導航:首頁 > 文件處理 > 真空泵的壓縮比

真空泵的壓縮比

發布時間:2023-05-21 06:47:52

『壹』 真空泵的主要參數有哪些

1、真空泵的極限壓強

泵的極限壓強單位是Pa,是指泵 在入口處裝有標准試驗罩 並按規定條件工作,在不引入氣體正常工作的情況下,趨向穩定的最低壓強。

2、真空泵的抽氣速率

泵的抽橋培氣速率單位是m3/s或l/s,是指泵裝有標准試 驗罩,並按規定條件工作時,從試驗罩 流過的氣體流量與在試驗罩指定位置測得的平衡壓強之比。簡稱泵的抽速。

3、真空泵的抽氣量

真空泵的抽氣量 單位是Pam3/s或Pal/s。是指 泵入口的氣體流量。

4、真空泵的起動壓強

真空泵的起動壓強單位為Pa,它是銀嫌指泵無損壞起動並有抽氣作用 時的壓強。

5、真空泵的前級壓強

真空泵的前級壓強 單位是Pa,它鋒消手是指排氣壓強 低於一個大氣壓的真空泵的出口壓強。

6、真空泵的最大前級壓強

真空泵口最大前級壓強單位是Pa,它是指超過了 能使泵損壞 的前級壓強。

7、真空泵的最大工作壓強

真空泵的最大工作壓強單位是Pa,它是指對應最大抽氣量 的入口壓強。在此壓強下,泵能連續工作而不惡化或損壞。

8、真空泵的壓縮

壓縮比是指泵對給定氣體的出口壓強與入口壓強之比。

9、真空泵的何氏系數

泵抽氣通道面積上的實際抽速 與該處按分子瀉流計算的理論抽速 之比。

10、真空泵的抽速系數

泵的實際抽速與泵入口處按分子瀉流計算的理論抽速之比。

11、真空泵的返流率

泵的返流率 單位是g/cm2.s。它是指 泵按規定條件工作時,通過泵入口單位面積的泵流質量流。

12、水蒸氣允許量

水蒸氣 的允許量單位是kg/h,它是指泵在正常環境條件下,氣鎮泵 在連續工作時能抽除的水蒸氣質量流量。

13、最大允許水蒸氣入口壓強

最大允許水蒸氣入口壓強 單位是Pa。它是指 在正常環境條件下,氣鎮泵在連續工作時所能抽除的水蒸氣的最高入口壓強。

(1)真空泵的壓縮比擴展閱讀

按真空泵的工作原理,真空泵基本上可以分為兩種類型,即變容真空泵和動量傳輸泵。

變容真空泵是利用泵腔容積的周期變化來完成吸氣和排氣以達到抽氣目的的真空泵。氣體在排出泵腔前被壓縮。

動量傳輸泵依靠高速旋轉的葉片或高速射流,把動量傳輸給氣體或氣體分子,使氣體連續不斷地從泵的入口傳輸到出口。

變容真空泵又分為:往復式,旋轉式(旋片式、滑閥式、液環式、羅茨式、螺旋式、爪形轉子式),其它型式。

『貳』  氣體輸送和壓縮設備

輸送和壓縮氣體的設備統稱為氣體壓送機械,其作用與液體輸送設備頗為類似,都是把能量傳遞給流體,使流體流動。

氣體壓送機械可按其出口氣體的壓強或壓縮比來分類。壓送機械出口氣體的壓強也稱為終壓。壓縮比是指壓送機械出口與進口氣體的絕對壓強的比值。根據終壓大致將壓送機械分為:

通風機終壓不大於15kPa(1500mm H20);

鼓風機終壓為0.015~0.3MPa(0.15~3kgf/cm2),壓縮比小於4;

壓縮機終壓在0.3MPa(3kgf/cm2)以上,壓縮比大於4;

真空泵將低於大氣壓的氣體從容器或設備內抽至大氣中。

此外,壓送機械按其結構與工作原理又可分為離心式、往復式、旋轉式和流體作用式。

一、離心通風機、鼓風機與離心壓縮機

離心通風機、鼓風機及離心壓縮機的工作原理與離心泵相似,依靠葉輪的旋轉運動,使氣體獲得能量,從而提高了壓強。通風機通常為單級的,所產生的表壓強低於15kPa(1500mm H2O),對氣體起輸送作用。鼓風機有單級亦有多級,產生的表壓強低於3kgf/cm2,透平機都是多級的,產生的表壓強高於3kgf/cm2,對氣體都有較顯著的壓縮作用。

(一)離心通風機

離心通風機按所產生的風壓不同,可分為:

低壓離心通風機出口風壓低於1kPa(100mm H2O);

中壓離心通風機出口風壓為1~3kPa(100~300mm H2O);

高壓離心通風機出口風壓為3~15kPa(300~1500mm H2O)。

1.離心通風機的結構

圖2-21所示為低壓離心通風機。離心通風機的結構和單級離心泵相似。它的機殼斷面有方形和圓形兩種。離心通風機的葉片數較離心泵多,而且不限於後彎葉片,也有前彎葉片。在中、低壓離心通風機中,多採用前彎葉片,主要原因是由於要求壓力不高。前彎葉片有利於提高風速,從而減少通風機的截面積,因而設備尺寸可較後彎時為小。但是,使用前彎葉片時,風機的效率低,能量損失較大。

圖2-21離心通風機

1-機殼;2-葉輪;3-吸入口;4-排出口

2.離心通風機的性能參數與特性曲線

離心通風機的主要性能參數有風量、風壓、軸功率和效率。由於氣體通過風機的壓強變化較小,在風機內運動的氣體可視為不可壓縮,所以離心泵基本方程式亦可用來分析離心通風機的性能。

(1)風量風量是單位時間內從風機出口排出的氣體體積,並以風機進口處氣體的狀態計,以Q表示,單位為m3/h。

(2)風壓風壓是單位體積的氣體流過風機時所獲得的能量,以ht表示,單位為J/m3=N/m2。由於ht的單位與壓強的單位相同,故稱為風壓。既然是壓強的單位,通常又用mmH2O來表示。

離心通風機的風壓取決於風機的結構、葉輪尺寸、轉速與進入風機的氣體密度。

目前還不能用理論方法去精確計算離心通風機的風壓,而是由實驗測定。一般通過測量風機進、出口處氣體的流速與壓強的數據,按柏努利方程式來計算風壓。

離心通風機對氣體所提供的有效能量,常以1m3氣體作為基準。設風機進口為截面1-1′,出口為截面2-2′,根據以單位體積流體為基準的柏努利方程式可得離心通風機的風壓為:

非金屬礦產加工機械設備

式中ρ及(z2-z1)值都比較小,(z2-z1)ρg可忽略;風機進、出口間管段很短,ρ∑hf1-2也可忽略;又當風機進口處與大氣直接相連時,且截面1-1′位於風機進口外側,則v1也可忽略,因此上式可簡化為:

非金屬礦產加工機械設備

上式中(p2-p1)稱為靜風壓,以hpt表示。

稱為動風壓。離心通風和出口處氣體的流速較大,故動風壓不能忽略,根據上述的實驗裝置情況,離心通風機的風壓為靜風壓與動風壓之和,又稱為全風壓。通風機性能參數表上所列的風壓是指全風壓。

(3)軸功率與效率離心通風機的軸功率為:

非金屬礦產加工機械設備

式中N——軸功率(kW);

Q——風量(m3/s);

ht——風壓(Nm/m3);

η——效率,因按全風壓定出,故又稱為全壓效率。

風機的軸功率與被輸送氣體密度有關,風機性能參數表上所列出的軸功率均為實驗條件下,即空氣的密度為1.2kg/m3時的數值,若所輸送的氣體密度與此不同,可按下式進行換算,即:

非金屬礦產加工機械設備

式中N′——氣體密度為ρ′時的軸功率(kW);

N——氣體密度為1.2kg/m3時的軸功率(kW)。

離心通風機的特性曲線,如圖2-22所示。表示某種型號通風機在一定轉速下,風量Q與風壓ht、靜風壓hpt、軸功率、效率η四者的關系。

圖2-22離心通風機特性曲線示意圖

3.離心通風機的選擇

離心通風機的選擇和離心泵的情況相類似,其選擇步驟為:

(1)根據柏努利方程式,計算輸送系統所需的風壓ht

(2)根據所輸送氣體的性質(如清潔空氣、易燃、易爆或腐蝕氣體以及含塵氣體等)與風壓范圍,確定風機類型。若輸送的是清潔空氣,或與空氣性質相近的氣體,可選用一般類型的離心通風機,常用的有4-72型、8-18型和9-27型。前一類型屬於低壓通風機,後兩類屬於高壓通風機。

(3)根據實際風量Q(以風機進口狀態計)與實驗條件下的風壓ht,從風機樣本或產品目錄中的特性曲線或性能表選擇合適的機號,選擇原則與離心泵相同,不再詳述。

每一類型的離心通風機又有各種不同直徑的葉輪,因此離心通風機的型號是在類型之後又加機號,如4-72No.12。4-72表示類型,No.12表示機號,其中12表示葉輪直徑為12cm。

