導航:首頁 > 文檔加密 > enigma加密機原理

enigma加密機原理

發布時間:2022-01-16 22:44:34

⑴ 求密碼學中Enigma密碼機的一些翻譯 估計要花點時間 加分~

1。(也被稱為開關或插頭)
2.socket
3。一個特殊的棘輪棘爪機制用來控制每個rotormotion。
4轉子。六–八世有對稱設置的缺口。由於一個獨特的棘輪棘爪機構,中間轉子可以進行所謂的雙步進。
5。每天的重點,描述如何謎要准備一天的交通,包括以下內容:
6。位置環相對於轉子的核心(德國。ringstellung)。環的設置對所有三個轉子放置在從左到右(提供了23種可能性)。希臘轉子設置在抬機幾乎保持固定。
7.tables日常用於consecutivemonths(九月和十月1954)提供的古斯塔夫bertand(首席無線電情報組法國情報服務)和獲得有償代理hans-thilo施密特,筆名靜止,當公務員在密碼處的德國陸軍。
8個燒烤方法。
9。它依賴於性能的謎,位置最正確的轉子,轉子移動中是不同的三個轉子由德國陸軍。
10.it是很有可能,一個給定的「特色」對應的是一種獨特的安排轉子或最多一小部分的安排,可以很容易地進行測試。
11。它並不是基於不斷變化的密鑰分配程序,但所謂的嬰兒床(片段的明文,可能猜)允許已知明文攻擊。這些來源是許多嬰兒床。

⑵ 二戰期間,德國研製的Enigma機的工作原理是什麼。(要求簡潔明了,我不想花時間在一堆文字里找關鍵

原理就是替換,比如把A替換成B,B替換為D,這樣如果你想說AB,那麼加密後寫作BD,意思就完全不一樣了。

ENIGMA主要是設法增加了復雜程度。

⑶ 英格瑪機是什麼構造原理(就是2戰德國的那個)

