導航:首頁 > 文件處理 > 壓縮感知硬體實現

壓縮感知硬體實現

發布時間:2022-12-30 07:43:36

壓縮感知究竟是什麼原理

壓縮感知(compressed sensing)。所謂壓縮感知,最核心的概念在於試圖從原理上降低對一個信號進行測量的成本。比如說,一個信號包含一千個數據,那麼按照傳統的信號處理理論,至少需要做一千次測量才能完整的復原這個信號。這就相當於是說,需要有一千個方程才能精確地解出一千個未知數來。但是壓縮感知的想法是假定信號具有某種特點(比如文中所描述得在小波域上系數稀疏的特點),那麼就可以只做三百次測量就完整地復原這個信號(這就相當於只通過三百個方程解出一千個未知數)。可想而知,這件事情包含了許多重要的數學理論和廣泛的應用前景,因此在最近三四年裡吸引了大量注意力,得到了非常蓬勃的發展。陶哲軒本身是這個領域的奠基人之一(可以參考《陶哲軒:長大的神童》一文),因此這篇文章的權威性毋庸諱言。另外,這也是比較少見的由一流數學家直接撰寫的關於自己前沿工作的普及性文章。需要說明的是,這篇文章是雖然是寫給非數學專業的讀者,但是也並不好懂,也許具有一些理工科背景會更容易理解一些。

② 什麼是「壓縮感知」(壓縮感測、compressed/compressive sensing)

壓縮感知(Compressive Sensing, or Compressed Sampling,簡稱CS),是近幾年流行起來的一個介於數學和信息科學的新方向,由Candes、Terres Tao等人提出,挑戰傳統的采樣編碼技術,即Nyquist采樣定理。
壓縮感知技術-理論
壓縮感知理論為信號採集技術帶來了革命性的突破,它採用非自適應線性投影來保持信號的原始結構,以遠低於奈奎斯特頻率對信號進行采樣,通過數值最優化問題准確重構出原始信號。
壓縮感知技術-概念特徵
壓縮感知從字面上看起來,好像是數據壓縮的意思,而實則出於完全不同的考慮。經典的數據壓縮技術,無論是音頻壓縮(例如 mp3),圖像壓縮(例如 jpeg),視頻壓縮(mpeg),還是一般的編碼壓縮(zip),都是從數據本身的特性出發,尋找並剔除數據中隱含的冗餘度,從而達到壓縮的目的。這樣的壓縮有兩個特點:第一、它是發生在數據已經被完整採集到之後;第二、它本身需要復雜的演算法來完成。相較而言,解碼過程反而一般來說在計算上比較簡單,以音頻壓縮為例,壓制一個 mp3 文件的計算量遠大於播放(即解壓縮)一個 mp3 文件的計算量。 稍加思量就會發現,這種壓縮和解壓縮的不對稱性正好同人們的需求是相反的。在大多數情況下,採集並處理數據的設備,往往是廉價、省電、計算能力較低的便攜設備,例如傻瓜相機、或者錄音筆、或者遙控監視器等等。而負責處理(即解壓縮)信息的過程卻反而往往在大型計算機上進行,它有更高的計算能力,也常常沒有便攜和省電的要求。也就是說,人們是在用廉價節能的設備來處理復雜的計算任務,而用大型高效的設備處理相對簡單的計算任務。這一矛盾在某些情況下甚至會更為尖銳,例如在野外作業或者軍事作業的場合,採集數據的設備往往曝露在自然環境之中,隨時可能失去能源供給或者甚至部分喪失性能,在這種情況下,傳統的數據採集-壓縮-傳輸-解壓縮的模式就基本上失效了。 壓縮感知的概念就是為了解決這樣的矛盾而產生的。既然採集數據之後反正要壓縮掉其中的冗餘度,而這個壓縮過程又相對來說比較困難,那麼我們為什麼不直接「採集」壓縮後的數據?這樣採集的任務要輕得多,而且還省去了壓縮的麻煩。這就是所謂的「壓縮感知」,也就是說,直接感知壓縮了的信息。
壓縮感知技術-應用影響
在大量的實際問題中,人們傾向於盡量少地採集數據,或者由於客觀條件所限不得不採集不完整的數據。如果這些數據和人們所希望重建的信息之間有某種全局性的變換關系,並且人們預先知道那些信息滿足某種稀疏性條件,就總可以試著用類似的方式從比較少的數據中還原出比較多的信號來。到今天為止,這樣的研究已經拓展地非常廣泛了。 但是同樣需要說明的是,這樣的做法在不同的應用領域里並不總能滿足上面所描述的兩個條件。有的時候,第一個條件(也就是說測量到的數據包含信號的全局信息)無法得到滿足,例如最傳統的攝影問題,每個感光元件所感知到的都只是一小塊圖像而不是什麼全局信息,這是由照相機的物理性質決定的。為了解決這個問題,美國Rice大學的一部分科學家正在試圖開發一種新的攝影裝置(被稱為「單像素照相機」),爭取用盡量少的感光元件實現盡量高解析度的攝影。有的時候,第二個條件(也就是說有數學方法保證能夠從不完整的數據中還原出信號)無法得到滿足。這種時候,實踐就走在了理論前面。人們已經可以在演算法上實現很多數據重建的過程,但是相應的理論分析卻成為了留在數學家面前的課題。 但是無論如何,壓縮感知所代表的基本思路:從盡量少的數據中提取盡量多的信息,毫無疑問是一種有著極大理論和應用前景的想法。它是傳統資訊理論的一個延伸,但是又超越了傳統的壓縮理論,成為了一門嶄新的子分支。它從誕生之日起到現在不過五年時間,其影響卻已經席捲了大半個應用科學。
復制的。。。。。