(4)若所輸送氣體的密度大於1.2kg/m時,需按式(2-19)計算軸功率。

表2-4為國產部分風機的性能和用途。

(二)離心鼓風機和離心壓縮機

離心鼓風機又稱透平鼓風機,工作原理與離心通風機相同,可單級也可多級,多級的結構類似於多級離心泵。圖2-23所示為一台五級離心鼓風機的示意圖。氣體由吸氣口進入後,經過第一級的葉輪和導輪,然後轉入第二級葉輪入口,再依次通過以後所有的葉輪和導輪,最後由排出口排出。

離心鼓風機的送氣量大,但所產生的風壓仍不高,出口表壓強一般不超過0.3MPa(3kgf/cm3)。由於在離心鼓風機中,氣體的壓縮比不高,所以無需冷卻裝置,各級葉輪的直徑也大體上相等。

離心壓縮機常稱透平壓縮機,主要結構、工作原理都與離心鼓風機相似,只是離心壓縮機的葉輪級數多,可在10級以上,轉速較高,故能產生更高的壓強。由於氣體的壓縮比較高,體積變化就比較大,溫度升高也較顯著。因此,離心壓縮機常分成幾段,葉輪直徑與寬度逐段縮小,段與段之間設置中間冷卻器,以免氣體溫度過高。

離心壓縮機流量大,供氣均勻,體積小,機體內易損部件少,可連續運轉且安全可靠,維修方便,機體內無潤滑油污染氣體。所以,近年來除要求壓強很高的情況以外,離心壓縮機的應用日趨廣泛。

表2-4常用風機性能范圍和用途表

二、旋轉鼓風機

目前應用最廣的旋轉鼓風機是羅茨鼓風機。

羅茨鼓風機的工作原理與齒輪泵相似。如圖2-24所示。機殼內有兩個特殊形狀的轉子,常為腰形,兩轉子之間、轉子與機殼之間縫隙很小,使轉子能自由轉動而無過多的泄漏。兩轉子旋轉方向相反,可使氣體從機殼一側吸入,而從另一側排出。如改變轉子的旋轉方向時,則吸入口與排出口互換。

圖2-23五級離心鼓風機示意圖

羅茨鼓風機的風量和轉速成正比,而且幾乎不受出口強度變化的影響。羅茨鼓風機轉速一定時,風量可保持大體不變,故稱定容式鼓風機。這一類型鼓風機的輸氣量范圍是2~500m3/min,出口表壓強在80kPa(0.8kgf/cm2)以內,但在表壓強為40kPa(0.4kgf/cm2)附近效率較高。

羅茨鼓風機的出口應安裝氣體穩壓罐,並配置安全閥。一般採用迴路支路調節流量。出口閥不能完全關閉。操作溫度不能超過85℃,否則會引起轉子受熱膨脹,發生碰撞。

圖2-24羅茨鼓風機

三、往復壓縮機

往復壓縮機的構造、工作原理與往復泵比較相近。主要部件有氣缸、活塞、吸氣閥和排氣閥。依靠活塞的往復運動而將氣體吸入和壓出。

圖2-25所示為立式單作用雙缸壓縮機,在機體內裝有兩個並聯的氣缸1,稱為雙缸,兩個活塞2連於同一根曲軸5上。吸氣閥4和排氣閥3都在氣缸的上部。氣缸與活塞端面之間所組成的封閉容積是壓縮機的工作容積。曲柄連桿機構推動活塞不斷在氣缸中作往復運動,使氣缸通過吸氣閥和排氣閥的控制,循環地進行吸氣-壓縮-排氣-膨脹過程,以達到提高氣體壓強的目的。氣缸壁上裝有散熱翅片,使熱量易於擴散。

圖2-25立式單作用雙缸壓縮機

1-氣缸體;2-活塞;3-排氣閥;4-吸氣閥;5-曲軸;6-連桿

(一)往復壓縮機的工作過程

往復壓縮機的構造和工作原理與往復泵雖相接近,但因往復壓縮機所處理的是可壓縮的氣體,在壓縮後氣體的壓強增大,體積縮小,溫度升高,因此往復壓縮機的工作過程與往復泵就有所不同,圖2-26為單作用往復式壓縮機的工作過程。當活塞運動至氣缸的最左端(圖中A點),壓出行程結束。但因為機械結構上的原因,雖則活塞已達到行程的最左端,氣缸左側還有一些容積,稱余隙容積。由於余隙的存在,吸入行程開始階段為余隙內壓強為p2的高壓氣體膨脹過程,直至氣壓降至吸入氣壓p1(圖中B點)吸入活門才開啟,壓強為p1的氣體被吸入缸內。在整個吸氣過程中,壓強基本保持不變,直至活塞移至最右端(圖中C點),吸入行程結束。當活塞改向左移,壓縮行程開始,吸入活門關閉,缸內氣體被壓縮,當缸內氣體的壓強增大至稍高於p2(圖中D點),排出活門開啟,氣體從缸體排出,直至活塞至最左端,排出過程結束。