【英格瑪機的構造原理】英文為:Enigma,又譯為:恩尼格瑪,其原理如下:
鍵盤一共有26個鍵,鍵盤排列和廣為使用的計算機鍵盤基本一樣,只不過為了使通訊盡量地短和難以破譯,空格、數字和標點符號都被取消,而只有字母鍵。鍵盤上方就是顯示器,這可不是意義上的屏幕顯示器,只不過是標示了同樣字母的26個小燈泡,當鍵盤上的某個鍵被按下時,和這個字母被加密後的密文字母所對應的小燈泡就亮了起來,就是這樣一種近乎原始的「顯示」。在顯示器的上方是三個直徑6厘米的轉子,它們的主要部分隱藏在面板下,轉子才是「恩尼格瑪」密碼機最核心關鍵的部分。
之所以叫「轉子」,因為它會轉,這就是關鍵。當按下鍵盤上的一個字母鍵,相應加密後的字母在顯示器上通過燈泡閃亮來顯示,而轉子就自動地轉動一個字母的位置。舉例來說,當第一次鍵入A,燈泡B亮,轉子轉動一格,各字母所對應的密碼就改變了。第二次再鍵入A時,它所對應的字母就可能變成了C;同樣地,第三次鍵入A時,又可能是燈泡D亮了。——這就是「恩尼格瑪」難以被破譯的關鍵所在,這不是一種簡單替換密碼。同一個字母在明文的不同位置時,可以被不同的字母替換,而密文中不同位置的同一個字母,又可以代表明文中的不同字母,字母頻率分析法在這里絲毫無用武之地了。這種加密方式在密碼學上被稱為「復式替換密碼」。
但是如果連續鍵入26個字母,轉子就會整整轉一圈,回到原始的方向上,這時編碼就和最初重復了。而在加密過程中,重復的現象就很是最大的破綻,因為這可以使破譯密碼的人從中發現規律。於是「恩尼格瑪」又增加了一個轉子,當第一個轉子轉動整整一圈以後,它上面有一個齒輪撥動第二個轉子,使得它的方向轉動一個字母的位置。假設第一個轉子已經整整轉了一圈,按A鍵時顯示器上D燈泡亮;當放開A鍵時第一個轉子上的齒輪也帶動第二個轉子同時轉動一格,於是第二次鍵入A時,加密的字母可能為E;再次放開鍵A時,就只有第一個轉子轉動了,於是第三次鍵入A時,與之相對應的就是字母就可能是F了。
因此只有在26x26=676個字母後才會重復原來的編碼。而事實上「恩尼格瑪」有三個轉子(二戰後期德國海軍使用的「恩尼格瑪」甚至有四個轉子!),那麼重復的概率就達到26x26x26=17576個字母之後。在此基礎上謝爾比烏斯十分巧妙地在三個轉子的一端加上了一個反射器,把鍵盤和顯示器中的相同字母用電線連在一起。反射器和轉子一樣,把某一個字母連在另一個字母上,但是它並不轉動。乍一看這么一個固定的反射器好像沒什麼用處,它並不增加可以使用的編碼數目,但是把它和解碼聯系起來就會看出這種設計的別具匠心了。當一個鍵被按下時,信號不是直接從鍵盤傳到顯示器,而是首先通過三個轉子連成的一條線路,然後經過反射器再回到三個轉子,通過另一條線路再到達顯示器上,比如說上圖中A鍵被按下時,亮的是D燈泡。如果這時按的不是A鍵而是D鍵,那麼信號恰好按照上面A鍵被按下時的相反方向通行,最後到達A燈泡。換句話說,在這種設計下,反射器雖然沒有象轉子那樣增加不重復的方向,但是它可以使解碼過程完全重現編碼過程。
使用「恩尼格瑪」通訊時,發信人首先要調節三個轉子的方向(而這個轉子的初始方向就是密匙,是收發雙方必須預先約定好的),然後依次鍵入明文,並把顯示器上燈泡閃亮的字母依次記下來,最後把記錄下的閃亮字母按照順序用正常的電報方式發送出去。收信方收到電文後,只要也使用一台「恩尼格瑪」,按照原來的約定,把轉子的方向調整到和發信方相同的初始方向上,然後依次鍵入收到的密文,顯示器上自動閃亮的字母就是明文了。加密和解密的過程完全一樣,這就是反射器的作用,同時反射器的一個副作用就是一個字母永遠也不會被加密成它自己,因為反射器中一個字母總是被連接到另一個不同的字母。
「恩尼格瑪」加密的關鍵就在於轉子的初始方向。當然如果敵人收到了完整的密文,還是可以通過不斷試驗轉動轉子方向來找到這個密匙,特別是如果破譯者同時使用許多台機器同時進行這項工作,那麼所需要的時間就會大大縮短。對付這樣「暴力破譯法」(即一個一個嘗試所有可能性的方法),可以通過增加轉子的數量來對付,因為只要每增加一個轉子,就能使試驗的數量乘上26倍!不過由於增加轉子就會增加機器的體積和成本,而密碼機又是需要能夠便於攜帶的,而不是一個帶有幾十個甚至上百個轉子的龐然大物。那麼方法也很簡單,「恩尼格瑪」密碼機的三個轉子是可以拆卸下來並互相交換位置,這樣一來初始方向的可能性一下就增加了六倍。假設三個轉子的編號為1、2、3,那麼它們可以被放成123-132-213-231-312-321這六種不同位置,當然收發密文的雙方除了要約定轉子自身的初始方向,還要約好這六種排列中的一種。
而除了轉子方向和排列位置,「恩尼格瑪」還有一道保障安全的關卡,在鍵盤和第一個轉子之間有塊連接板。通過這塊連接板可以用一根連線把某個字母和另一個字母連接起來,這樣這個字母的信號在進入轉子之前就會轉變為另一個字母的信號。這種連線最多可以有六根(後期的「恩尼格瑪」甚至達到十根連線),這樣就可以使6對字母的信號兩兩互換,其他沒有插上連線的字母則保持不變。——當然連接板上的連線狀況也是收發雙方預先約定好的。
就這樣轉子的初始方向、轉子之間的相互位置以及連接板的連線狀況就組成了「恩尼格瑪」三道牢不可破的保密防線,其中連接板是一個簡單替換密碼系統,而不停轉動的轉子,雖然數量不多,但卻是點睛之筆,使整個系統變成了復式替換系統。連接板雖然只是簡單替換卻能使可能性數目大大增加,在轉子的復式作用下進一步加強了保密性。讓我們來算一算經過這樣處理,要想通過「暴力破解法」還原明文,需要試驗多少種可能性:
三個轉子不同的方向組成了26x26x26=17576種可能性;
三個轉子間不同的相對位置為6種可能性;
連接板上兩兩交換6對字母的可能性則是異常龐大,有100,391,791,500種;
於是一共有17576x6x100,391,791,500,其結果大約為10,000,000,000,000,000!即一億億種可能性!這樣龐大的可能性,換言之,即便能動員大量的人力物力,要想靠「暴力破解法」來逐一試驗可能性,那幾乎是不可能的。而收發雙方,則只要按照約定的轉子方向、位置和連接板連線狀況,就可以非常輕松簡單地進行通訊了。這就是「恩尼格瑪」密碼機的保密原理。

