Ⅰ 數據流壓縮原理和數據壓縮Zlib的實現
壓縮的本質就是去冗餘,去除信息冗餘,使用最短的編碼保存最完整的數據信息。所以對於不同的場景,壓縮採用的演算法也因時制宜,比如視頻和圖片可以採用有損壓縮,而文本數據採用無損壓縮。壓縮率又取決於信息的冗餘度,也就是內容中重復的比例。那些均勻分布的隨機字元串,壓縮率會降到最低,即香農限
deflate是zip文件的默認演算法。它更是一種數據流壓縮演算法。
LZ77壓縮演算法採用字典的方式進行壓縮,是一種簡單但是很高效的數據壓縮演算法。其方式就是把數據中一些可以組織成短語的字元加入字典。維護三個概念: 短語字典、滑動窗口、向前緩沖區
壓縮的逆過程,通過解碼標記和保持滑動窗口中的符號來更新解壓數據。當解碼字元被標記:將標記編碼成字元拷貝到滑動窗口中,一步一步直到全部翻譯完成
在流式傳輸中,不定長編碼數據的解碼想要保持唯一性,必須滿足唯一可以碼的條件。而異前綴碼就是一種唯一可解碼的候選,當然這樣會增加編碼的長度,卻可以簡化解碼。
huffman編碼是一種基於概率分布的貪心策略最優前綴碼。huffman編碼可以有效的壓縮數據,壓縮率取決於數據本身的信息冗餘度
計算數據中各符號出現的概率,根據概率從小到大,從下往上反向構建構造碼樹,這樣最終得到的編碼的平均長度是最短的。同時也是唯一可譯的
解讀:在一開始,每一個字元已經按照出現概率的大小排好順序,在後續的步驟中,每一次將概率最低的兩棵樹合並,然後用合並後的結果再次排序(為了找出最小的兩棵樹)。在gzip源碼中並沒有專門去排序,而是使用專門的數據結構(比如最小堆或者紅黑樹)。
使用優先隊列實現huffman樹,最後基於Huffman樹最終實現文件壓縮。
具體步驟:
gzip = gzip 頭 + deflate 編碼的實際內容 + gzip 尾
zlib = zlib 頭 + deflate 編碼的實際內容 + zlib 尾
壓縮之前:初始化各種輸入輸出緩沖區;
壓縮:我們可以不斷往這些緩沖區中填充內容,然後由deflate函數進行壓縮或者indeflate函數進行解壓
總結:在調用deflate函數之前,應用程序必須保證至少一個動作被執行(avail_in或者avail_out被設置),用提供更多數據或者消耗更多的數據的方式。avail_out在函數調用之前千萬不能為零。應用程序可以隨時消耗被壓縮的輸出數據
Ⅱ 用C語言簡單演示如何藉助zlib庫實現文件的壓縮和解壓縮
問題的根源在於這些網友對於字元串和位元組流的概念非常的模糊,對文本文件和二進制文件的區別常常模稜兩可,其實位元組流可以表示所有的數據,二進制文件才是任何文件的本質。位元組流是一個位元組接一個位元組,並沒有結束符號,所以需要給它一個長度信息。二進制文件是一個位元組接一個位元組,並沒有換行符之類的。文件壓縮的時候,可以通過源文件的長度自動計算緩沖區的長度,壓縮後寫入目標文件之前,需先保留源文件和目標數據的長度作為解壓縮的依據,參考如下代碼:#include #include #include int main(int argc, char* argv[]) { FILE* file; uLong flen; unsigned char* fbuf = NULL; uLong clen; unsigned char* cbuf = NULL; /* 通過命令行參數將srcfile文件的數據壓縮後存放到dstfile文件中 */ if(argc < 3) { printf("Usage: zcdemo srcfile dstfile\n"); return -1; } if((file = fopen(argv[1], "rb")) == NULL) { printf("Can\'t open %s!\n", argv[1]); return -1; } /* 裝載源文件數據到緩沖區 */ fseek(file, 0L, SEEK_END); /* 跳到文件末尾 */ flen = ftell(file); /* 獲取文件長度 */ fseek(file, 0L, SEEK_SET); if((fbuf = (unsigned char*)malloc(sizeof(unsigned char) * flen)) == NULL) { printf("No enough memory!\n"); fclose(file); return -1; } fread(fbuf, sizeof(unsigned char), flen, file); /* 壓縮數據 */ clen = compressBound(flen); if((cbuf = (unsigned char*)malloc(sizeof(unsigned char) * clen)) == NULL) { printf("No enough memory!\n"); fclose(file); return -1; } if(compress(cbuf, &clen, fbuf, flen) != Z_OK) { printf("Compress %s failed!\n", argv[1]); return -1; } fclose(file); if((file = fopen(argv[2], "wb")) == NULL) { printf("Can\'t create %s!