由此可見,壓縮機的一個工作循環是由膨脹-吸入-壓縮-排出等四個階段組成。在圖2-26的p-V坐標上為一封閉曲線,BC為吸入階段,CD為壓縮階段,DA為排出階段,而AB則為余隙氣體的膨脹階段。由於氣缸余隙內有高壓氣體存在,因而使吸入氣體量減少,增加動力消耗。故余隙不宜過大,一般余隙容積為活塞一次所掃過容積的3%~8%,此百分比又稱余隙系數,以符號ε表示。

圖2-26往復壓縮機的工作過程

非金屬礦產加工機械設備

式中Va——余隙容積;

Vc-Va——活塞掃過的容積。

當氣體經壓縮後體積縮小,壓強增大,溫度顯著上升。為了提高壓縮機的工作效率,在操作上常使用段間冷卻方法,以減少氣體溫度的上升,同時在氣缸構造上設置空冷或水冷裝置。

(二)往復壓縮機的選用

往復壓縮機的選用主要依據生產能力和排氣壓力(或壓縮比)兩個指標。生產能力通常用以進口狀態下流量m3/min表示。排氣壓力(或稱終壓)是以Mpa表示。在實際選用時,首先應考慮所輸送氣體的特殊性質,選定壓縮機的種類和壓縮段數。然後根據壓縮機按氣缸的空間位置劃分各類型的優缺點,選定壓縮機的類型。壓縮機的機種和型號選定以後,即可根據生產的需要,按照前述的生產能力和排氣壓力兩個指標,由產品樣本中,選定所需用的壓縮機。

四、真空泵

從真空容器中抽氣並加壓排向大氣的壓縮機稱為真空泵。真空泵的型式很多,現將常用的幾種,簡單介紹如下:

(一)往復真空泵

往復真空泵的基本結構和操作原理與往復壓縮機相同,只是真空泵在低壓下操作,氣缸內外壓差很小,所用閥門必須更加輕巧,啟閉方便。另外,當所需達到的真空度較高時,如95%的真空度,則壓縮比約為20。這樣高的壓縮比,余隙中殘余氣體對真空泵的抽氣速率影響必然很大。為了減少余隙影響,在真空泵氣缸兩端之間設置一條平衡氣道,在活塞排氣終了時,使平衡氣道短時間連通,余隙中殘余氣體從一側流向另一側,以降低殘余氣體的壓力,減少余隙的影響。

(二)水環真空泵

如圖2-27所示。外殼1內偏心地裝有葉輪,其上有輻射狀的葉片2。泵內約充有一半容積的水,當旋轉時,形成水環3。水環具有液封的作用,與葉片之間形成許多大小不同的密封小室,當小室漸增時,氣體從入口4吸入;當小室容積漸減時,氣體由出口6排出。

水環真空泵可以造成的最高真空度為85kPa(0.85kgf/cm2)左右,也可以作鼓風機用,但所產生的表壓強不超過0.1MPa(1kgf/cm2)。當被抽吸的氣體不宜與水接觸時,泵內可充以其他液體,所以又稱液環真空泵。

圖2-27水環式真空泵工作示意圖

1-泵體;2-葉輪;3-水環;4-進氣孔;5-工作室;6-排氣孔;7-排氣管;8-進氣管;9-放空管;10-水箱;11-放水管道;12-控制閥

此類泵結構簡單、緊湊,易於製造與維修,由於旋轉部分沒有機械摩擦,使用壽命長,操作可靠。適用於抽吸含有液體的氣體,尤其在抽吸有腐蝕性或爆炸性氣體時更為合適。但效率很低,約為30%~50%,所能造成的真空度受液體溫度所限制。

『叄』 羅茨泵澀壓縮比怎麼算

△TF=158(γ- 1)TRF/EV。
該式中,ΔTF是溫升(oF),γ是壓縮比,TRF是溫升系數,EV是容積效率。
羅茨真空泵(簡稱:羅茨凳談泵)是指泵內裝有兩個相反方向同步旋轉的葉形轉子,轉子間、轉子與泵棗察碰殼內壁沒或間有細小間隙而互不接觸的一種變容真空泵 。

