是加密之後輸出的結果,且 m < n ,其中解密過程一定成立可以證明的,這里省略證明過程。
總而言之,RSA的加密就是使用模反函數對數字進行加密和求解過程,在實際使用中因為 m < n必須成立,所以就有兩種加密方法:
對稱加密存在雖然快速,但是存在致命的缺點就是秘鑰需要傳遞。非對稱加密雖然不需要傳遞秘鑰就可以完成加密和解密,但是其致命缺點是速度不夠快,不能用於高頻率,高容量的加密場景。所以才有了兩者的互補關系,在傳遞對稱加密的秘鑰時採用非對稱加密,完成秘鑰傳送之後採用對稱加密,如此就可以完美互補。