\n", argv[2]); return -1; } /* 保存壓縮後的數據到目標文件 */ fwrite(&flen, sizeof(uLong), 1, file); /* 寫入源文件長度 */ fwrite(&clen, sizeof(uLong), 1, file); /* 寫入目標數據長度 */ fwrite(cbuf, sizeof(unsigned char), clen, file); fclose(file); free(fbuf); free(cbuf); return 0; }文件解壓縮的時候,可以通過保留信息得到緩沖區和數據流的大小,這樣解壓縮後直接保存即可,參考如下代碼:#include #include #include int main(int argc, char* argv[]) { FILE* file; uLong flen; unsigned char* fbuf = NULL; uLong ulen; unsigned char* ubuf = NULL; /* 通過命令行參數將srcfile文件的數據解壓縮後存放到dstfile文件中 */ if(argc < 3) { printf("Usage: zudemo srcfile dstfile\n"); return -1; } if((file = fopen(argv[1], "rb")) == NULL) { printf("Can\'t open %s!\n", argv[1]); return -1; } /* 裝載源文件數據到緩沖區 */ fread(&ulen, sizeof(uLong), 1, file); /* 獲取緩沖區大小 */ fread(&flen, sizeof(uLong), 1, file); /* 獲取數據流大小 */ if((fbuf = (unsigned char*)malloc(sizeof(unsigned char) * flen)) == NULL) { printf("No enough memory!\n"); fclose(file); return -1; } fread(fbuf, sizeof(unsigned char), flen, file); /* 解壓縮數據 */ if((ubuf = (unsigned char*)malloc(sizeof(unsigned char) * ulen)) == NULL) { printf("No enough memory!\n"); fclose(file); return -1; } if(uncompress(ubuf, &ulen, fbuf, flen) != Z_OK) { printf("Uncompress %s failed!\n", argv[1]); return -1; } fclose(file); if((file = fopen(argv[2], "wb")) == NULL) { printf("Can\'t create %s!\n", argv[2]); return -1; } /* 保存解壓縮後的數據到目標文件 */ fwrite(ubuf, sizeof(unsigned char), ulen, file); fclose(file); free(fbuf); free(ubuf); return 0; }
Ⅲ 如何發揮zlib壓縮解壓的最大效
首先說明,這里不是橫向比較zlib與別的引擎(rar,leo,powerarc...),是探索如何發揮zlib壓縮/解壓的最大效率。
先看看如下代碼在效率上的差異:
var MS:TMemoryStream;(1):begin MS:=TMemoryStream.Create; MS.Size:=$400000;//4M------------------------------------------------(2):var i:integer;begin MS:=TMemoryStream.Create; for i:=1 to 1024 do MS.Size:=MS.Size+4096;
你會發現,方法(1)只要1個毫秒,方法(2)卻要20秒。
因此,如果把解壓縮程序寫成下面這樣,會非常沒有效率:
procere ZlibDeCompress(instream,outStream:TStream);var ACS:TDeCompressionStream; buf:array[1..4096] of byte; numread:integer;begin inStream.Position:=0; ACS:=TDeCompressionStream.Create(inStream); try repeat numRead:=ACS.Read(buf,sizeof(buf)); if numread>0 then outStream.Write(buf,numRead); until (numRead=0); finally ACS.Free; end;end;
如果我們知道原始資料的大小,一次確定outStream.Size,效率就可以提高幾十倍。方法很簡單,我們可以在壓縮時,把原始資料的Size寫在壓縮Stream的頭部,如,寫一個LongWord的大小,解壓時就可以先讀出Size,因此,最有效率的解壓程序為:
procere ZlibDecompressStream2(Source,Dest:TMemoryStream);var zstream: TZStreamRec; SourceLen,DestLen:LongWord;begin FillChar(zstream,SizeOf(TZStreamRec),0); SourceLen:=Source.Size; Source.Position:=0; Source.Read(DestLen,SizeOf(LongWord)); Dest.Size:=DestLen; zstream.next_in:=Pointer(LongWord(Source.Memory)+SizeOf(LongWord)); zstream.avail_in:=SourceLen-SizeOf(LongWord); zstream.next_out:=Dest.Memory; zstream.avail_out:=DestLen; ZDecompressCheck(InflateInit(zstream)); try ZDecompressCheck(inflate(zstream,Z_NO_FLUSH)); finally ZDecompressCheck(inflateEnd(zstream)); end;end;