⑷ 二戰密碼機問題

恩尼格碼機

1918年,德國發明家亞瑟·謝爾比烏斯Arthur Scherbius)和他的朋友理查德·里特(Richard Ritter)創辦了謝爾比烏斯和里特公司。這是一家專營把新技術轉化為應用方面的企業,很象現在的高新技術公司,利潤不小,可是風險也很大。謝爾比烏斯負責研究和開發方面,緊追當時的新潮流。他曾在漢諾威和慕尼黑研究過電氣應用,他的一個想法就是要用二十世紀的電氣技術來取代那種過時的鉛筆加紙的加密方法。
謝爾比烏斯發明的加密電子機械名叫ENIGMA,在以後的年代裡,它將被證明是有史以來最為可靠的加密系統之一,而對這種可靠性的盲目樂觀,又使它的使用者遭到了滅頂之災。這是後話,暫且不提。
ENIGMA看起來是一個裝滿了復雜而精緻的元件的盒子。不過要是我們把它打開來,就可以看到它可以被分解成相當簡單的幾部分。
下面的圖是它的最基本部分的示意圖,我們可以看見它的三個部分:鍵盤、轉子和顯示器。在上面ENIGMA的照片上,我們看見水平面板的下面部分就是鍵盤,一共有26個鍵,鍵盤排列接近我們現在使用的計算機鍵盤。為了使消息盡量地短和更難以破譯,空格和標點符號都被省略。在示意圖中我們只畫了六個鍵。實物照片中,鍵盤上方就是顯示器,它由標示了同樣字母的26個小燈組成,當鍵盤上的某個鍵被按下時,和此字母被加密後的密文相對應的小燈就在顯示器上亮起來。同樣地,在示意圖上我們只畫了六個小燈。在顯示器的上方是三個轉子,它們的主要部分隱藏在面板之下,在示意圖中我們暫時只畫了一個轉子。
鍵盤、轉子和顯示器由電線相連,轉子本身也集成了6條線路(在實物中是26條),把鍵盤的信號對應到顯示器不同的小燈上去。在示意圖中我們可以看到,如果按下a鍵,那麼燈B就會亮,這意味著a被加密成了B。同樣地我們看到,b被加密成了A,c被加密成了D,d被加密成了F,e被加密成了E,f被加密成了C。於是如果我們在鍵盤上依次鍵入cafe(咖啡),顯示器上就會依次顯示DBCE。這是最簡單的加密方法之一,把每一個字母都按一一對應的方法替換為另一個字母,這樣的加密方式叫做「簡單替換密碼」。