③ 壓縮感知的基本知識

現代信號處理的一個關鍵基礎是 Shannon 采樣理論:一個信號可以無失真重建所要求的離散樣本數由其帶寬決定。但是Shannon 采樣定理是一個信號重建的充分非必要條件。在過去的幾年內,壓縮感知作為一個新的采樣理論,它可以在遠小於Nyquist 采樣率的條件下獲取信號的離散樣本,保證信號的無失真重建。壓縮感知理論一經提出,就引起學術界和工業界的廣泛關注。
壓縮感知理論的核心思想主要包括兩點。第一個是信號的稀疏結構。傳統的Shannon 信號表示方法只開發利用了最少的被采樣信號的先驗信息,即信號的帶寬。但是,現實生活中很多廣受關注的信號本身具有一些結構特點。相對於帶寬信息的自由度,這些結構特點是由信號的更小的一部分自由度所決定。換句話說,在很少的信息損失情況下,這種信號可以用很少的數字編碼表示。所以,在這種意義上,這種信號是稀疏信號(或者近似稀疏信號、可壓縮信號)。另外一點是不相關特性。稀疏信號的有用信息的獲取可以通過一個非自適應的采樣方法將信號壓縮成較小的樣本數據來完成。理論證明壓縮感知的采樣方法只是一個簡單的將信號與一組確定的波形進行相關的操作。這些波形要求是與信號所在的稀疏空間不相關的。
壓縮感知方法拋棄了當前信號采樣中的冗餘信息。它直接從連續時間信號變換得到壓縮樣本,然後在數字信號處理中採用優化方法處理壓縮樣本。這里恢復信號所需的優化演算法常常是一個已知信號稀疏的欠定線性逆問題。

④ 稀疏度為1的信號,用壓縮感知恢復原始信號,匹配追蹤演算法(MP)和正交匹配追蹤演算法(OMP)的結果一樣嗎

壓縮感知(Compressed Sensing, CS)[1]理論具有全新的信號獲取和處理方式,該理論解決了傳統的Nyquist方法采樣頻率較高的問題,大大降低了稀疏信號精確重構所需的采樣頻率。
另外,CS理論在數據採集的同時完成數據壓縮,從而節約了軟、硬體資源及處理時間。
這些突出優點使其在信號處理領域有著廣闊的應用前景!