用一個4M的文件試試,效率提高近70倍。
同樣道理,在壓縮的時候,如果能預先知道壓縮後的大小,也能提高效率不少,但這似乎是不可能的,也不能盲目的給outStream.Size一個"足夠大"的數值,只能按引擎的原理估算一個最接近的數值,zlib推薦的為:
((SourceLen+(SourceLen div 10)+12)+255) and not 255
因此,最有效率的壓縮程序為:
procere ZlibCompressStream2(Source,Dest:TMemoryStream; CompressLevel:TZCompressi);var zstream: TZStreamRec; SourceLen,DestLen:LongWord;begin FillChar(zstream,SizeOf(TZStreamRec),0); SourceLen:=Source.Size; DestLen:=SizeOf(LongWord)+((SourceLen+(SourceLen div 10)+12)+255) and not 255; Dest.Size:=DestLen; Dest.Position:=0; Dest.Write(SourceLen,Sizeof(LongWord)); zstream.next_in:=Source.Memory; zstream.avail_in:=SourceLen; zstream.next_out:=Pointer(LongWord(Dest.Memory)+SizeOf(LongWord)); zstream.avail_out:=DestLen-SizeOf(longWord); ZCompressCheck(DeflateInit(zstream,ZLevels[CompressLevel])); try ZCompressCheck(deflate(zstream,Z_FINISH)); finally ZCompressCheck(deflateEnd(zstream)); end; Dest.Size:=zstream.total_out+SizeOf(LongWord);end;
Ⅳ delphi中用zlib怎樣壓縮和解壓
數據壓縮和解壓的示例代碼:
{壓縮流}
function CompressStream(ASrcStream: TStream; ALevel: TSfCompressionLevel): TStream;
var
SrcData,Buffer:Pointer;
BufSize:Integer;
begin
Buffer:=nil;
Result:=nil;
BufSize:=0;
GetMem(SrcData,ASrcStream.Size);
ASrcStream.Position:=0;
ASrcStream.Read(SrcData^,ASrcStream.Size);
try
try
SfCompressBuf(SrcData,ASrcStream.Size,Buffer,BufSize,ALevel);
except
on E:Exception do
SfRaiseException(E,'Exception raised in CompressStream call');
end;
finally
FreeMem(SrcData);
SrcData:=nil;
end;
//由於try...except塊中重引發了異常,所以在發生了異常的情況下,以下的代碼不會執行
Result:=TMemoryStream.Create;
Result.Write(Buffer^,BufSize);
FreeMem(Buffer);
end;
{解壓流}
function CompressStream(ASrcStream: TStream; ALevel: TSfCompressionLevel): TStream;
var
SrcData,Buffer:Pointer;
BufSize:Integer;
begin
Buffer:=nil;
Result:=nil;
BufSize:=0;
GetMem(SrcData,ASrcStream.Size);
ASrcStream.Position:=0;
ASrcStream.Read(SrcData^,ASrcStream.Size);
try
try
SfCompressBuf(SrcData,ASrcStream.Size,Buffer,BufSize,ALevel);
except
on E:Exception do
SfRaiseException(E,'Exception raised in CompressStream call');
end;
finally
FreeMem(SrcData);
SrcData:=nil;
end;
//由於try...except塊中重引發了異常,所以在發生了異常的情況下,以下的代碼不會執行
Result:=TMemoryStream.Create;
Result.Write(Buffer^,BufSize);
FreeMem(Buffer);
end;
{壓縮位元組數組}