一名業余愛好者藉助互聯網的力量最終破解了自二戰以來一直遺留至今的恩尼格碼密文。

雖然德國武裝力量和外交部的無線電通訊自1941年起就被盟軍逐漸掌握,但到1942年德國突然更換了新式恩尼格碼密碼機,這給盟軍造成了很大困擾,使得盟軍的反潛力量無法追蹤到德軍潛艇,被擊沉的貨船總噸位一度超過造船總噸位雖然駐在布萊奇利庄園的盟國密碼專家後來成功破譯了新式恩尼格碼密碼,但有若干密文始終未獲破解。現在,一名德國業余愛好者用上千台個人計算機通過互聯網組成了網格計算集群,解決了其中一條。 Stefan Krah是一名德國出生的小提琴手,他的業余愛好是鑽研密碼和開源軟體。1995年的《密碼月刊》雜志曾公開發表了三條密文,這激起他莫大的興趣,但他深知自己並非專業人員,孤軍奮戰顯然是不現實的,於是就編寫了一個破解程序,把它發到新聞組的帖子里,看看是否能吸引志同道合之士來助他一臂之力。

很快,他的周圍就聚集了45名有相同興趣的業余愛好者,他們願意把自己的計算機貢獻出來作破解之用,Krah利用這些個人計算機的計算能力組成了一個以互聯網為依託的網格計算集群,用它來破解已塵封半世紀之久的密文,Krah把這個項目命名為「M4」,那正是加密這些電文的恩尼格碼密碼機型號。

很快,按Krah自己的話來說就是:「參與M4項目的計算機台數呈指數性增長」,共有約2500台計算機參與了這個項目,而他所要做的就是在新聞組和郵件列表裡振臂高呼一聲。

終於,在過了一個月零幾天之後,其中一條密文被破譯了。未破解前的密文如下:

「NCZW VUSX PNYM INHZ XMQX SFWX WLKJ AHSH NMCO CCAK UQPM KCSM HKSE INJU SBLK IOSX CKUB HMLL XCSJ USRR DVKO HULX WCCB GVLI YXEO AHXR HKKF VDRE WEZL XOBA FGYU JQUK GRTV UKAM EURB VEKS UHHV OYHA BCJW MAKL FKLM YFVN RIZR VVRT KOFD ANJM OLBG FFLE OPRG TFLV RHOW OPBE KVWM UQFM PWPA RMFH AGKX IIBG」

破解後的明文如下:

「遭深水炸彈攻擊後緊急下潛,與敵接觸的最後方位為:0830h AJ 9863;(方向)220度,(速度)8節;(我)正在尾隨(敵人);(壓力讀數)14兆巴;(風向)北-北-偏東;(兵力)4;能見度10」
與戰時記錄相比對可知這是由德國海軍U264艇的Hartwig Looks上尉(總擊沉噸位14000噸)在1942年11月25日發來的電文。
Stefan Krah表示自己的破解程序結合了暴力破解和邏輯演算兩種途徑,能更好地模擬恩尼格碼密碼機轉子和接線板的排列組合。
布萊奇利庄園早已完成它的歷史使命,那些未破解的密文最後留給了像Stefan Krah這樣的業余愛好者,當年在《密碼月刊》上發表這些密文的Ralph Erskine在得知這個消息後說:「做到了當年布萊奇利庄園一直無法做到的事,我想他們應該為此感到特別驕傲。」

⑸ 二戰期間,德國研製的enigma機的工作原理是什麼

下面的圖是它的最基本部分的示意圖,我們可以看見它的三個部分:鍵盤、轉子和顯示器。

我們看見這里鍵盤和顯示器中的相同字母由電線連在一起。事實上那是一個很巧妙的開關,不過我們並不需要知道它的具體情況。我們只需要知道,當一個鍵被按下時,信號不是直接從鍵盤傳到顯示器(要是這樣就沒有加密了),而是首先通過三個轉子連成的一條線路,然後經過反射器再回到三個轉子,通過另一條線路再到達顯示器上,比如說上圖中b鍵被按下時,亮的是D燈。我們看看如果這時按的不是b鍵而是d鍵,那麼信號恰好按照上面b鍵被按下時的相反方向通行,最後到達B燈。換句話說,在這種設計下,反射器雖然沒有象轉子那樣增加可能的不重復的方向,但是它可以使解碼的過程和編碼的過程完全一樣。