⑤ 壓縮感知的主要應用

認知無線電方向:寬頻譜感知技術是認識無線電應用中一個難點和重點。它通過快速尋找監測頻段中沒有利用的無線頻譜,從而為認知無線電用戶提供頻譜接入機會。傳統的濾波器組的寬頻檢測需要大量的射頻前端器件,並且不能靈活調整系統參數。普通的寬頻接收電路要求很高的采樣率,它給模數轉換器帶來挑戰,並且獲得的大量數據處理給數字信號處理器帶來負擔。針對寬頻譜感知的難題,將壓縮感知方法應用到寬頻譜感知中:採用一個寬頻數字電路,以較低的頻譜獲得欠采樣的隨機樣本,然後在數字信號處理器中採用稀疏信號估計演算法得到寬頻譜感知結果。
信道編碼:壓縮感測理論中關於稀疏性、隨機性和凸最優化的結論可以直接應用於設計快速誤差校正編碼, 這種編碼方式在實時傳輸過程中不受誤差的影響。在壓縮編碼過程中, 稀疏表示所需的基對於編碼器可能是未知的. 然而在壓縮感測編碼過程中, 它只在解碼和重構原信號時需要, 因此不需考慮它的結構, 所以可以用通用的編碼策略進行編碼. Haupt等通過實驗表明如果圖像是高度可壓縮的或者SNR充分大, 即使測量過程存在雜訊, 壓縮感測方法仍可以准確重構圖像。 波達方向估計:目標出現的角度在整個掃描空間來看,是極少數。波達方向估計問題在空間譜估計觀點來看是一個欠定的線性逆問題。通過對角度個數的稀疏限制,可以完成壓縮感知的波達方向估計。
波束形成:傳統的 自適應波束形成因其高解析度和抗干擾能力強等優點而被廣泛採用。但同時它的高旁瓣水平和角度失匹配敏感度高問題將大大降低接收性能。為了改進Capon 波束形成的性能,這些通過稀疏波束圖整形的方法限制波束圖中陣列增益較大的元素個數,同時鼓勵較大的陣列增益集中在波束主瓣中,從而達到降低旁瓣水平同時,提高主瓣中陣列增益水平,降低角度失匹配的影響。例如,最大主瓣旁瓣能量比,混合范數法,最小全變差。 運用壓縮感測原理, RICE大學成功研製了單像素壓縮數碼照相機。 設計原理首先是通過光路系統將成像目標投影到一個數字微鏡器件(DMD)上, 其反射光由透鏡聚焦到單個光敏二極體上, 光敏二極體兩端的電壓值即為一個測量值y, 將此投影操作重復M次, 得到測量向量 , 然後用最小全變分演算法構建的數字信號處理器重構原始圖像。數字微鏡器件由數字電壓信號控制微鏡片的機械運動以實現對入射光線的調整。 由於該相機直接獲取的是M次隨機線性測量值而不是獲取原始信號的N(M,N)個像素值, 為低像素相機拍攝高質量圖像提供了可能.。
壓縮感測技術也可以應用於雷達成像領域, 與傳統雷達成像技術相比壓縮感測雷達成像實現了兩個重要改進: 在接收端省去脈沖壓縮匹配濾波器; 同時由於避開了對原始信號的直接采樣, 降低了接收端對模數轉換器件帶寬的要求. 設計重點由傳統的設計昂貴的接收端硬體轉化為設計新穎的信號恢復演算法, 從而簡化了雷達成像系統。 生物感測中的傳統DNA晶元能平行測量多個有機體, 但是只能識別有限種類的有機體, Sheikh等人運用壓縮感測和群組檢測原理設計的壓縮感測DNA晶元克服了這個缺點。 壓縮感測DNA晶元中的每個探測點都能識別一組目標, 從而明顯減少了所需探測點數量. 此外基於生物體基因序列稀疏特性, Sheikh等人驗證了可以通過置信傳播的方法實現壓縮感測DNA晶元中的信號重構。