function CompressBytes(ASrcBytes: TBytes; ALevel: TSfCompressionLevel): TBytes;
var
Buffer:Pointer;
BufSize:Integer;
begin
Buffer:=nil;
BufSize:=0;
try
SfCompressBuf(@ASrcBytes[0],Length(ASrcBytes),Buffer,BufSize,ALevel);
SetLength(Result,BufSize);
Move(Buffer^,Result[0],BufSize);
except
on E:Exception do
SfRaiseException(E,'Exception raised in CompressBytes call');
end;
//由於try...except塊中重引發了異常,所以在發生了異常的情況下,以下的代碼不會執行
FreeMem(Buffer);
end;
{解壓位元組數組}
function DecompressBytes(ASrcBytes: TBytes): TBytes;
var
Buffer:Pointer;
BufSize:Integer;
begin
Buffer:=nil;
BufSize:=0;
try
SfDecompressBuf(@ASrcBytes[0],Length(ASrcBytes),0,Buffer,BufSize);
SetLength(Result,BufSize);
Move(Buffer^,Result[0],BufSize);
except
on E:Exception do
SfRaiseException(E,'Exception raised in DecompressBytes call');
end;
//由於try...except塊中重引發了異常,所以在發生了異常的情況下,以下的代碼不會執行
FreeMem(Buffer);
end;
Ⅳ python中如何對文件進行 zlib壓縮
文件讀取以後也是一個大的字元串,整個一起壓縮就可以了。
示例:
fin=open('in.txt','r')
fout=open('out.txt','w')
str=fin.read()
//compressstr
fout.write(compressed_str)
fout.close()
fin.close()
Ⅵ zlib函數compress解釋
zlib 是通用的壓縮庫,提供了一套 in-memory 壓縮和解壓函數,並能檢測解壓出來的數據的完整性(integrity)。zlib 也支持讀寫 gzip (.gz) 格式的文件。下面介紹兩個最有用的函數——compress 和 uncompress。
int compress(Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen);
compress函數將 source 緩沖區中的內容壓縮到 dest 緩沖區。 sourceLen 表示source 緩沖區的大小(以位元組計)。注意函數的第二個參數 destLen 是傳址調用。當調用函數時,destLen表示 dest 緩沖區的大小,destLen > (sourceLen + 12)*100.1%。當函數退出後,destLen 表示壓縮後緩沖區的實際大小。此時 destLen / sourceLen 正好是壓縮率。
compress 若成功,則返回 Z_OK;若沒有足夠內存,則返回 Z_MEM_ERROR;若輸出緩沖區不夠大,則返回 Z_BUF_ERROR。
Ⅶ 關於zlib解壓縮的問題~
壓縮與解壓縮的時候,分別有2個不同的版本,分別是safe和普通的版本。2個版本要對應起來。
你在解壓縮的時候,注意緩沖區大小了嗎?緩沖區夠用了嗎?在壓縮前,保存一下這個壓縮前的原始的長度,然後解壓前,分配一塊至少這么大的內存。
你實際調試過嗎?比如,你可以先去掉文件IO的過程,只是對一個字元串進行壓縮/解壓,然後看看是否正確;然後再加上文件IO,看看存取的過程是否正確。壓縮後的文件應該以二進制方式打開對吧。
Ⅷ java zlib 壓縮和解壓縮怎麼實現
使用java.util.zip.ZipFile 類及相關的類實現
如解壓縮
ZipInputStream zin = new ZipInputStream(in);
ZipEntry entry = null;
while((entry=zin.getNextEntry())!=null){
if(entry.isDirectory()||entry.getName().equals("..\\"))
continue;
BufferedInputStream bin = new BufferedInputStream(zin);
byte[] buf = new byte[];
bin.read(buf,0,1);
}
Ⅸ SVGA-介紹
1.x 使用 JSON 描述動畫,JSON 是一種易於擴展的、強大的描述語言,但是,JSON 也有一個致命的缺點,當動畫極度復雜時,JSON 文件會變得非常大,解析耗時以及內存開銷會增大。
因此,JSON 方案已於 2.0 開始,被棄用。
2.x 使用 ProtoBuf 描述動畫,相關的 Proto 協議可以在此獲取
2.x SVGA 文件是使用 ProtoBuf 編寫的二進制文件,並使用 zlib 壓縮後得到。
2.0.0 的 Player 理應播放 2.x 的格式文件,並向下兼容 1.x 格式文件。
1.x 的 Player 只能播放 1.x 的格式文件,不能播放 2.x 的格式文件。
https://blog.csdn.net/tmacyi/category_10914115.html