⑹ 英格瑪機是誰發明者

恩尼格瑪機由德國發明家亞瑟•謝爾比烏斯和理查德•里特於1918年製造。確切地說,是一種用於加密與解密文件的密碼機。大體由三部分組成:鍵盤、轉子和顯示器。由於其性質,謝爾比烏斯將這種電氣編碼機械取名「恩尼格瑪」(ENIGMA,意為啞謎),它來源於英國作曲家愛德華•艾爾加的《謎之變奏曲》。
謝爾比烏斯在1918年為「恩尼格瑪」密碼機申請了專利,於1920年開發出產品

⑺ enigma的解析

甚至可以自己定義一個密碼字母圖形而不採用拉丁字母。但是用這種方法所得到的密文還是相當容易被破解的。至遲在公元九世紀,阿拉伯的密碼破譯專家就已經嫻熟地掌握了用統計字母出現頻率的方法來擊破簡單替換密碼。破解的原理很簡單:在每種拼音文字語言中,每個字母出現的頻率並不相同,比如說在英語中,e出現的次數就要大大高於其他字母。所以如果取得了足夠多的密文,通過統計每個字母出現的頻率,我們就可以猜出密碼中的一個字母對應於明碼中哪個字母(當然還要通過揣摩上下文等基本密碼破譯手段)。柯南·道爾在他著名的福爾摩斯探案集中《跳舞的人》里詳細敘述了福爾摩斯使用頻率統計法破譯跳舞人形密碼的過程。
所以如果轉子的作用僅僅是把一個字母換成另一個字母,那就沒有太大的意思了。但是大家可能已經猜出來了,所謂的「轉子」 ,它會轉動!這就是謝爾比烏斯關於ENIGMA的最重要的設計——當鍵盤上一個鍵被按下時,相應的密文在顯示器上顯示,然後轉子的方向就自動地轉動一個字母的位置(在示意圖中就是轉動1/6圈,而在實際中轉動1/26圈)。下面的示意圖表示了連續鍵入3個b的情況:
當第一次鍵入b時,信號通過轉子中的連線,燈A亮起來,放開鍵後,轉子轉動一格,各字母所對應的密碼就改變了;第二次鍵入b時,它所對應的字母就變成了C;同樣地,第三次鍵入b時,燈E閃亮。
照片左方是一個完整的轉子,右方是轉子的分解,我們可以看到安裝在轉子中的電線。
這里我們看到了ENIGMA加密的關鍵:這不是一種簡單替換密碼。同一個字母b在明文的不同位置時,可以被不同的字母替換,而密文中不同位置的同一個字母,可以代表明文中的不同字母,頻率分析法在這里就沒有用武之地了。這種加密方式被稱為「復式替換密碼」 。
但是我們看到,如果連續鍵入6個字母(實物中26個字母),轉子就會整整轉一圈,回到原始的方向上,這時編碼就和最初重復了。而在加密過程中,重復的現象是很危險的,這可以使試圖破譯密碼的人看見規律性的東西。於是謝爾比烏斯在機器上又加了一個轉子。當第一個轉子轉動整整一圈以後,它上面有一個齒撥動第二個轉子,使得它的方向轉動一個字母的位置。看下面的示意圖(為了簡單起見,現在我們將它表示為平面形式):
這里(a)圖中我們假設第一個轉子(左邊的那個)已經整整轉了一圈,按b鍵時顯示器上D燈亮;當放開b鍵時第一個轉子上的齒也帶動第二個轉子同時轉動一格,於是(b)圖中第二次鍵入b時,加密的字母為F;而再次放開鍵b時,就只有第一個轉子轉動了,於是(c)圖中第三次鍵入b時,與b相對應的就是字母B。
我們看到用這樣的方法,要6*6=36(實物中為26*26=676)個字母後才會重復原來的編碼。而事實上ENIGMA里有三個轉子(二戰後期德國海軍用ENIGMA甚至有四個轉子),不重復的方向個數達到26*26*26=17576個。
在此基礎上謝爾比烏斯十分巧妙地在三個轉子的一端加上了一個反射器,而把鍵盤和顯示器中的相同字母用電線連在一起。反射器和轉子一樣,把某一個字母連在另一個字母上,但是它並不轉動。乍一看這么一個固定的反射器好象沒什麼用處,它並不增加可以使用的編碼數目,但是把它和解碼聯系起來就會看出這種設計的別具匠心了。見下圖:
我們看見這里鍵盤和顯示器中的相同字母由電線連在一起。事實上那是一個很巧妙的開關,不過我們並不需要知道它的具體情況。我們只需要知道,當一個鍵被按下時,信號不是直接從鍵盤傳到顯示器(要是這樣就沒有加密了),而是首先通過三個轉子連成的一條線路,然後經過反射器再回到三個轉子,通過另一條線路再到達顯示器上,比如說上圖中b鍵被按下時,亮的是D燈。我們看看如果這時按的不是b鍵而是d鍵,那麼信號恰好按照上面b鍵被按下時的相反方向通行,最後到達B燈。換句話說,在這種設計下,反射器雖然沒有象轉子那樣增加可能的不重復的方向,但是它可以使解碼的過程和編碼的過程完全一樣。
想像一下要用ENIGMA發送一條消息。發信人首先要調節三個轉子的方向,使它們處於17576個方向中的一個(事實上轉子的初始方向就是密匙,這是收發雙方必須預先約定好的),然後依次鍵入明文,並把閃亮的字母依次記下來,然後就可以把加密後的消息用比如電報的方式發送出去。當收信方收到電文後,使用一台相同的ENIGMA,按照原來的約定,把轉子的方向調整到和發信方相同的初始方向上,然後依次鍵入收到的密文,並把閃亮的字母依次記下來,就得到了明文。於是加密和解密的過程就是完全一樣的——這都是反射器起的作用。稍微考慮一下,我們很容易明白,反射器帶來的一個副作用就是一個字母永遠也不會被加密成它自己,因為反射器中一個字母總是被連接到另一個不同的字母。
於是轉子的初始方向決定了整個密文的加密方式。如果通訊當中有敵人監聽,他會收到完整的密文,但是由於不知道三個轉子的初始方向,他就不得不一個個方向地試驗來找到這個密匙。問題在於17576個初始方向這個數目並不是太大。如果試圖破譯密文的人把轉子調整到某一方向,然後鍵入密文開始的一段,看看輸出是否象是有意義的信息。如果不象,那就再試轉子的下一個初始方向……如果試一個方向大約要一分鍾,而他二十四小時日夜工作,那麼在大約兩星期里就可以找遍轉子所有可能的初始方向。如果對手用許多台機器同時破譯,那麼所需要的時間就會大大縮短。這種保密程度是不太足夠的。
當然謝爾比烏斯還可以再多加轉子,但是我們看見每加一個轉子初始方向的可能性只是乘以了26。尤其是,增加轉子會增加ENIGMA的體積和成本。謝爾比烏斯希望他的加密機器是便於攜帶的(事實上它最終的尺寸是34cm*28cm*15cm),而不是一個具有十幾個轉子的龐然大物。首先他把三個轉子做得可以拆卸下來互相交換,這樣一來初始方向的可能性變成了原來的六倍。假設三個轉子的編號為1、2、3,那麼它們可以被放成123-132-213-231-312-321六種不同位置,當然現在收發消息的雙方除了要預先約定轉子自身的初始方向,還要約定好這六種排列中的使用一種。
下一步謝爾比烏斯在鍵盤和第一轉子之間增加了一個連接板。這塊連接板允許使用者用一根連線把某個字母和另一個字母連接起來,這樣這個字母的信號在進入轉子之前就會轉變為另一個字母的信號。這種連線最多可以有六根(後期的ENIGMA具有更多的連線),這樣就可以使6對字母的信號互換,其他沒有插上連線的字母保持不變。在上面ENIGMA的實物圖里,我們看見這個連接板處於鍵盤的下方。當然連接板上的連線狀況也是收發信息的雙方需要預先約定的。
在上面示意圖中,當b鍵被按下時,燈C亮。於是轉子自身的初始方向,轉子之間的相互位置,以及連接板連
線的狀況就組成了所有可能的密匙,讓我們來算一算一共到底有多少
種。
三個轉子不同的方向組成了26*26*26=17576種不同可能性;
三個轉子間不同的相對位置為6種可能性;
只要約定好上面所說的密匙,收發雙方利用ENIGMA就可以十分容易地進行加密和解密。但是如果不知道密匙,在這巨大的可能性面前,一一嘗試來試圖找出密匙是完全沒有可能的。我們看見連接板對可能性的增加貢獻最大,那麼為什麼謝爾比烏斯要那麼麻煩地設計轉子之類的東西呢?原因在於連接板本身其實就是一個簡單替換密碼系統,在整個加密過程中,連接是固定的,所以單使用它是十分容易用頻率分析法來破譯的。轉子系統雖然提供的可能性不多,但是在加密過程中它們不停地轉動,使整個系統變成了復式替換系統,頻率分析法對它再也無能為力,與此同時,連接板卻使得可能性數目大大增加,使得暴力破譯法(即一個一個嘗試所有可能性的方法)望而卻步。