⑥ 壓縮感測的原理

核心思想是將壓縮與采樣合並進行,首先採集信號的非自適應線性投影 (測量值),然後根據相應重構演算法由測量值重構原始信號。壓縮感測的優點在於信號的投影測量數據量遠遠小於傳統采樣方法所獲的數據量,突破了香農采樣定理的瓶頸,使得高解析度信號的採集成為可能。
信號的稀疏表示就是將信號投影到正交變換基時,絕大部分變換系數的絕對值很小,所得到的變換向量是稀疏或者近似稀疏的,以將其看作原始信號的一種簡潔表達,這是壓縮感測的先驗條件,即信號必須在某種變換下可以稀疏表示。 通常變換基可以根據信號本身的特點靈活選取, 常用的有離散餘弦變換基、快速傅里葉變換基、離散小波變換基、Curvelet基、Gabor 基 以及冗餘字典等。 在編碼測量中, 首先選擇穩定的投影矩陣,為了確保信號的線性投影能夠保持信號的原始結構, 投影矩陣必須滿足約束等距性 (Restricted isometry property, RIP)條件, 然後通過原始信號與測量矩陣的乘積獲得原始信號的線性投影測量。最後,運用重構演算法由測量值及投影矩陣重構原始信號。信號重構過程一般轉換為一個最小L0范數的優化問題,求解方法主要有最小L1 范數法、匹配追蹤系列演算法、最小全變分方法、迭代閾值演算法等。
采樣定理(又稱取樣定理、抽樣定理)是采樣帶限信號過程所遵循的規律,1928年由美國電信工程師H.奈奎斯特首先提出來的,因此稱為奈奎斯特采樣定理。1948年資訊理論的創始人C.E.香農對這一定理加以明確說明並正式作為定理引用,因此在許多文獻中又稱為香農采樣定理。該理論支配著幾乎所有的信號/圖像等的獲取、處理、存儲、傳輸等,即:采樣率不小於最高頻率的兩倍(該采樣率稱作Nyquist采樣率)。該理論指導下的信息獲取、存儲、融合、處理及傳輸等成為信息領域進一步發展的主要瓶頸之一,主要表現在兩個方面:
(1)數據獲取和處理方面。對於單個(幅)信號/圖像,在許多實際應用中(例如,超寬頻通信,超寬頻信號處理,THz成像,核磁共振,空間探測,等等), Nyquist采樣硬體成本昂貴、獲取效率低下,在某些情況甚至無法實現。為突破Nyquist采樣定理的限制,已發展了一些理論,其中典型的例子為Landau理論, Papoulis等的非均勻采樣理論,M. Vetterli等的 finite rate of innovation信號采樣理論,等。對於多道(或多模式)數據(例如,感測器網路,波束合成,無線通信,空間探測,等),硬體成本昂貴、信息冗餘及有效信息提取的效率低下,等等。
(2)數據存儲和傳輸方面。通常的做法是先按照Nyquist方式獲取數據,然後將獲得的數據進行壓縮,最後將壓縮後的數據進行存儲或傳輸,顯然,這樣的方式造成很大程度的資源浪費。另外,為保證信息的安全傳輸,通常的加密技術是用某種方式對信號進行編碼,這給信息的安全傳輸和接受帶來一定程度的麻煩。
綜上所述:Nyquist-Shannon理論並不是唯一、最優的采樣理論,研究如何突破以Nyquist-Shannon采樣理論為支撐的信息獲取、處理、融合、存儲及傳輸等的方式是推動信息領域進一步往前發展的關鍵。眾所周知:(1)Nyquist采樣率是信號精確復原的充分條件,但絕不是必要條件。(2)除帶寬可作為先驗信息外,實際應用中的大多數信號/圖像中擁有大量的structure。由貝葉斯理論可知:利用該structure信息可大大降低數據採集量。(3) Johnson-Lindenstrauss理論表明:以overwhelming性概率,K+1次測量足以精確復原N維空間的K-稀疏信號。
由D. Donoho(美國科學院院士)、E. Candes(Ridgelet, Curvelet創始人)及華裔科學家T. Tao(2006年菲爾茲獎獲得者,2008年被評為世界上最聰明的科學家)等人提出了一種新的信息獲取指導理論,即,壓縮感知或壓縮感測(Compressive Sensing(CS) or Compressed Sensing、Compressed Sampling)。該理論指出:對可壓縮的信號可通過遠低於Nyquist標準的方式進行采樣數據,仍能夠精確地恢復出原始信號。該理論一經提出,就在資訊理論、信號/圖像處理、醫療成像、模式識別、地質勘探、光學/雷達成像、無線通信等領域受到高度關注,並被美國科技評論評為2007年度十大科技進展。CS理論的研究尚屬於起步階段,但已表現出了強大的生命力,並已發展了分布CS理論(Baron等提出),1-BIT CS理論(Baraniuk等提出),Bayesian CS理論(Carin等提出),無限維CS理論(Elad等提出),變形CS理論(Meyer等提出),等等,已成為數學領域和工程應用領域的一大研究熱點。