『肆』 表示真空泵工作性能的兩個主要參數有哪些

任何進口真空泵一般都用以搏埋畝下兩個主要參數表示其工作性能。
(1)抽氣速率一系指單位時間內真空泵在殘余壓力下從進氣管吸入的氣體容積,即液迅好凱德真空泵的生產能力(或稱流世V),以m³或L/s表示。
(2)殘余壓力或稱極限真空度一系指該泵所能達到的最低壓力(絕對)。
雅之雷德用一定的進口真空泵抽吸某一密閉容器中的氣體,無論抽吸的時間有多久,容器中的壓力是不能無限地降低到零(即絕對真空)的。這是因為當進氣壓力低於某一值後,或是由於泵中液體發生汽化,或是由於高壓側漏回的氣盤與真空泵的抽氣勝相同.或是由於好凱德真空泵的壓縮比過高,容積系數降低為零.都會使泵無法繼續吸入新鮮氣體。在這種情況下,容器中的壓力再也不會降低了。此時的絕對壓力值稱為基森殘余壓力或極限真空度。

『伍』 羅茨真空泵的壓縮比

羅茨真空泵的壓縮比受到兩方面的不利影響:
1.迴流到活塞和殼體之間的間隙
2.通過活塞表面吸附而沉積在出口側並在轉向吸入側後又重新解吸的氣體。在出口壓力為 10-2 至 1 hPa 的情況下,分子流在密封間隙中佔主導地位,由於其低電導率,這導致少量迴流。然而真空泵廠家雅之雷德發現,通過吸附被吸回的氣體體積,這與泵送的氣體體積相比相對較高,降低了壓縮比。

『陸』 水環式真空泵工作原理

水環式真空泵是液環式真空泵中最常見的一種。液環式真空泵是帶有多葉片的轉子偏心裝在泵殼內。當它旋轉時,把液體拋向泵殼並形成與泵殼同心的液環,液環同轉子葉鄭舉片形成了容積周期變化的旋轉變容真空泵。當工作液體為水時,稱水環泵。

水環泵主要用於粗真空、抽氣量大的工藝過程中。在化工、石油、輕工、醫葯及食品工業中得到了廣泛地應用,如真空過濾、真空送料、真空濃縮、真空脫氣等。

單級水環泵的極限壓力可達8~2×103Pa,雙級水環泵的極限壓力可達1×102Pa,排氣量為0.25~500m3/h。

水環式真空泵的工作原理

水環泵工作輪2在泵體1中旋轉時形成了水環3和工作室5。水環與工作輪構成了月牙形空間。右邊半個月牙形的容積由小變大,形成吸氣跡基室。左邊的半個月牙形的容積由大變小,構成了壓縮過程(相當於排氣室)。被抽氣體由進氣管8和進氣口4進入吸氣室。轉子進一步轉動,使氣體受壓縮,經過排氣口6和排氣管7排出。排出的氣體和水滴由排氣管道7進入水箱10,此時氣體由水中分離出來,氣體經管管道9排到大氣中,水由水箱進入泵中,或經過管道11排到排水設備中。

圖 水環泵的工作原理圖

水環泵的壓縮比由喊州碧泵的吸氣口終了位置和排氣口開始位置所決定。因為吸氣口終止位置決定著吸氣腔吸入氣體的體積;而排氣口開始的位置決定著排氣時壓縮了的氣體的體積。對已經確定了結構尺寸的水環泵,可以求出其壓縮比。

閱讀全文

與真空泵的壓縮比相關的資料

熱點內容
怎麼加密w8文件 瀏覽:609
linuxprogram 瀏覽:708
php介面編程思想 瀏覽:92
如何下載電話軟體app 瀏覽:906
java命令行解析 瀏覽:572
雲伺服器白嫖 瀏覽:917
程序員小清新 瀏覽:989
編譯器地址8位元組對齊 瀏覽:464
三菱plc編程win1064 瀏覽:258
高中英語單詞pdf 瀏覽:425
編譯原理詞法分析常見問題 瀏覽:197
車小藝app怎麼更新 瀏覽:77
手機app被管控如何移除 瀏覽:753
51單片機溫濕度檢測 瀏覽:575
安卓抖音顯示沒網路是怎麼回事 瀏覽:817
2d我的世界源碼 瀏覽:618
怎樣製作貼天花板的解壓球 瀏覽:337
伺服器如何打開蘋果 瀏覽:96
高響應比演算法的實現 瀏覽:848
windows寫命令行 瀏覽:61