⑻ Enigma 英格瑪密碼機是誰最先破譯的

德國密碼中心的一個工作人員:施米特把密碼機的工作說明文件以相當於今天的3萬美元的價格賣給了法國的情報人員,可是法國人讀不懂這個說明就轉給了波蘭情報局,富有戲劇性的是當時波蘭情報機關剛剛從德國使館的外交郵件中截獲了一個英格碼機並悄悄的復制了一台,波蘭情報機關的天才數學家:雷耶夫斯基:利用這台復制的英格碼機和法國提供的說明文件成功的破譯了這種密碼.
但實際上破解英格碼不是那麼簡單的,破譯英格碼是一項非常單調的以個事情,這首先要歸功於波蘭,為什麼波蘭人會花那麼大的功夫去破解這個密碼呢?有很多因素,但最重要的因素因為當時的波蘭太弱了,在整個的30年代它一直面臨著德人咄咄逼人的威脅,那種迫在眉睫的危機感迫使它這一個窮國,一個弱國投入相當的資源去破解這種密碼(這里要說明的一點,30年代所有密碼大家都認為是文字游戲,加密解密和破解工作全部是語言學家在研究,可是從波蘭人那開始他們已經認識到未來的這個密碼的世界是數學的世界)波蘭人迫切的想知道自己的敵人在想什麼,要干什麼。可在戰爭中的勝負首要因素永遠是軍事打擊力量的強弱,破譯英格碼雖然是波蘭了解德國的侵略意圖,但是由於軍事力量的懸殊最終還是不能避免自己的國土遭到德國鐵蹄的踐踏,1939年9月底就在波蘭首都華沙陷落的前夕,波蘭天才數學家;雷耶夫斯基:帶著秘密逃到了法國,可是不久法國也淪陷了:雷耶夫斯基:被德國抓獲,在審問中:雷耶夫斯基:編了一個假話」說自己沒能破解英格碼。自負的德國人相信了,因為他們堅信英格碼是不會被破譯的,因此:雷耶夫斯基 沒有被處決。
現在只有英國情報機關掌握英格碼的秘密了,然而盡管他們有關於英格碼的所有知識,可還是不能破譯,因為德國人總是在每個月在8個控制輪里挑出3個裝在機器上,而且裝哪3個,按照什麼順序裝完全沒有規律,如果沒有這些信息破譯就無從說起,就在英國的情報當局一籌莫展百般無奈的時候運氣從天而降。1940年2月11日英國皇家海軍的掃雷艦格萊那號擊中了一搜德國潛艇並且迫使它浮出水面,德國潛艇上都裝有英格碼機以便接收指揮命令,由於他們需要在海上長時間執行任務所以總是帶著幾個月的使用密碼指令,在慌亂中負責銷毀英格碼控制輪的一名艇員,忘記把帶在身上的控制輪丟進海里,這樣控制輪就被英國人弄到手了,在加上原來繳獲的,他們終於湊成了一整套,和當前幾個月的轉輪設置指令終於能夠破譯英格碼了(在整個戰爭期間英國海軍共捕獲U33 U110 U505 U570D等6艘德國潛艇從而斷斷續續的得到英格碼轉輪的設置指令,為了能定期得到設置指令,英國海軍有意的襲擊德國海軍的氣象船,因為這些氣象船平均要在海上呆上8周他們必須攜帶2個月以上的密碼指令,當這些氣象船受到襲擊的時候負責英格碼的人員只來的即銷毀本月的指令,卻來不及打開保險櫃毀掉下個月的指令,每次這樣的襲擊總會給英格的英格碼專家提供1—2個月的信息)對英格碼的破譯使得英國海軍能了解德國潛艇的位置並引導本國的商船隊躲避攻擊,同時引導本國的海上力量攻擊敵人的海上船隻,其結果之一就是從義大利出發給隆美爾非洲軍團提供補給的船隻僅有6分之一到達目的地其餘全部被擊沉,補給跟不上這直接導致了德國非洲軍團覆滅。在解讀德國總部給隆美爾的通訊過程中,英國知道了德國已經破譯了美國陸軍的通訊密碼,而美軍正在用這個密碼每天向華盛頓報告英軍的作戰計劃,正好說明隆美爾料敵入神屢戰屢勝的原因,經過英國的提醒美國才趕緊更換密碼。這就是:英格碼:在戰爭中起的重要性!

