A. 土力學三軸壓縮試驗與材料力學拉伸試驗有什麼不同
1,應力狀態不同,土力學三軸壓縮實驗,是給一個圍壓的狀態下,施加偏應力直到試件破壞。材料力學的拉伸實驗,只是加一個軸向的拉應力,到試件破壞。
2、兩者測定的物理特性不同。三軸試驗是測量岩土體在一定圍壓(模擬實際工程的土體埋深)的強度特性。拉伸實驗測量抗拉強度,而土體是不具有抗拉能力的。
B. 金屬材料拉伸與壓縮試驗σs和σb是試樣屈服和破壞時的真實應力嗎
屈服強度σs和抗拉強度σb是兩種重要的材料性能指標,它的值是經過足夠多的試驗後而得出的真實壓力的平均值,可以作為大多數應用場合設計依據。其中的抗拉強度σb在工程中應用最多,最有代表性。但是有些材料的屈服點非常不明顯,σs值的測量值反復較大,那麼就有了條件屈服強度之說。
C. 拉伸實驗的原理
拉伸實驗的原理是利用拉伸試驗機產生的靜拉力或靜壓力,對標准試樣進行軸向拉伸或壓縮,同時連續測量變化的載荷和試樣的伸長量,直至斷裂或破裂,並根據測得的數據計算出有關的力學性能指標。當材料在線彈性范圍內工作時,根據胡克定律可得出材料的彈性系數,拉伸實驗是學習力學的基本實驗。
D. 金屬材料軸向拉伸和壓縮時有幾種破壞形式
綜合性能好的金屬材料軸向拉伸和壓縮破壞試驗,採用標准試樣(圓形),正常的斷口是一個杯形,(內杯形和外杯形),杯底是平面,側面是斜度45度的錐面,錐面反應塑性滑移剪應力破壞過程,底面的平面反應應變硬化後的脆性斷裂過程,塑性好的材料錐面大而底平面小,塑性差的材料錐面小而底平面大,綜合性能好的金屬材料兩者比例恰當。
脆性材料斷口幾乎沒有錐面,甚至全是平面。材料成分或結構不均勻的斷口是個斜面或不規則的斜面
E. 材料力學拉伸與壓縮實驗可以得到什麼結論
利用拉伸試驗得到的數據可以確定材料的彈性極限、伸長率、彈性模量、比例極限、面積縮減量、拉伸強度、屈服點、屈服強度和其它拉伸性能指標。拉伸試驗可測定材料的一系列強度指標和塑性指標。強度通常是指材料在外力作用下抵抗產生彈性變形、塑性變形和斷裂的能力。材料在承受拉伸載荷時,當載荷不增加而仍繼續發生明顯塑性變形的現象叫做屈服。產生屈服時的應力,稱屈服點或稱物理屈服強度,用σS(帕)表示。工程上有許多材料沒有明顯的屈服點,通常把材料產生的殘余塑性變形為 0.2%時的應力值作為屈服強度,稱條件屈服極限或條件屈服強度,用σ0.2 表示。材料在斷裂前所達到的最大應力值,稱抗拉強度或強度極限,用σb(帕)表示。
測定材料在軸向靜壓力作用下的力學性能的試驗,是材料機械性能試驗的基本方法之一。試樣破壞時的最大壓縮載荷除以試樣的橫截面積,稱為壓縮強度極限或抗壓強度。壓縮試驗主要適用於脆性材料,如鑄鐵、軸承合金和建築材料等。對於塑性材料,無法測出壓縮強度極限,但可以測量出彈性模量、比例極限和屈服強度等。與拉伸試驗相似,通過壓縮試驗可以作出壓縮曲線。圖中為灰鑄鐵和退火鋼的壓縮曲線。曲線中縱坐標P為壓縮載荷,橫坐標Δh為試樣承受載荷時的壓縮量。如將兩坐標值分別除以試樣的原截面積和原高度,即可轉換成壓縮時的應力-應變曲線。圖中Pp為比例極限載荷,P0.2為條件屈服極限載荷,P b為破壞載荷。在壓縮試驗中,試樣端面存在較大的摩擦力,影響試驗結果。試樣越短影響越大,為減少摩擦力的影響,一般規定試樣的長度與直徑的比為1~3,同時降低試樣的表面粗糙度,塗以潤滑油脂或墊上一層薄的聚四氟乙烯等材料
如果滿意,請採納!
您的採納使我繼續努力的動力!