⑦ 壓縮感知

【嵌牛導讀】:傳統基於奈奎斯特定律的信號采樣方法暴露出來的缺點越來越多,幾年來一種新的理論----壓縮感知打破了奈奎斯特采樣定理(采樣速率大於信號最高頻率的兩倍),成為了新的研究熱點。

【嵌牛鼻子】:壓縮感知;信號採集;欠奈奎斯特采樣;正交匹配追蹤

【嵌牛提問】:壓縮感知的原理?

【嵌牛正文】:

2004年,D.Donoho等人提出了壓縮感知理論,Tao T等人在此基礎上進行了改進[ ],為超寬頻信號採集問題的解決開辟了一條新的道路。該理論是假設待采樣信號在某個空間內具有稀疏的特性(只有少量的非零元素),利用測量矩陣將高維的稀疏信號投影為低維的測量值,從而完成對信號的壓縮。然後通過優化求解的方法,可以精確重構出原始信號。該理論將壓縮和數模變換合圍一體,利用低采樣率完成對寬頻信號的壓縮采樣,降低了對AD器件性能的要求,具有十分良好的發展前景,其系統框圖如下圖所示。

壓縮感知主要分為三個部分:信號稀疏表示、壓縮測量、信號重構。

信號稀疏表示:

首先介紹一下壓縮感知中十分重要的幾個概念。

稀疏性:如果一個向量的大多數元素都為0,只有少量元素具有有效值,那麼這個向量就具有稀疏性[ ]。

稀疏度:如果一個向量中非零元素個數小於N,即‖x‖_0

壓縮測量:

壓縮測量是壓縮感知中非常重要的一步,其關鍵在於壓縮矩陣的選擇。壓縮矩陣的作用就是將高維的信號映射為低維的輸出信號,完成信號的壓縮測量。測量過程可以用下式表示。

令測量矩陣A_(l*n)=φ_(l*n)*Ɵ_(n*n),上式可簡化為下式:

如果要求信號能夠重構,那麼這種映射應該是一一對應的,即特定的µ只能映射為唯一的y。這樣的唯一性是保證信號能夠精確重構的前提。為了滿足這樣的重構條件,測量矩陣A必須滿足一定的條件。T.TAO等人提出為此提出了RIP條件(受限等距特性)。如果A能滿足下式的不等式:

上式表示在測量矩陣滿足RIP條件時,重構出的信號的誤差在相當小的一個范圍內。經過上面的討論,我們就為精確重構出信號提供了理論上的保障。

信號重構:

重構演算法是壓縮感知的核心內容和最後一步,其恢復精確度和演算法復雜程度決定了采樣系統的可行性和實用性。由采樣輸出y_(l*1)求解輸入信號µ_(n*1)是一個未知數個數多餘方程個數的欠定方程。通常情況下其解有無數個,需要進行優化求解來確定最優解。

常用的優化求解演算法為:貪婪演算法,凸優化演算法和組合演算法。

AIC(模擬信息轉換器), 其結構如下圖所示。

單像素相機

每次只取一個像素點,隨機取若干次。運用演算法對所取的像素值進行處理,恢復出原始信號

醫學成像

⑧ 壓縮感知過時了嗎

沒有過時,依然是主流暢談的話題,使用度依舊廣泛。

壓縮感知的核心點在於,其不遵從奈奎斯特采樣定理。而這原因在於,壓縮感知的采樣是隨機的,不等間距的,故不用管奈奎斯特。不過壓縮感知也是有要求的,它需要保證信號是稀疏的。