⑼ 對於enigma加密機有比較好的解密演算法

肯定沒有美國大片《U-571》,告訴人們「恩尼格瑪」密碼機是戰爭中,同盟國費盡心機想要獲得的尖端秘密,是戰勝德國海軍潛艇的關鍵所在。歷史也確實如此,對於潛艇作戰,尤其是德國海軍的「狼群」戰術來說,無線電通訊是潛艇在海上活動,獲取信息通報情況的最重要的手段,而「恩尼格瑪」密碼機則是關乎整個無線電通訊安全的設備,其重要性可想而知。

自從無線電和摩爾斯電碼問世後,軍事通訊進入了一個嶄新的時代,但是無線電通訊完全是一個開放的系統,在己方接受電文的同時,對方也可「一覽無遺」,因此人類歷史上伴隨戰爭出現的密碼,也就立即與無線電結合,出現了無線電密碼。直到第一次世界大戰結束,所有無線電密碼都是使用手工編碼。毫無疑問,手工編碼效率極其低下,同時由於受到手工編碼與解碼效率的限制,使得許多復雜的保密性強的加密方法無法在實際中應用,而簡單的加密方法又很容易被破譯,因此在軍事通訊領域,急需一種安全可靠,而又簡便有效的方法。

1918年德國發明家亞瑟·謝爾比烏斯(Arthur Scherbius)和理查德·里特(Richard Ritter)創辦了一家新技術應用公司,曾經學習過電氣應用的謝爾比烏斯,想利用現代化的電氣技術,來取代手工編碼加密方法,發明一種能夠自動編碼的機器。謝爾比烏斯給自己所發明的電氣編碼機械取名「恩尼格瑪」(ENIGMA,意為啞謎),乍看是個放滿了復雜而精緻的元件的盒子,粗看和打字機有幾分相似。可以將其簡單分為三個部分:鍵盤、轉子和顯示器。

⑽ enigma(英格瑪)密碼機源代碼

http://ke..com/view/60376.htm

閱讀全文

與enigma加密機原理相關的資料

熱點內容
phpsql單引號 瀏覽:84
英雄聯盟壓縮壁紙 瀏覽:450
辦公app需要什麼伺服器 瀏覽:626
安卓伺服器怎麼獲得 瀏覽:806
空調壓縮機冷媒的作用 瀏覽:779
淘寶app是以什麼為利的 瀏覽:655
java提取圖片文字 瀏覽:922
我的世界手機版指令復制命令 瀏覽:33
java判斷字元串為數字 瀏覽:924
androidrpc框架 瀏覽:488
雲伺服器essd和ssd 瀏覽:522
家用網關的加密方式 瀏覽:1
怎麼從ppt導出pdf文件 瀏覽:971
換汽車空調壓縮機軸承 瀏覽:845
平板怎麼登錄安卓端 瀏覽:195
圖像拼接計演算法 瀏覽:255
怎麼打開飢荒伺服器的本地文件夾 瀏覽:291
usb掃描槍編程 瀏覽:673
博易大師手機app叫什麼 瀏覽:663
刮眼影盤解壓方法 瀏覽:966