F. 拉神壓縮實驗
拉伸壓縮試驗原理:利用拉伸試驗機產生的靜拉力(或靜壓力),對標准試樣進行軸向拉伸(或壓縮),同時連續測量變化的載荷和試樣的伸長量,直至斷裂(或破裂),並根據測得的數據計算出有關的力學性能指標。
對於受拉伸或壓縮的等截面直桿(稜柱形桿),根據桿受力時橫截面保持為平面的假設,則橫截面上無剪應力τ,而其正應力σ為均勻分布,其值等於軸力N 除以橫截面面積A,即σ=N/A;當材料在線彈性范圍內工作時,根據胡克定律(見材料力學),桿內一點處的軸向(縱向)線應變為ε=σ/E(E為材料的拉、壓彈性模量);在軸力N 為常量的長度L范圍內,絕對線變形ΔL的計算公式為ΔL=NL/EA。
G. 拉伸壓縮的試驗原理是
原理:利用拉伸試驗機產生的靜拉力(或靜壓力),對標准試樣進行軸向拉伸(或壓縮),同時連續測量變化的載荷和試樣的伸長量,直至斷裂(或破裂),並根據測得的數據計算出有關的力學性能指標。
拓展介紹:
工程結構構件的基本變形形式之一。對於受拉伸或壓縮的等截面直桿(稜柱形桿),根據桿受力時橫截面保持為平面的假設,則橫截面上無剪應力τ,而其正應力σ為均勻分布,其值等於軸力N 除以橫截面面積A,即σ=N/A;當材料在線彈性范圍內工作時,根據胡克定律(見材料力學),桿內一點處的軸向(縱向)線應變為ε=σ/E(E為材料的拉、壓彈性模量);在軸力N 為常量的長度L范圍內,絕對線變形ΔL的計算公式為ΔL=NL/EA。
H. 力學 軸向拉(壓)桿的強度條件能解決哪三類問題
在不同的工程實際情況下,根據軸向拉伸(壓)桿的強度條件能解決強度校核,截面尺寸,允許載荷這三個類的問題,詳細方法如下:
1、解決強度校核問題:設已知桿件的截面尺寸、承受的載荷和許用應力,可以驗證桿件是否安全,這稱為桿件的強度校核。
2、選擇截面尺寸問題:設已知桿件承受的載荷和所選用的材料,要求按照強度條件確定截面的尺寸或面積,則可以選用公式為:A>=(Fnmax)/[σ]。
3、解決確定允許載荷問題:設已知桿件的截面尺寸和所選用的材料,要求按照強度條件確定桿件所能運行的最大軸力,並根據內力和載荷的關系,計算桿件所允許的最大荷載,則可以選用公式為:Fnmax<=A[σ]。
軸向拉(壓)桿的應力會隨著外力的增加而增長,對於某一種材料,應力的增長是有限度的,超過這一限度,材料就要破壞。對某種材料來說,應力可能達到的這個限度稱為該種材料的極限應力。極限應力值要通過材料的力學試驗來測定。
軸向拉伸與壓縮:
1、受力特徵 作用於等直桿兩端的外力或其合力的作用線沿桿件的軸線,一對大小相等、矢向相反。
2、變形特徵 受力後桿件沿其軸向方向均勻伸長(縮短)即桿件任意兩橫截面沿桿件軸向方向產生相對的平行移動。
3、拉壓桿以軸向拉壓為主要變形的桿件,稱為拉壓桿或軸向受力桿。作用線沿桿件軸向的載荷,稱為軸向載荷。
I. 軸向拉伸實驗的誤差因素有哪些
軸向拉伸實驗的誤差因素
1、取樣部位的影響
從金屬材料的不同位置取樣獲得的實驗樣本,其力學性能往往存在一些差異,例如圓鋼40mm其中心處的抗拉強度低於1/4處的抗拉強度,且斷後拉伸率也存在差別,可見取樣部位對實驗結果有著不可忽視的影響。由於金屬材料在鑄造形成、加工過程中,成分、內部組織結構、冶金缺陷、加工變形分布不均,因此使得同一批,甚至同一產品的不同部位的力學性能出現了差異。
2、取樣方向的影響
取樣方向的差異會直接影響金屬材料拉伸試驗的斷後伸長率、屈服強度以及抗拉強度等各項性能指標,尤其是斷後伸長率受到的影響更大。若採取橫向取樣,則依照有關標准,試驗之後的斷後伸長率則不能夠達標。通常垂直於軋制方向,則金屬力學性能則可能不達標;平行於軋制方向,則金屬力學性能良好。
3、試樣的形狀、尺寸的影響
同一材料同一狀態的金屬材料,如果截面形狀不同,測得的結果對屈服強度中的上屈服強度ReH影響大,對下屈服強度ReH影響小。矩形試樣的工作長度部分的對稱度,圓形試件的工作部分軸線與夾頭部分的軸線不同心,都會在拉伸時產生偏心力,產生附加彎曲應力,使強度和伸長率均降低。試樣的尺寸的大小對試驗結果的影響是,同一材料同一狀態的金屬材料試樣,大橫截面積(大尺寸)的試樣的抗拉強度較小尺寸的低,而且塑性指標也下降。