一旦信號不稀疏,進行違背奈奎斯特的隨機非等間距采樣時,頻域上的交疊會導致難以恢復原始信號。在壓縮感知過程中,如果將采樣頻率降低,使得其很小,那麼采樣的時域間隔就會相對很大,加上一定方式的隨機采樣,此時采樣得到的數據量就會很小,從而實現了一種壓縮。

壓縮感知與傳統的采樣+壓縮的模式不同的是,它首先不遵從奈奎斯特采樣定理,其次,它並沒有分為采樣和壓縮,應該說,壓縮感知的采樣就是壓縮。采樣之後將采樣的數據直接傳輸,之後在接收端便可以通過適當的重構演算法進行重構。

⑨ 誰能解釋一下壓縮感知的用途和基本原理

壓縮感知,又稱壓縮采樣,壓縮感測。它作為一個新的采樣理論,它通過開發信號的稀疏特性,在遠小於Nyquist 采樣率的條件下,用隨機采樣獲取信號的離散樣本,然後通過非線性重建演算法完美的重建信號。壓縮感知理論一經提出,就引起學術界和工業的界的廣泛關注。他在資訊理論、圖像處理、地球科學、光學/微波成像、模式識別、無線通信、大氣、地質等領域受到高度關注,並被美國科技評論評為2007年度十大科技進展。
壓縮感知理論的核心思想主要包括兩點。
第一個是信號的稀疏結構。傳統的Shannon 信號表示方法只開發利用了最少的被采樣信號的先驗信息,即信號的帶寬。但是,現實生活中很多廣受關注的信號本身具有一些結構特點。相對於帶寬信息的自由度,這些結構特點是由信號的更小的一部分自由度所決定。換句話說,在很少的信息損失情況下,這種信號可以用很少的數字編碼表示。所以,在這種意義上,這種信號是稀疏信號(或者近似稀疏信號、可壓縮信號)。
另外一點是不相關特性。稀疏信號的有用信息的獲取可以通過一個非自適應的采樣方法將信號壓縮成較小的樣本數據來完成。理論證明壓縮感知的采樣方法只是一個簡單的將信號與一組確定的波形進行相關的操作。這些波形要求是與信號所在的稀疏空間不相關的。壓縮感知壓縮感知方法拋棄了當前信號采樣中的冗餘信息。它直接從連續時間信號變換得到壓縮樣本,然後在數字信號處理中採用優化方法處理壓縮樣本。這里恢復信號所需的優化演算法常常是一個已知信號稀疏的欠定線性逆問題。

⑩ 壓縮感知理論基本介紹

姓名:王鑫磊

學號:21011110262

學院:通信工程學院

【嵌牛導讀】壓縮感知是信號處理領域進入21世紀以來取得的最耀眼的成果之一,並在磁共振成像、圖像處理等領域取得了有效應用。壓縮感知理論在其復雜的數學表述背後蘊含著非常精妙的思想。基於一個有想像力的思路,輔以嚴格的數學證明,壓縮感知實現了神奇的效果,突破了信號處理領域的金科玉律——奈奎斯特采樣定律。即,在信號采樣的過程中,用很少的采樣點,實現了和全采樣一樣的效果。

【嵌牛鼻子】壓縮感知,欠采樣,稀疏恢復

【嵌牛提問】壓縮感知相比奈奎斯特采樣定律的主要突破是什麼?

【嵌牛正文】

1.CS的初步理解

    CS是一個針對信號采樣的技術,是在采樣過程中完成數據壓縮的過程。我們知道在對模擬信號按一定采樣頻率進行采樣並得到數字信號的過程中,要想完整保留原始信號中的信息,采樣頻率必須大於信號中最高頻率的2倍(奈奎斯特采樣定理)。但Candes等人又提出了,如果信號在頻域是稀疏的,那麼它可以由遠低於采樣定理要求的采樣點重建恢復。Nyquist定理中的采樣為等間距采樣,若采樣頻率低必然會引起混疊,如果不等間距采樣呢?如果是隨機采樣呢?隨機采樣必然會發生頻譜泄露,但泄露會均勻分布在整個頻域且泄露值都較小,而最大的幾個峰值可以通過設置閾值檢測出來,從而有了恢復出原始信號的可能。

    圖1展示了一原始的模擬信號在頻域是稀疏的,僅由三個頻率分量組成,為了得到數字信號,首先要在時域對其進行采樣,根據壓縮感知理論,可以在時域進行隨機亞采樣,之後得到的頻譜會產生如圖所示的泄露,但可以通過閾值檢測求出原始信號的真實頻率分量,從而恢復出原始信號。

2. CS的數學模型

    CS有兩個前提條件:

假設:x是長度為N的原信號,稀疏度為k,它是未知的;Φ為測量矩陣,對應采樣過程,也就是壓縮的過程,如隨機采樣,是已知的;采樣後的結果為:y=Φx,也是已知的;因此壓縮感知問題是:在已知測量值y和測量矩陣Φ的基礎上,求解原信號x的過程。然而一般信號x本身並不稀疏,需要在某種稀疏基上進行稀疏表示,即x=Ψs, 其中s為稀疏向量,即為所求的稀疏信號;Ψ為稀疏基矩陣,也叫稀疏變換矩陣,如傅里葉變換。

於是最終問題表示為:

                                                                                  y = ΦΨs = Θs                                                                                      (1)

已知y,Φ,Ψ,求s, Θ稱為感知矩陣。感知矩陣需要滿足約束等距原則(RIP),因此需要測量矩陣Φ和稀疏基Ψ滿足不相關,即采樣過程與稀疏過程不相關。Candes等人又找到了獨立同分布的高斯隨機測量矩陣可以稱為普適的壓縮感知測量矩陣,於是滿足高斯分布的隨機測量矩陣就成了CS最常用的觀測矩陣。

3. CS的常用方法

已知(1)方程有無數解,因此需要通過增加約束來得到唯一解。方程是稀疏的,因此我們需要找到這個方程里所有解中最稀疏的內個就行了。

求解上述方程一般有三種思路:凸優化演算法,貪婪演算法,貝葉斯理論。CS常用演算法有:

基追蹤重構演算法 (Basis Pursuit, BP):BP演算法是一種凸優化方法。

正交匹配追蹤演算法 (OMP):OMP屬於貪婪演算法。

閾值迭代演算法 : 包括軟閾值迭代(ISTA)和迭代硬閾值(IHT)。ISTA的一種改進方法為快速閾值迭代(FISTA)。

【嵌牛參考】

[1]. Dandes, E. J. . 「Near-optimal signal recovery from random projections.」 Universal encoding strategies IEEE Transactions on Information Theory 52(2006).

[2]. Donoho, D. L. . 「Compressed sensing.」 IEEE Transactions on Information Theory 52.4(2006):1289-1306.

閱讀全文

與壓縮感知硬體實現相關的資料

熱點內容
如何在伺服器上做性能測試 瀏覽:791
命令序列錯 瀏覽:257
javaif的條件表達式 瀏覽:576
手機app上傳的照片怎麼找 瀏覽:529
雲伺服器面臨哪些威脅 瀏覽:746
c語言各種編譯特點 瀏覽:177
路由器多種加密方法 瀏覽:604
程序員阻止電腦自動彈出定位 瀏覽:168
如何做伺服器服務商 瀏覽:761
su剖切命令 瀏覽:726
devc編譯背景 瀏覽:211
學習單片機的意義 瀏覽:51
音頻演算法AEC 瀏覽:911
加密貨幣容易被盜 瀏覽:82
蘋果平板如何開啟隱私單個app 瀏覽:704
空調壓縮機一開就停止 瀏覽:528
如何下載虎牙app 瀏覽:847
日語年號的演算法 瀏覽:955
dev裡面的編譯日誌咋調出來 瀏覽:298
php函數引用返回 瀏覽:816